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Abstract
We propose a simple, robust method to measure both the first and second normal stress differences of polymers, hence obtaining
the full set of viscometric material functions in nonlinear shear flow. The method is based on the use of a modular cone-
partitioned plate (CPP) setup with two different diameters of the inner plate, mounted on a rotational strain-controlled rheometer.
The use of CPP allows extending the measured range of shear rates without edge fracture problems. Themain advantage of such a
protocol is that it overcomes limitations of previous approaches based on CPP (moderate temperatures not exceeding 120 °C,
multiple measurements of samples with different volume) and yields data over a wide temperature range by performing a two-
step measurement on two different samples with the same volume. The method was tested with two entangled polystyrene
solutions at elevated temperatures, and the results were favorably compared with both the limited literature data on the second
normal stress difference and the predictions obtained with a recent tube-based model of entangled polymers accounting for shear
flow-induced molecular tumbling. Limitations and possible improvements of the proposed simple experimental protocol are also
discussed.
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Introduction

One of themost intriguing features of viscoelastic fluids, and in
particular of polymers, undergoing nonlinear shear is their abil-
ity to develop two nonzero normal stress differences (Bird et al.
1977; Macosko 1994). Normal stresses are responsible, among
other things, for a variety of flow instabilities which are rele-
vant for polymer processing, such as extrudate swell (Boger
andWalters 1993), sharkskin (Miller and Rothstein 2004), and
edge fracture (Tanner and Keentok 1983). In particular, the
second normal stress difference is associatedwith edge fracture

instabilities in rotational shear flows (Tanner and Keentok
1983; Skorski and Olmsted 2011; Hemingway et al. 2017).
A complete characterization of the flow behavior of a specific
polymeric system should provide the dependence of the three
viscometric functions, i.e., viscosity (η), first and second nor-
mal stress differences (N1 and N2), upon shear rate (γ̇ ). As the
appearance of normal stresses in viscoelastic materials under-
going shear is a second-order effect, normal stress differences

are usually presented in terms of normal stress coefficients,Ψ1

¼ N1=γ̇
2
and Ψ2 ¼ N2=γ̇

2
. Such functions are typically de-

termined from transient start-up experiments in rotational shear
rheometers (Gao et al. 1981; Meissner et al. 1989; Schweizer
2002; Baek and Magda 2003; Schweizer et al. 2008).
However, obtaining reliable data in fast rotational flows is
not trivial because of the possible development of instabilities
such as wall slip, shear banding, and edge fracture. The latter is
inevitable and yields voids in the measured specimen, hence
leading to underestimation of viscosity and normal stresses.
Moreover, It can also result in a departure from the linear
velocity profile in the rheometer fixture, akin to shear banding
signature (Schweizer and Stöckli 2008). The larger the frac-
ture, the larger is the error in evaluating η, N1, and N2. A good
strategy to overcome this problem is to use a cone-partitioned
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plate (CPP) geometry (Meissner et al. 1989; Snijkers and
Vlassopoulos 2011; Schweizer and Schmidheiny 2013;
Costanzo et al. 2016). Such geometry restricts the measure-
ment volume to the inner part of the sample so that edge dis-
tortions do not affect the measurements. However, a CPP ge-
ometry with a single partition can provide reliable measure-
ments only for viscosity. In modern rotational rheometers, N1

can be directly accessed by means of axial transducers.
However, the value of N1 recorded in rheometers equipped
with a CPP geometry is an apparent one (Napp) because of
the contribution to the normal stress distribution coming from
the part of the sample exceeding the transducer area. Such
contribution causes a nonnegligible overestimation of N1

(Schweizer and Bardow 2006; Costanzo et al. 2016).
Furthermore, N2 cannot be obtained from direct viscometric
measurements (Macosko 1994; Tanner 2000). A brief histori-
cal survey follows.

Early on (Kotaka et al. 1959; Lodge 1964; Bird et al. 1977), it
was realized that rotational rheometry can be used formeasuring
the normal stress distribution in cone-plate (CP) or parallel-plate
(PP) geometries, starting from the equations of fluid motion. In
particular, it was shown that a combination of CP (which pro-
vides N1) and PP (which provides N1-N2) geometries gives ac-
cess to both normal stress differences (Kotaka et al. 1959;
Adams and Lodge 1964; Ginn and Metzner 1969; Savins and
Metzner 1970; Barnes et al. 1975; Eggers and Schümmer 1994).
Even the use of cone and plate only with varying the truncation
gap was shown to be an efficient method to probe N2 (Kotaka
et al. 1959; Lodge 1964; Jackson and Kaye 1966; Marsh and
Pearson 1968; Kulicke and Wallbaum 1985; Ohl and Gleissle
1992). These methods have been recently used and/or modified
in order to measure the normal stresses in shear thickening
(Cwalina and Wagner 2014) and non-Brownian (Sing and
Nott 2003; Gamonpilas et al. 2016) colloidal suspensions.
However, problems such as edge fracture make the implemen-
tation of this straightforward approach very difficult, if not im-
possible, especially for highly viscoelastic fluids (e.g., polymer
melts) and for a reasonable range of shear rates (Tanner 1970).
In general, viscometric flows with polymer melts are far more
challenging than with polymer solutions; hence, most of the
relevant experimental work to obtain N2 concerns the latter
(Harris 1968; Ginn and Metzner 1969; Pritchard 1971; Tanner
1973), and it is limited to low shear rates. Different methods to
obtain N2 based on visual observation were proposed, with rea-
sonable success: for example, measuring the shape of the free
surface of polymeric fluids flowing down a semicircular channel
(Wineman and Pipkin 1966; Kuo and Tanner 1972; Kuo and
Tanner 1974; Keentok et al. 1980; Sturges and Joseph 1980) or
analyzing the edge effects in a cone-and-plate fixture (Tanner
1970). The open channel flow approach has been used to mea-
sure N2 in non-Brownian suspensions as well (Couturier et al.
2011). Rheo-optical methods have been proven to be a

particularly useful tool for determining normal stresses and, in
fact, the full stress tensor in viscoelastic solutions, by means of
the stress optical law (Brown et al. 1995; Takahashi and Fuller
1996; Kalogrianitis and van Egmond 1997; Takahashi et al.
2002). However, besides again being restricted to solutions
(and usually at room temperatures), these approaches are very
sensitive to fine alignment issues, especially the oblique angle
case (Takahashi and Fuller 1996; Takahashi et al. 2002), render-
ing their use quite limited.

Focusing on rotational rheometry and highly viscoelastic
polymeric fluids, the most effective methods to measure the
normal stress differences are based on the evaluation of the
normal stress distribution in CP geometry (Kotaka et al. 1959;
Lodge 1964) with constant shear rate (γ̇ ) along the radial
direction. The use of flush-mounted transducers on the plate
at different radii of the sample, taking advantage of the hole
pressure analysis, yielded high-quality data (Tanner and
Pipkin 1969; Higashitani and Pritchard 1972; Kearsley 1973;
Christiansen and Leppard 1974; Baird 1975; Boger and Denn
1980; Gao et al. 1981; Magda et al. 1991; Lodge 1993; Lee
et al. 2002; Baek and Magda 2003; Alcoutlabi et al. 2009).
However, this approach is limited to low temperatures because
the pressure sensors cannot withstand the very high tempera-
tures which are relevant for polymer melt flow. In addition,
inserting a transducer at different radii requires a large sample
radius and therefore large sample quantities. An alternative
approach is to measure the normal force acting on partitions
of the plate with different radii by means of a CPP geometry
(Schweizer 2002; Schweizer et al. 2004). While this method
works also at relatively high temperatures, it requires multiple
measurements (see the next section for details), generally from
4 to 6 per shear rate (Schweizer 2002; Schweizer et al. 2004),
with samples of different radii. Therefore, it requires the prep-
aration of samples with different masses, and several loadings,
rendering the measurements tedious and time-consuming,
while introducing more sources of error. This can be overcome
by means of a CPP geometry with two partitions, the so-called
“CPP-3” (Schweizer and Schmidheiny 2013), which repre-
sents the state of the art in CPP design. While it will be
discussed in more detail in the next section, we note that its
small temperature range (from room temperature to about
120 °C) and its sophisticated implementation limit its use.
Hence, there is a need to optimally combine accuracy, high
temperatures, small amounts of sample, and easiness of use.

In this work, we attempt at addressing this challenge and
propose a simple CPP-based method to obtain steady-state
values of N1 and N2 in a two-step measurement with two
identical samples over a wide temperature and shear rate
range. The paper is organized as follows: after this introduc-
tion, we briefly present the historical development of the CPP
geometry and its implementation for measuring N1 and N2.
Then, our modular homemade CPP setup for the ARES
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rheometer is described. Next, the protocol for obtaining N1

and N2 is applied to two polystyrene solutions in an
oligostyrene solvent at high temperatures. The experimental
results are compared with predictions of a recent tube-based
model accounting for flow-induced molecular tumbling
(Costanzo et al. 2016). In particular, the model assumes that
shear start-up tumbling reduces the chain stretch typical of fast
flows, suppressing it completely at steady state. The latter fea-
ture has been recently examined by Khomami and co-workers
(Nafar Sefiddashti et al. 2015), who concluded that tumbling
appears to affect the orientational contribution to the steady-
state stress rather than that due to chain stretch. Their analysis,
however, assumes a single Maxwell-like relaxation time, while
our model applies to a multimode relaxation spectrum. Finally,
the main conclusions are summarized in the last section.

Historical background of CPP geometry

Evidence of edge fracture instability in shear flows was first
reported in the early works of Pollett and Cross (1950), Pollett
(1955), Tanner and Keentok (1983), and Keentok and Xue
(1999). In particular, Tanner and Keentok (1983) established
a correlation between the magnitude of N2, the surface ten-
sion, and the amplitude of the fracture. They found that edge
fracture occurs when

N2j j > 2Γ= 3hð Þ ð1Þ
where Γ is the surface tension and h is the size of the fracture.
This expression was derived by assuming an initial semicir-
cular crack and a second-order fluid. Therefore, its application
is not general. Very recently, a theoretical study of the edge
fracture instability was performed by Fielding and co-workers
(Hemingway et al. 2017) for more general constitutive models
(Johnson-Segalman and Giesekus). They derived an exact an-
alytical expression for the onset of the instability in shear
flows. In particular, they found that the jump in shear stress
across the interface between the fluid and the outside medium
is a relevant parameter to determine the fracture. The general-
ized criterion for fracture is

1

2
Δσ

d N2 γ̇ð Þj j
dγ̇

=
dσ
dγ̇

>
2πΓ
Ly

ð2Þ

where σ is the shear stress,Δσ the jump in shear stress across
the interface between fluid and surrounding medium (which is
equal to σ when the medium is air with negligible viscosity),
and Ly the gap size. These authors used a cylindrical Couette
geometry in their calculations; hence, the respective Ly for CP
should be the outer gap. In the limit of small shear rates, where

N2∼γ̇
2
and σ ¼ ηγ̇ (η being the viscosity), and for Ly = h, the

above expression of Tanner is recovered. We note for

completeness that often shear banding instabilities are trig-
gered by edge fracture. Their link has been addressed experi-
mentally (Schweizer and Stöckli 2008) and theoretically
(Skorski and Olmsted 2011).

The first experimental attempt to overcome the edge frac-
ture issue in rotational rheometers was reported by Meissner
and co-workers in 1989 (Meissner et al. 1989). They modified
a commercial RMS800 rotational rheometer and equipped it
with a CPP fixture to measure the viscometric functions of
LDPE samples. In order to extract N2, they used a fixed inner
radius of 6 mm and varied the outer radius. Temperature con-
trol of this setup was provided by electrically heated tools to
ensure a good temperature homogeneity of the sample. The
experimental procedure adopted by Meissner and co-workers
to measure N2 is based on the following equation, (Bird et al.
1977; Schweizer 2002)

N app ¼ 2F
πR2

stem

¼ N1 þ 2 N 1 þ 2N2ð Þln R
Rstem

� �
ð3Þ

where Napp is the normal force per unit area detected by the
axial transducer on the inner partition (apparent value of N1),
F the normal force acting on the inner plate, Rstem the radius of
the inner plate, and R the radius of the sample. This procedure
involves multiple measurements for each shear rate. The nor-
mal stress differences are thereby evaluated from the slope and
the intercept of the linear function Napp vs. ln(R / Rstem). The
radius (R) is estimated from the mass (m) of the sample, ac-
cording to the equation

R ¼
ffiffiffiffiffiffiffiffiffiffiffi
3m
2πρθ

3

s
ð4Þ

where ρ is the sample density and θ the cone angle (Meissner
et al. 1989; Schweizer 2002). The same method was used by
Schweizer (2002) in order to measure the viscometric func-
tions of a polystyrene melt with Mw = 158 kg/mol at 190 °C.
Schweizer et al. (2004) also measured a polystyrene melt with
Mw = 200 kg/mol at 175 °C. In the latter case, the inner radius
was reduced to 4 mm in order to avoid early overload of the
axial transducer of the instrument. In this regard, problems
associated with the axial compliance of the instrument were
addressed by several authors (Hansen and Nazem 1975;
Macosko 1994; Kasehagen and Macosko 1998; Schweizer
and Bardow 2006; Crawley and Graessley 2015; Meissner
1972). It was found that the axial compliance induces delays
in the axial force signal of rotational rheometers. Since axial
compliance cannot be completely eliminated, delays affecting
N1 or Napp signals are unavoidable in transient shear start-up
measurements; therefore, reliable data are restricted to the
steady-state values of the normal force (Schweizer and
Bardow 2006; Costanzo et al. 2016). In order to reduce the
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axial compliance and increase the normal force maximum
load, a homemade rheometer (MTR 25) with normal force
capacity of 25 kg and large axial stiffness of 107 N/m was
developed (Schweizer et al. 2008). The MTR 25 had another
important characteristic: by means of two axial transducers,
the normal force of both the inner and the outer partitions
could be probed. This enabled the simultaneous determination
of N1 and N2 in a single start-up experiment. In fact, this
strategy was first implemented by Pollett (1955); however,
its main drawback is that the measurement on the part of the
sample in the outer partition is affected by edge fracture.
Moreover, the use of MTR 25 requires large quantities of
sample, as the outer radius is around 10–15 mm.

The above problem was addressed with the design of the
CPP-3 cell (Schweizer and Schmidheiny 2013). This geome-
try, consisting of three partitions, accommodates very small
amounts of sample (order of tens of milligrams) and has been
implemented on a MCR 502 rheometer (Anton Paar,
Germany). It consists of an inner measuring partition with
radius R1, a middle measuring ring with external radius R2,
and an outer nonmeasuring partition to prevent edge fracture.
The latter is fixed on the rheometer frame and contains the
outer part of the fluid, which will experience fracture at high
shear rates. The working principle is similar to that of the
MTR 25. Here, the outer radius is fixed, and the distribution
of normal stresses is integrated over two different radii. The
N1 and N2 signals are therefore obtained by iterating Eq. (3)
for the two partitions with a fixed outer radius R

N app;1 ¼ 2F1

πR2
1

¼ N1 þ 2 N1 þ 2N 2ð Þln R
R1

� �
ð5Þ

N app;2 ¼ 2 F1 þ F2ð Þ
πR2

2

¼ N1 þ 2 N1 þ 2N2ð Þln R
R2

� �
ð6Þ

In Eqs. (5)–(6), the geometrical parameters are known, as
well asNapp,1 and Napp,2, which are the apparent normal forces
(per unit area) detected on partition 1 and both partitions 1 and
2, respectively. The only two unknowns are N1 and N2, which
can therefore be determined. Besides the difficulty of use (in
the current design, the rheometer is used to shear the material,

and the two normal forces are measured independently with
external transducers; hence, alignment and temperature equil-
ibration of the partitions are very involved procedures), a dis-
advantage of this technique is the upper temperature limit
(Schweizer and Schmidheiny 2013) of about 120 °C, which
is rather restrictive for many polymer melts.

Recently, a CPP setup was developed for the ARES rhe-
ometer (Snijkers and Vlassopoulos 2011). Such a fixture is
similar to that of Meissner et al. (1989), but an extension of
the convection oven of the ARES rheometer was needed in
order to achieve good temperature control at high tempera-
tures, and several checks were necessary to ensure the absence
of nonnegligible temperature gradients. This tool is useful
only for obtaining reliable viscosity measurements at high
temperatures, but it is not helpful for N2. A similar setup
was also used on the ARES rheometer by Ravindranath and
Wang (2008). The temperature problem was overcome with a
new design of CPP for the ARES (Costanzo et al. 2016). In the
next section, we present the modular CPP based on this design
and its use for measuring N1 and N2.

Homemade CPP setup to detect N1 and N2

Figure 1a shows a schematic of our homemade CPP setup
while Fig. 1b shows a photograph of the actual fixture. The
bottom cone is attached to the motor of the ARES rheometer.
An appropriately modified version can be implemented on the
MCR 702 (a twin-drive rheometer with two motors, from
Anton Paar, Austria) as well, with the motor separated (say
at the bottom) from the transducer (at the top). For measuring
polymer melts and solutions, we used a standard cone with a
diameter of 25 mm and a cone angle (θ) of 0.1 rad. Such a
value of θ represents a good compromise between the neces-
sity to reduce axial compliance (Macosko 1994; Schweizer
and Bardow 2006; Crawley and Graessley 2015) and the need
of preventing edge fracture and potential shear banding insta-
bilities (Lee et al. 2002; Sui and McKenna 2007; Schweizer
and Schmidheiny 2013). Indeed, normal forces originating in
fast shear start-up tend to push the tools apart, resulting in a

Fig. 1 a Schematic of the CPP
with a single partition. b Photo of
the CPP for ARES rheometers
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squeeze flow which occurs over a characteristic time scale:
ta = (6πRη) / (Kaθ

3), where R is the radius of the sample and
Ka the axial stiffness (Schweizer and Bardow 2006). The
squeeze flow delays the normal force signal by a time which
scales linearly with ta.

Therefore, the larger the θ, the smaller is the ta and the
smaller the delay of the normal force signal. On the other
hand, a larger cone angle implies a larger gap at the edge of
the sample. Such a condition enhances edge fracture (Sui and
McKenna 2007; Schweizer and Stöckli 2008; Skorski and
Olmsted 2011; Schweizer and Schmidheiny 2013).

Concerning our setup, the inner partition is a homemade
stainless steel plate with a diameter of 6 mm. The inner shaft
has a slender body compared to the standard tools of ARES
rheometers. The reason for this choice is to provide enough
space around the shaft to house the outer partition so that the
geometry can fit into the ARES convection oven. The outer
partition is a nonmeasuring ring with an inner diameter of
6.2 mm and an outer diameter of 15 mm. Hence, the gap
between the inner shaft and the outer partition is 0.1 mm.
Such a small value is necessary in order to delay the penetra-
tion of the test material into the gap. The outer partition is
attached to a hollow bridge by means of a horizontal transla-
tion stage (which is, in fact, a plate with screws, allowing
manual translation and coarse position adjustment). The outer
partition and the translation stage are fixed together by means
of three screws. The translation stage is attached to the hollow
bridge through three tap bolts. The holes into the translation
stage are 0.5 mm larger than the diameter of the tap bolts. Such
a mechanical tolerance serves to align the outer partition con-
centrically to the shaft. The tap bolts can be loosened so that
the translation stage is free to translate on the plane parallel to
the shaft direction. The horizontal alignment is checked by eye
with the help of a mirror placed on the lower plate at an angle
of 45° with respect to the plate itself. After the outer partition is
aligned concentrically with the shaft, the tap bolts are tight-
ened to block the translation. To help with the alignment pro-
cess, the translation of the outer partition is guided bymeans of
an outer corona with three screws that press around the stage
(not shown in Fig. 1 for clarity of the drawing). The hollow
bridge possesses two cylindrical attachments at the edge for
vertical alignment. They slide into the holes of the rheometer
head and are fixed by means of passing-through screws.

In order to achieve a good alignment, we perform the fol-
lowing operations: (i) the inner shaft is mounted at the top while
a plate fixture (with a diameter of 25 or 50 mm) is attached at
the bottom; (ii) the gap is zeroed; (iii) the upper stage is raised to
the top position, and the bridge with the outer partition is
inserted into the head of the rheometer; (iv) the upper stage is
brought back to the zero position, and the hollow bridge is
allowed to slide down until it sits on the bottom plate together
with the inner shaft; this operation ensures vertical alignment
and parallelism of the inner tool and of the outer partition; (v)

after vertical alignment is achieved, the bridge is locked into the
head of the rheometer by means of two screws; (vi) the head of
the rheometer is raised from the lower plate, and a mirror is
placed on the lower plate to check for horizontal alignment;
(vii) the translation stage on the hollow bridge is loosened
and translated in order to achieve concentricity of the inner shaft
and of the outer partition; (viii) the horizontal translation stage
is blocked, and vertical alignment is re-checked by verifying the
zero position of the whole geometry. If the new zero position
varies by not more than 5 μm from the previous one, the align-
ment procedure is accepted, otherwise the whole operation is
repeated. Once the alignment is satisfactory, we replace the
bottom plate by the cone, and we zero the gap again. At this
stage, the geometry is ready for sample loading. The test sample
should be positioned symmetrically on the cone. Samples with
a diameter of 8 mm are generally prepared for an inner partition
with a diameter of 6 mm (called thereafter CPP-6). Hence, there
is a challenge of properly centering a discotic specimen with a
diameter of 8 mm on a cone with a diameter of 25 mm. This is
done with the help of centering tools. Centering tools can be
built in different ways. An easy approach consists in building a
semicircular cap with an inner diameter of 25 mm, which fits
the bottom cone. A semicircular 8-mm hole is carved in the
middle of the semicircular cap. During the sample loading,
the cap is placed on the cone and the sample is pressed against
the 8-mm hole. Once the tool is removed, the sample remains
well centered.

Our homemade CPP setup was appropriately modified in
order to take advantage of the direct measurement of normal
stresses at different radii while keeping good temperature con-
trol. With bulky geometries, thermal equilibration is generally
an issue. In this regard, the main problem of the CPP is that the
outer partition shields the inner shaft from the convection fluid
circulating inside the oven. The thicker the walls of the outer
partition, the larger is the thermal gradient between the inner
and the outer tools. Concerning our setup, we tried to mini-
mize the latter issue by making the walls of the outer partition
as thin as possible, compatibly with the mechanical strength of
the geometry. Both the hollow cylinder and the bottom corona
of the outer tool are 1 mm thick. Furthermore, holes have been
drilled at the top and the bottom of the outer cylinder, and at
the bottom of the inner tool, in order to promote thermal con-
vection between the inner and the outer tools. If the sample is
allowed to equilibrate for at least 20–25 min before running
the test, this configuration suffices to obtain a good thermal
homogeneity of the sample. Figure 2 reports the comparison
between a frequency sweep test performed on molten linear
polystyrene (Mw = 133k, T = 150 °C) with only the inner tool
(PP-6) and one performed with the complete CPP-6. The good
agreement between the two experiments confirms that the
thermal gradients induced by the use of the CPP are minimal.

Another issue that can arise in transient rotational
rheometry concerns wall slip (Wang et al. 2011; Carotenuto
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et al. 2015). We did not observe any wall slip for the samples
investigated here. However, if the tested systems are subject to
wall slip, one can easily adopt roughened versions of both the
inner tool and the outer corona in order to avoid such an issue.
Due to the narrow gap between the partitions, the application
of sandpaper to the CPP results to be very difficult.

Indeed, our design is modular, allowing for the inner shaft
and the outer partition to be easily replaced. Therefore, we
constructed another inner shaft that has a diameter of 10 mm
and a corresponding outer partition with an inner diameter of
10.15 mm (CPP-10). The outer partitions of CPP-6 and CPP-
10 setups have the same outer diameter and can be attached to
the hollow bridge by means of the same translation stage. This
is schematically depicted in Fig. 3.

The setup with two partitions mimics the functioning prin-
ciple of Schweizer’s CPP-3 setup and is based on the same

working equations (Eqs. (5)–(6)). However, in order to get the
two signals of Napp,1 and Napp,2, we need to run two measure-
ments with identical samples, instead of one. The advantage is
that the temperature control and stability are ensured with the
convection oven of the ARES rheometer; hence, measure-
ments are reliable even at very high temperatures. It is also
relatively easy to align and operate this CPP fixture, whereas
the window of the oven provides partial optical control of the
sheared sample. Disadvantages include the relatively low
maximum normal force capacity of the axial transducer (max-
imum of 2 kg) and the noise of the signal of the normal force,
which are associated with the specific ARES rheometer. This
restricts detection of N1 and N2 to a relatively narrow range of
shear rates. The lower limit is set by shear rate values high
enough to obtain unambiguous signals of normal force. The
upper limit is set by shear rates at which the normal force
reaches the limit of 2 kg. In general, polymeric systems with
reasonably low values of the plateau modulus (GN

0; typically
well below 1 MPa) are amenable to higher shear rates before
overloading the transducer. Therefore, we diluted high-molar-
mass polystyrene (PS) in oligostyrene in order to obtain two
entangled solutions with appropriately low values of GN

0.

Polystyrene solutions

Two solutions were prepared by diluting high-molar-mass PS in a
2k oligostyrene (Mw= 2 kg/mol). One solution was prepared by
diluting PS with Mw = 200 kg/mol in the oligostyrene at ϕ= 0.5
w/w. This solution is coded as PS200k-2k-50, where 50 refers to
the weight percentage. The other solution was prepared by dilut-
ing PS with Mw = 545 kg/mol in the oligostyrene. The weight

Fig. 2 Comparison between a frequency sweep experiment on molten
linear polystyrene (Mw = 133k, T = 150 °C) performed with 6-mm
parallel plates (PP-6) and the one performed with the CPP-6

Fig. 3 Two different partitions to measure normal stresses with cone-partitioned plate. a 6-mm partition (CPP-6). b 10-mm partition (CPP-10). c
Photograph of the actual setup with the two exchangeable partitions
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percentage of PS was ϕ= 0.7 w/w, and therefore the solution is
coded as PS545k-2k-70. For the preparation of the solutions, the
polymer was first dissolved in toluene in a glass vial. Then, the
needed amount of oligomer was added. The vial was sealed and
stirred gently (by means of a Teflon-coated magnetic stirrer) at
room temperature for 2 days. Subsequently, the toluenewas evap-
orated in a hood at room temperature for 8 days. Finally, the
solutions were put under vacuum for 2 days at 150 °C in order
to strip residual amounts of toluene. The key molecular charac-
teristics of the two solutions are listed in Table 1. The number of
entanglements per chain (Z) is calculated as the ratio betweenMw

and the entanglement molar mass (Me). To be consistent with
earlier works (Huang et al. 2015; Costanzo et al. 2016), we used
a Me value of 13.3 kg/mol as reported for atactic polystyrene
(Fetters et al. 2006; Huang et al. 2013a, b). The plateau moduli
of Table 1 are determined from the linear viscoelastic response as
the values ofG′ at theminimumof the loss factor. Such values are
close to those obtained according to the theoretical prediction,

G0
N ϕð Þ ¼ G0

N 1ð Þϕ1þα, where G0
N ϕð Þ is the plateau modulus

of the solution, G0
N 1ð Þ is the plateau modulus of the melt, and

α is the dilution exponent (here taken to be equal to 1) (Rubinstein
and Colby 2003; Graessley 2008; Huang et al. 2013a; Huang

et al. 2015). These values of G0
N ϕð Þ were chosen in order to

prevent normal force transducer overload when γ̇ approaches
values corresponding to frequencies in the plateau region of G′.

Modeling

We will here use the model proposed in our previous paper
(Costanzo et al. 2016), with a simplification due to the fact that
in shear flows, the monomeric friction coefficient essentially re-
mains at the equilibriumvalue, differently from extensional flows
where chains co-align considerably, yielding anisotropic friction.
Furthermore, we will neglect the effect of convective constraint
release (CCR) previously shown to play a negligible role in

sheared PS systems (Costanzo et al. 2016). As a consequence,
in the nonlinear range, the relaxation times of the linear visco-
elastic (LVE) spectrum do not change, and the stress tensor (σ)
can be written as the following sum over modes:

σ tð Þ ¼ CQλ
2 tð Þ f λð Þ

f 0
∑
Gi

τ i
∫
t

−∞
dt

0
exp −

t−t0

τ i

� �
Q E t; t

0
� �h i

ð7Þ

where {Gi, τi} is the discrete Maxwell set of LVE moduli and
relaxation times, tensor E is the deformation gradient between
past time (t′) and current time (t), and Q is the Doi-Edwards
tensor, here replaced (for simplicity) by the following unit-trace
Seth-type measure

Q ¼ Bq

trBq ð8Þ

based on the Finger tensor B=ET ⋅E. Several choices for the
exponent q have been made, from q= 1 (Larson 1984) to q= 1/2
(Marrucci et al. 2000; Costanzo et al. 2016) or q = 1/3
(Ianniruberto 2015; Park and Ianniruberto 2017). The latter val-
ue, q = 1/3, will be adopted here, implying slightly less affine
orientation. The scalar coefficient CQ is Q-dependent (and is
equal to 3/q for the Seth-type tensors of Eq. (8)) and is needed
for Eq. (7) to properly reduce to the multimode Maxwell-like
LVE limit; λ is the stretch ratio of the entangled subchain, and
f(λ) is the force factor that accounts for the non-Gaussian behav-
ior of subchains

f λð Þ ¼ ℒ −1 λ=λmaxð Þ
3λ=λmax

; λmax ¼ a=b: ð9Þ

In Eq. (9),ℒ−1 is the inverse Langevin function, b = 18Å is
PS Kuhn length (Rubinstein and Colby 2003), and a is the
tube diameter, changing with dilution according to a(ϕ) =
a(1)ϕ−1/2, where the tube diameter of PS melts is given (in
Å) by a(1) = 85(3f0/CQ)

1/2 (Ianniruberto 2015), with f0 as the
equilibrium value of f. (In PS melts, a is not much larger than
b; hence, even for λ = 1, i.e., at equilibrium, f0 comes out
slightly larger than unity.)

There remains to specify how λ varies with time. In line
with the suggestion of Costanzo et al. (2016), we will assume
that in a shear flow with a shear rate γ̇, the stretch ratio obeys
the differential equation (x and y being the shear and gradient
directions, respectively)

dλ
dt

¼ γ˙ Sxyφλ−
fλ− f 0
τR

; Sxy ¼ 1

τd
∫
t

−∞
dt

0
exp −

t−t0

τd

� �
Qxy γ t; t

0
� �h i

: ð10Þ

Table 1 Molecular parameters of the two PS solutions

ϕ Z Tref (°C) GN
0 (Pa) τd (s) τR (s)

PS200k-2k-50 0.5 7.5 130 4.2 × 104 5.56 0.944

PS545k-2k-70 0.7 28.7 170 8.5 × 104 5.27 0.136

ϕ is the polymer weight fraction, Z is the number of entanglements per
chain, Tref is the reference temperature at which relaxation times are
evaluated (the same temperature was used for nonlinear measurements),
GN

0 is the entanglement plateau modulus determined as G′ at the mini-
mum of tan(δ), τd is the terminal relaxation time determined from
Eq. (12), and τR is the Rouse time determined from τR = Z2 τe with τe as
the Rouse time of the entangled subchain, estimated from the
Baumgartel-Schausberger-Winter (BSW) fit of the linear frequency
response
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Here, τR is the Rouse time of the polymer chain, and the
tumbling function φ(t), inspired by the work of Khomami and
co-workers (Nafar Sefiddashti et al. 2015), is given by

φ tð Þ ¼ cos 2πωtð Þexp −βtð Þ; ω ¼ Wi−0:2R

8π
γ˙ ; β ¼ Wi−0:2R

8
γ˙

ð11Þ

where WiR ¼ γ̇τR is the Weissenberg number based on the
Rouse time. Finally, the disengagement (terminal) time (τd)
controlling the evolution of the average xy-orientation (Sxy)
of the entanglement tube is calculated from the LVE spectrum
through the classical formula (Ferry 1980)

τd ¼ ∑iGiτ2i
∑iGiτ i

ð12Þ

The model Eqs. (7)–(12) are solved by using the estimated
Rouse time values reported in Table 1 and the LVE Maxwell
spectrum {Gi, τi} of Table 2 (see the next section).

Results and discussion

Figure 4 shows the LVE master curves of the two PS solutions
at the respective reference temperatures of 130 °C (PS200k-2k-
50) and 170 °C (PS545k-2k-70). Nonlinear transient shear ex-
periments have been performed at the same temperatures, as
mentioned in Table 1. We note that, due to the different refer-
ence temperatures, the terminal relaxation times of the two so-
lutions are nearly the same (see Table 1), while the plateau of
PS545k-2k-70 extends for several decades in frequency,
allowing to span a larger portion of the rubber-like region.
The high-frequency crossover is not the same for the two solu-
tions, indicating different entanglement numbers and glass tran-
sition temperatures due to the different fractions of solvent.

Both master curves were fitted with a multimode
Maxwell model by using the Reptate software (http://
reptate.com/). The corresponding values of the set
{Gi, τi} are listed in Table 2 and used for the model pre-
dictions of the nonlinear response. The discrete spectra of
Table 2 will also be used in conjunction with Eq. (13)

below for the first normal stress coefficient (Ψ1 =Ψ1(t))
of the rubber-like liquid constitutive equation (Lodge and
Meissner 1973)

Similar to what has been done in our previous work
(Costanzo et al. 2016), the LVE master curves of the samples
were also fitted with the BSW relaxation model in order to
estimate the Rouse time τe of the entangled subchain and
hence the chain Rouse time τR reported in Table 1.

Figure 5 depicts the data from dynamic frequency sweep
tests performed on different samples of PS200k-2k-50 at
130 °C. Two samples were measured with the 6-mm partition,
and two more with the 10-mm partition. The dynamic moduli
obtained with different loadings are in excellent agreement with
one another. This confirms the excellent reproducibility of the
loadings and the high reliability of the present method for test-
ing different samples. In general, we note that, if the CPP ge-
ometry is used correctly, the reproducibility of rheological mea-
surements is as good as that obtained with standard geometries.

Concerning nonlinear measurements, we prepared a series
of identical samples for each solution by means of vacuum
compression molding (Costanzo et al. 2016). The mass (m) of
the samples was between 46 and 47 mg, so that the outer

Table 2 Parameters of the multimode Maxwell fit for the two PS solutions

Parameters Values

PS200k-2k-50

τi (s) 2.44 × 101 3.92 6.30 × 10−1 1.01 × 10−1 1.36 × 10−2 2.62 × 10−3 4.22 × 10−4 6.79 × 10−5 1.09 × 10−5

Gi (Pa) 4.36 × 102 1.92 × 104 1.93 × 104 2.01 × 104 3.53 × 104 1.04 × 105 2.81 × 104 3.94 × 106 4.60 × 103

PS545k-2k-70

τi (s) 5.97 6.91 × 10−1 7.99 × 10−2 9.25 × 10−3 1.07 × 10−3 1.24 × 10−4 1.43 × 10−5 1.66 × 10−6 1.92 × 10−7

Gi (Pa) 2.39 × 104 2.81 × 104 2.32 × 104 2.03 × 104 2.81 × 104 9.37 × 104 2.11 × 105 2.41 × 106 8.82 × 106

Fig. 4 LVE master curves of the two PS solutions. PS200k-2k-50 at a
reference temperature (Tref) of 130 °C and PS545k-2k-70 at a Tref of
170 °C. Lines represent multimode Maxwell fits to the data using the
Reptate software

370 Rheol Acta (2018) 57:363–376

http://reptate.com
http://reptate.com


radius value (R) was equal to 6.04 ± 0.05 mm, according to
Eq. (4). We point out that having identical samples is not a
necessary condition for applying Eqs. (5)–(6). Indeed, the re-
quirement for measuring N1 and N2 with two measuring par-
titions is the knowledge of the outer radius of the sample and
that of the measured inner partition in two independent mea-
surements. However, having identical samples allows for di-
rect comparison of the apparent normal force signals.
Moreover, from a practical standpoint, the preparation of mul-
tiple samples can be easily done at once by using a drilled
platen with identical holes placed in a hot press. After prepa-
ration, we loaded the samples onto the ARES rheometer
equipped with the CPP, and performed transient start-up tests
at selected shear rates. Figure 6 depicts different start-up and
relaxation (the latter not further discussed here) shear tests
performed on the solution PS200k-2k-50 at 130 °C and γ

˙ ¼ 6 s−1. In order to demonstrate the reproducibility of the
results with the two different partitions, we report two differ-
ent loadings for each partition, CPP-6 and CPP-10.

In Fig. 6a, we can observe the high reproducibility of the
transient viscosity of the two different samples in the two differ-
ent geometries. The undershoot before steady state is thought to
be a signature of tumbling (Costanzo et al. 2016). In Fig. 6b, the
apparent normal force signals corresponding to the start-up tests
of fig. 6a are reported. The apparent normal stress acting on the
CPP-6 partition is different from that acting on the CPP-10 one,
as expected. In addition, we note that, differently from the tran-
sient viscosity, no undershoot following the overshoot is detect-
able in the transient Napp,1. This is in agreement with recent
reports on nonlinear shear rheology of molten polymers
(Costanzo et al. 2016; Stephanou et al. 2017). Transient normal
force signals in Fig. 6b are affected by noise and axial compli-
ance at early times; therefore, we limit our analysis to the steady
state. Also in the steady state, a neat separation between the
values of Napp,1 with 6 mm and Napp,2 with 10 mm is found.
We note that the steady-state values of normal force are well
above the experimental noise, which can be observed in the late
stages of the relaxation of the signals of Napp. The steady-state

values of Napp,1 and Napp,2 from Fig. 6b are then inserted into
Eqs. (5)–(6) in order to obtain the true steady-state values of N1

and N2. From the latter, we obtain Ψ1 and Ψ2 by dividing both

N1 and N2 by γ̇2. The steady-state values of η, Ψ1, and Ψ2 are
reported for the two PS solutions in Fig. 7, with η as a function of
1=γ̇ andΨ1 andΨ2 as a function of k=γ̇ (with k = 2.2). In Fig. 7,
we also report the LVE envelope for the transient viscosity and
the Lodge-Meissner prediction for Ψ1 as a function of time.

Specifically, the LVE envelope was obtained from the com-
plex viscosity by using a combination of the Cox-Merz rule
(Cox and Merz 1958), η γ̇ð Þ ¼ η ωð Þjω¼γ˙ with the Gleissle rela-

tionship (Gleissle 1980), ηþ tð Þ ¼ η γ̇ð Þjγ˙ ¼1=t. The curve of

Ψ1(t)RTS was calculated from the following equation (Lodge
and Meissner 1973; Graessley 2008):

Ψ1 tð ÞRTS ¼ 2 ∑
n

i¼1
τ2i Gi 1− 1þ t

τ i

� �
exp −

t
τ i

� �� �
ð13Þ

by using the relaxation spectrum {Gi, τi} reported in Table 2
(RTS stands for relaxation time spectrum). Figure 7 shows that
the Cox-Merz andGleissle rules work verywell in predicting the
nonlinear shear viscosity, while the Lodge-Meissner prediction
is off by a factor of about 2 in the time scale. Previous results on
N2 reported in the literature suggest that its value is negative and

Fig. 5 Reproducibility of the loadings. Dynamic frequency sweep tests of
different samples performed with four different loadings of PS200k-2k-
50: two with CPP-6 and two with CPP-10

(a)

(b)

Fig. 6 Transient shear data of the entangled polystyrene solution PS200k-
2k-50 at 130 °C and γ̇ ¼ 6 s−1 for four different loadings: two samples
with CPP-6 and two samples with CPP-10. a Start-up viscosity. b Start-up
and relaxation of the apparent normal stress
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much lower compared to that of N1 (Bird et al. 1977; Doi and
Edwards 1986; Tanner 2000), as indeed shown by our data as
well.

The complete set of shear start-up viscosity data is reported
in Fig. 8 for the two PS solutions, along with the predictions of
the model. Notice that the data encompass several samples
(loadings) and both CPP fixtures. Model predictions agree
reasonably well with both datasets.

Figure 9 reports the steady-state values of viscosity and nor-
mal stress differences of the two solutions. For the PS200k-2k-
50 solution, predictions agree well with data, while for PS545k-
2k-70, the normal stress differences are somewhat
overestimated. Whereas more work is needed to properly as-
sess this difference, it is tempting to think of possible flow-
induced disentanglement which is more relevant for larger
number of entanglements and is not considered in the model.

Finally, the measured ratio −N2/N1 is reported in Fig. 10 for
both solutions as a function of the orientational (terminal)
Weissenberg numberWid ¼ γ̇τd. With the exception of a sin-
gle data point, model predictions appear to agree with data
very well, although the uncertainty shown by the error bars
is certainly quite large. Within the uncertainty, data appear to
indicate larger values of the ratio for the PS200k-2k-50 solu-
tion with respect to PS545k-2k-70. The same ordering is
found, though marginally, in the model predictions. We be-
lieve that this is due to the different LVE spectra of the two

samples (see also Table 2), with the ratio −N2/N1 decreasing
(at fixed Wid) when the spectrum approaches the single-mode
limit (lower curve in Fig. 10). Indeed, the PS545k-2k-70 so-
lution is more entangled than PS200k-2k-50, hence it is closer
to the single-mode Maxwell limit in the terminal regime.

It should be noted that very similar values of the normal
stress ratio dropping from nearly 0.3 to nearly 0.1 with increas-
ing shear rate were also reported in previous studies on PS
200 kg/mol melts at 175 °C, using CPP and different sample
radii in a range ofWid from approximately 0.1 to 40 (Schweizer
et al. 2004). Similar results were reported long ago (Gao et al.
1981) for solutions of high-molar-mass PS (Mw between 200
and 2000 kg/mol) in n-butylbenzene at the fixed PS concentra-
tion of 450 kg/m3 and temperature of 25 °C (corresponding to
ϕ = 0.52 w/w), using flush-mounted transducers. The latter
technique was also used by Magda and Baek (1994) to demon-
strate the shear thinning of −N2/N1 of PS solutions in dioctyl
phthalate. Analysis of step-strain experiments yielded essential-
ly the same behavior (Brown et al. 1995; Olson et al. 1998).
The shear thinning of the −N2/N1 ratio for polymer melts was
investigated by means of coarse-grained non-equilibrium mo-
lecular dynamics simulations (Padding and Briels 2003), as
well as by Brownian simulations based on the slip-link model
(Cao 2011; Delbiondo et al. 2013). In the former case, the

Fig. 7 Viscometric steady-state functions of the two PS solutions here
investigated. a PS200k-2k-50, b PS545k-2k-70. The value of κ is 2.2 in
both cases. Error bars for N1 are at most the size of the symbols while for
N2, the error is larger

Fig. 8 Shear start-up viscosity curves for a PS200k-2k-50 and b PS545k-
2k-70. Dots (merging into continuous lines at long times) are data from
repeated runs at each shear rate (different samples and two CPPs). Dashed
and solid black lines are LVE and nonlinear model predictions,
respectively. Shear rates are as follows: a 1, 3, 6, and 10 s−1 and b 1, 6,
10, and 30 s−1, from top to bottom
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normal stress ratio varied from 0.12 at a rate of 100 μs−1 to
0.046 at 3000 μs−1 (terminal time (τd) = 0.025 μs; hence, Wid
¼ γ̇τd comprised between 2.5 and 75) whereas in the latter
case, a higher value was reported for the zero-shear limit
(0.4). Using a consistently unconstrained Brownian slip-link
model, Schieber et al. (2007) found smaller values (below
0.2). Similarly, by using non-equilibrium molecular dynamics
(NEMD) simulations, Baig and co-workers found that the ratio
−N2/N1 for a polyethylene melt decreases from 0.2 to approxi-
mately 0.1 by increasing the Weissenberg number from 10 to
104 (Baig et al. 2010). NEMD simulations were also performed
by Xu et al. (2014) on linear polymer melts in both the
unentangled and entangled regimes. They found that, in strong
shear flows, the normal stress differences of well-entangled

linear polymers follow the power laws N1∼γ̇
2=3

and

−N2∼γ̇
0:82, in contrast with the thinning behavior of the normal

stress ratio. We also note that Aoyagi and Doi (2000) reported
results of large-scale molecular dynamics simulations yielding
a ratio between 0.1 and almost zero when the shear rate ranged
from about 3 × 10−5 s−1 to about 10−2 s−1.

A final comment on the modeling is in the order: the first
molecular theory for entangled polymers explicitly predicting
a nonzero second normal stress difference is the integral mod-
el of Doi and Edwards (1979), to which also the model
adopted here reduces in the no-chain-stretch limit (λ = 1) of
the steady state. Conversely, molecular models of the differ-
ential type usually predict a zero second normal stress differ-
ence, even in the highly sophisticated version of the GLaMM
model (Graham et al. 2003), due to the decoupling approxi-
mation used in the calculation of the tube tangent correlation
function.

Conclusions

We have developed and tested a simple methodology for mea-
suring both N1 and N2 in entangled polymers at elevated tem-
peratures by means of a modular CPP geometry, and further
assessed the data by means of modeling predictions. Our CPP
setup is implemented on the ARES rheometer but can be also
implemented on MCR 702 with appropriate modifications.
Reliable measurements of the three viscometric functions (η,
N1, N2) are reported, with a small amount of samples and
excellent thermal stability at high temperatures. Within the
limitations imposed by the maximum axial force of the trans-
ducer, N1 and N2 data are obtained over a Weissenberg num-
ber range covering nearly two decades. The obtained data for
entangled polystyrene solutions in oligostyrene were com-
pared well with literature data (albeit at room temperature)
and with theoretical predictions based on the nonlinear model
explicitly including the effect of molecular tumbling
(Costanzo et al. 2016). Despite limitations, which are

Fig. 9 a, b Measured steady-state values of shear viscosity (circles) and
the first (triangles) and second (squares) normal stress differences vs.
shear rate. Error bars for η and N1 are within the size of the symbols.
Lines are model predictions

Fig. 10 Steady-state values of the normal stress ratio (−N2/N1) vs. the
Weissenberg number (Wid). Black squares and red circles are data for
PS200k-2k-50 and PS545k-2k-70, respectively. Black and red solid
lines are the corresponding model predictions. Within the uncertainties,
the normal stress ratio roughly decreases from 0.3 to 0.1 with Wid
increasing from about 5 to almost 200. Dotted and dashed lines indicate
the asymptotic values of the normal stress ratio for vanishing shear rates
predicted by the Q tensor with the independent alignment approximation
(IAA) of Doi and Edwards and by that used here, 2/7 and 1/3,
respectively. The lowest curve (green) is the single-mode prediction
(with the 1/3 Q tensor used here)
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discussed and provide motivation for improvements, the pres-
ent results are promising and may trigger further investiga-
tions of nonlinear shear rheology of highly elastic samples at
elevated temperatures.
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