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Abstract
To achieve a stable evaluation of the linear viscoelasticity of bubble suspensions, which have difficulties for conventional
rheometers from spatial distributions of rheological properties with bubble deformations, we proposed a novel rheometry
based on spatio-temporal velocity data obtained by ultrasonic velocity profiling (UVP). A frequency-domain algorithm was
adopted to overcome a critical influence of measurement noise on the rheological assessment, which is inferred from error
propagation characteristics through the equations of motion in discretized form. Applicability and advantage of the present
rheometry with the frequency-domain algorithm were verified by two kinds of fluids: high viscous oil as a Newtonian
fluid and polyacrylamide aqueous solution as a shear thinning, viscoelastic fluid. The rheometry was finally adopted for
bubble suspensions subject to high oscillatory shear, and it could validly extract elasticity-originated momentum transfer as
a function of space.

Keywords Rheometry · Ultrasonic velocimetry · Linear viscoelasticity · Bubble suspensions

Introduction

Regarding aspects such as quality control of products, safety
issues, and more efficient processing in any industrial field,
details of rheological properties of fluid media are required.
The development of highly precise torque meters has made
it possible to provide good estimations of such details. Along
with rheological models that are constitutive equations
describing the stress response in materials, rotational rheom-
etry has provided details of properties using only a small
number of characteristic constants. Nevertheless, rotational
rheometry assumes simple Couette flows produced in a nar-
row gap between the stator and rotor connected to torque
meters. However, dispersed multiphase media, which are
not seen as a continuum even at the macroscopic scale, are
difficult to measure. Non-ideal conditions run counter to the

� Yuji Tasaka
tasaka@eng.hokudai.ac.jp

1 Laboratory for Flow Control, Faculty of Engineering,
Hokkaido University, Sapporo, Japan

2 Institute for Design and Control of Mechatronic Systems,
Johannes Kepler University Linz, Linz, Austria

assumption of Couette flows required to solve the “Couette
inverse problem” to obtain the original rheological proper-
ties (e.g., Yeow et al. 2000; Ancey 2005; Heirman et al.
2008). Furthermore, in measurements of multiphase media,
additional complexities arise for example from the presence
of interfaces in gap size (e.g., Doi and Ohta 1991; Stickel
and Powell 2005).

A focus of our studies on the rheology of multiphase
media is bubble suspensions for understanding the mech-
anisms underpinning drag reduction from injected bubbles
(e.g., Ceccio 2010; Murai 2014). Bubbles accumulated
in flow elements, strong shear layers, and vortices cre-
ate locally different rheological properties in conditions
of unsteady shear flow in turbulence. Beginning with the
appearance of the classical theory on dilute spherical sus-
pensions (assuming that surface tension is strong enough to
sustain the spherical shape) in Einstein (1906) and Taylor
(1932), the study of suspension rheology has a century-
long history. By considering capillary number, the theory
was extended to deformable bubbles in simple steady shear
flows (Frankel and Acrivos 1970), and its applicability was
validated by experiments (Rust and Manga 2002). Choi
and Schowalter (1975) provided a more sophisticated equa-
tion that considered higher orders in the volume fraction
to extend the theory to larger volume fractions. Despite the
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progress made over the century, there remain aspects to be
explained about the elastic response attributed to surface
tension effect in unsteady shear flows (Llewellin et al. 2002;
Llewellin and Manga 2005; Tasaka et al. 2015).

For a rheological evaluation of multiphase media, there
are two issues to be solved: (1) the narrow-gap problem and
(2) the inverse Couette problem. The Stokes-type rheometry,
for instance, the falling sphere rheometry (bubble suspen-
sions; e.g., see Murai and Oiwa (2008)) and commercial
turning sphere rheometry (BMS, Anton Paar GmbH), can
avoid the issues arising from Couette-type rheometry. How-
ever, the rheological properties evaluated using these meth-
ods correspond to aggregated rheological properties because
of the multidimensional, multicomponent flows dealt with.
Thus, the rheological properties obtained are difficult to
interpret along standard approaches in rheology.

In solving the issues in regard to Couette-type rheometry,
a combination of a wide-gap cylinder system and velocime-
try has been tried; spatial profiling of velocity measured
in a wider gap using different kinds of velocimetry can
reveal deviations to ideal Couette flow that arises from
complex rheological properties, for example, shear band-
ing (e.g., Dimitriou et al. 2012). Supplementing the data
by torque measurements to give an integrated boundary
condition on a rotor in the system has supported eval-
uation of complex rheological properties. The kinds of
velocimetry adopted include particle image velocimetry
(PIV), specially named “Rheo-PIV” (Rodrı́guez-González
et al. 2010; Dimitriou et al. 2012; Pérez-González et al.
2012; Serrano-Aguilera et al. 2016), magnetic resonance
imaging velocimetry (Jarny et al. 2005; Ovarlez et al. 2005),
laser Doppler velocimetry (Quinzani et al. 1995; Rothstein
and Mckinley 2002), and ultrasonic imaging velocimetry
(Gurung et al. 2016).

In contrast to these types of velocimetry, ultrasonic
Doppler velocimetry or ultrasonic velocity profiling (UVP)
(Takeda 2012) offers ease of handling and access to opaque
fluids. Also, UVP is being further developed in both
hardware and software (Fischer et al. 2008; Meacci et al.
2016; Muramatsu et al. 2015), and we can expect in the near
future greater sophistication in its methodology. Moreover,
recent progress in combining it with Doppler optical
coherent tomography has overcome several disadvantages
of UVP in near-wall measurements of the velocity field
(Salmela et al. 2013). UVP was applied to a circular Couette
system (Murai 2012; Derakhshandeh and Vlassopoulos
2012) and also to pipe flow with measurements of the
pressure drop along the pipe (Ouriev and Windhab 2002;
Wiklund and Stading 2008). The latter technique has been
termed the in-line UVP-PD method and has been recognized
as a semi-standard evaluation tool in food rheology (Rao
et al. 2014) as ultrasonic velocimetry has been applied
avidly in the food processing industry.

Because of its spatio-temporal velocity profiling, UVP
has also been explored in visualizing rheological behaviors
(Shiratori et al. 2013). Our group has been developing
ultrasonic spinning rheometry (USR) that uses such data
to evaluate rheological properties modeled by equations of
motion of fluid media and has extended its applicability to
viscoelastic analyses of multiphase media including bubble
suspensions.

This study evaluates the applicability of USR in linear
viscoelastic analysis in general and bubble suspensions in
particular. We investigate the influence of measurement noise
on spatio-temporal velocity data measured by UVP that is
required for a viscoelastic analysis. We propose a novel
algorithm for USR applying the Fourier transform theory
to the velocity data to achieve more stable analysis. The
structure of this paper is as follows: USR including theory
and fundamental measurement configuration is briefly sum-
marized in “Ultrasonic spinning rheometry”. The applica-
bility of the USR and the numerical experiments in inves-
tigating the influence of the measurement noise on USR
are presented in “Influence of measurement error on USR”.
The theory of “frequency-domain analysis” is described. Its
applicability to viscosity analysis is evaluated in numeri-
cal experiments and on actual velocity data obtained from
viscous oil treated as a Newtonian fluid. Then, linear vis-
coelasticity analysis using the algorithm on bubble suspen-
sion is performed in “Frequency-domain analysis”. Finally,
concluding remarks are presented in “Conclusion”.

Ultrasonic spinning rheometry

Measurement configuration

The USR process involves two main steps: the measure-
ments of the velocity profile of test fluids placed in a cylin-
drical vessel and the post-processing of the velocity data to
evaluate rheological properties. In preparation for explain-
ing the post-processing, a brief explanation of the measuring
of velocity profiles is given here. The basic configuration
of the measurement (Fig. 1a) comprises an open-type cylin-
drical vessel of radius R filled with a test fluid rotating
under set conditions. Measurements of the velocity are per-
formed using an ultrasonic transducer (TDX) mounted on
the outside of the cylinder. The measurement line for UVP
(e.g., Takeda 2012) is set parallel to the centerline of the
cylinder with a certain displacement of �y to measure the
azimuthal component of velocity u; UVP measures the on-
axis velocity component uξ along the measurement line
ξ , and thus, the azimuthal velocity component is given as
u = uξ r/�y when the radial velocity component is negligi-
bly small. Test fluids are required to be seeded where there
are no ingredients that can scatter ultrasonic waves. Further
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Fig. 1 Schematics of a the experimental setup showing the rotating
cylinder and the measurement line for ultrasonic velocity profiling
(UVP) and b the measurement volume of UVP

details of individual measurements are described elsewhere
(Tasaka et al. 2015; Yoshida et al. 2017).

In measurements by UVP, representative velocities in the
disk-shaped volume of the test sample are captured as on-
axis velocity components at each radial position along the
measurement line (Fig. 1b). The diameter and width of the
measurement volume are determined from the size of the
piezo-element in the transducers and the wavelength of the
ultrasonic wave in the test fluids; typically, these are around
5 and 1 mm, respectively. Velocities u(r, t) calculated from
the on-axis velocity component measured in UVP at each
volume are processed. They reflect flow behaviors deter-
mined by the local characteristics of the test fluids respond-
ing to cylinder motions. These characteristics include rhe-
ological characteristics, for example, shear-rate-dependent
viscosity, viscoelasticity, and non-uniformity of ingredi-
ents and local structures. USR extracts from u(r, t) the
local characteristics with post-processing, which shall be
summarized below.

USR concept and procedure

USR is concerned with deriving rheological characteristics
from spatio-temporal velocity distributions measured by
UVP.

Here we summarize the post-processing procedure
used in USR. The rheological characteristics of fluids
are reflected in the spatio-temporal velocity distributions
which are governed by the equation of motions and the
constitutive equations (in rheological modeling) describing
the relationships between stress τ , strain γ , and strain rate
γ̇ . To simplify the model, we assume just two-dimensional

one-directional flows in the azimuthal direction that can
be realized in the setup mentioned in the last section. The
corresponding equation of motion, Cauchy’s equation, is

ρ
∂u

∂t
= ∂τ

∂r
+ 2τ

r
, (1)

where ρ is the density of the fluid. To determine the
rheological properties, Murai (2012) proposed minimizing a
cost function expressed by the least-squares approximation,

F(A,B,C, · · · ) =
(

ρ
∂u

∂t
− ∂τ

∂r
− 2τ

r

)2

, (2)

where the parameters, A, B, C, · · · , denote constants in rhe-
ological models representing rheological properties. In the
equation above, u(r, t) is given as measurement data in cir-
cular shear flows measured by UVP, and τ is also calculated
from u(r, t) through a rheological model adopted.

Influence of measurement error on USR

Viscoelastic analysis of bubble suspensions

We performed an analysis using the above equations of motion
to evaluate viscoelasticity of bubble suspensions, having
examined their effective Newtonian viscosity in a previous
paper (Tasaka et al. 2015). Experiments measuring velocity
profiles were performed with a cylinder of inner diameter
2R = 145 mm filled with 1000 mm2/s silicone oil to a
depth of 330 mm. Small bubbles of around 1 mm diameter
were dispersed in the fluid layer to a volume fraction of
about 2%. The cylinder underwent sinusoidal oscillations
of frequency f0 = 1 Hz and angular amplitude = 90◦. The
spatio-temporal velocity profiles were captured in ultrasonic
velocimetry at a spatial resolution of 0.99 mm along the
measurement axis and a time resolution of 30 ms.

We recall Cauchy’s equation of motion, Eq. 1, and adopt
Maxwell’s spring-dashpot model in describing viscoelastic
fluids,

τ + μ

E

∂τ

∂t
= μ

(
∂u

∂r
− u

r

)
, (3)

in establishing the simplest model to describe linear vis-
coelasticity, which is evaluated by first determining viscos-
ity μ and elasticity E from measurement data of u(r, t).
A suitable set of μ and E that satisfy these equations is
derived as a constraint condition on τ . Mathematically, the
calculation is

min
τ,μ,E

∫
r

∫
t

[
τ + μ

E

∂τ

∂t
− μ

(
∂u

∂r
− u

r

)]2

dtdr, (4)

s.t. : ρ
∂u

∂t
− ∂τ

∂r
− 2τ

r
= 0. (5)
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In terms of difference expressions for u(r, t) and τ(r, t),
these become

min
τ,μ,E

∑
i

∑
j

[
τi,j + μ

E

τi+1,j − τi,j

�t

− μ

(
ui,j+1 − ui,j

�r
− ui,j

rj

)]2

, (6)

s.t. : ρ
ui+1,j − ui,j

�t
− τi,j+1 − τi,j

�r
− 2τi,j

rj
= 0, (7)

where �t and �r correspond to the spatial and radial res-
olutions, respectively, of the velocity profile measurements.
More precisely, the radial positions are calculated from the
positions on the measurement line with ξ and �r varying
depending on radial positions.

The calculations described above are performed after
applying a filter to u(r, t) to suppress the influence of
measurement noise. Here we adopt a Savitzky–Golay FIR
smoothing filter (Savizky and Golay 1964) with various
filter sizes in time and space to examine the influence of the
filter. As radial variations of the viscoelasticity are expected,
a narrow radial range of velocity profiles in r/R = 0.86–
0.96 are analyzed over a period of 4 s. The evaluation
results for viscosity μ and elasticity E under different filter
sizes are summarized in Table 1. The phase difference in
linear viscoelasticity δ is defined as the fraction of storage
modulus to loss modulus and has the following relation with
elasticity and viscosity in the Maxwell model:

tan δ = G′′

G′ = E

2πf0μ
. (8)

Phase values of around 90◦ mean that a fluid is close to a
pure viscous body and smaller values indicate larger elastic
contributions to stress in the fluids.

From the various analyses with different filter sizes,
designated by the serial number in Table 1, the evaluation
results of μ and E are widely scattered. Taking similar
values for different analyses, the phase difference δ,
however, is stable against the variation in filter size. This
trend may arise from two factors: one is that μ and E appear
as a fraction (or product) in the equation to be analyzed,
and the other is that the influence of measurement error and

noise on u(r, t) including the influence of filtering buries
local minima on the surface of the cost function, Eq. 6, in
parameter space. We therefore evaluated the influence of
noise in determining the local minima of the cost function.

Numerical evaluation of influence of noise

For this purpose, we reduce the problem to a Newtonian
viscosity analysis. For Newtonian fluids, the equation of
motion in Eq. 1 becomes

∂u

∂t
= ν

(
∂2u

∂r2
+ 1

r

∂u

∂r
− u

r2

)
= νDru, (9)

where ν is the kinematic viscosity and Dr is a differential
operator with respect to r defined as

Dr = ∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
.

This can be reduced into the cylindrical Bessel differential
equation by separation of variables about t and r . Then, it
can be solved by inserting the infinite series

u(r, t) = U

�2
R + �2

R

[(��R + ��R) sin ωt

+ (�R� − ��R) cos ωt] , (10)

where U is the angular velocity of the side wall, and

�(r) =
∞∑

m=0

φm(r), �R =
∞∑

m=0

φm(r = R),

�(r) =
∞∑

m=0

ψm(r), �R =
∞∑

m=0

ψm(r = R),

and

φm(r) = 2m

m!(m + 1)!
(

kr

2

)2m+1

fm, k =
√

ω

2ν
,

fm =
{

(−1)(m+2)/2 : m = even number
(−1)(m+1)/2 : m = odd number

ψm(r) = 2m

m!(m + 1)!
(

kr

2

)2m+1

gm,

gm =
{

(−1)m/2 : m = even number
(−1)(m+1)/2 : m = odd number

.

Table 1 Evaluation results of viscosity μ and elasticity E, with phase difference in linear viscoelasticity δ for the differently filtered data of u(r, t)

for measurements ranging from r/R = 0.86 to r/R = 0.96 over a period of 4 s; Nt and Ns correspond to the number of time and space points
used in filtering, respectively

# Nt Ns μ (Pa s) E (Pa) δ (◦) # Nt Ns μ (Pa s) E (Pa) δ (◦)

1 15 19 1.05 69.6 84.57 5 15 11 0.70 46.2 84.54

2 15 17 0.99 64.8 84.55 6 15 9 0.58 37.9 84.54

3 15 15 0.91 60.3 84.56 7 35 15 0.02 1.2 84.49

4 15 13 0.82 53.6 84.54 8 27 15 0.39 125.9 84.52
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Details of the derivation are described in Tasaka et al.
(2015). We performed numerical experiments to evaluate
the influence of measurement noise using this exact
solution, Eq. 10, with a sufficiently large number of terms
and f0 = ω/(2π) = 1 Hz.

To represent measurement noise, and in particular the
typical spikey noise seen in UVP measurements, the
Mersenne twister method (Saito and Matsumoto 2008) was
used to artificially generate the random noise by modifying
the standard deviation σN in regard to the noise level. The
cost function to be minimized is derived from Eq. 9 in
differential form,

F(ν) =
∑
r,t

[
ui+1,j −ui,j

�t
−ν

(
ui,j+1−2ui,j +ui,j−1

�r2

+ ui,j+1 − ui,j

2rj�r
− ui,j

r2
j

)]2

. (11)

The correct value for the kinematic viscosity is set at ν0 =
1000 mm2/s, and the cost function is calculated over the
range ν = 800–1200 mm2/s in increments of �ν = 4 mm2/s
over the radial range r/R = 0.95–0.98. The dependence of
the cost function on ν (Fig. 2) is calculated from the exact
solution without noise using Eq. 11; note that F(ν) has been
normalized by the number of velocity data, Ntotal, used for
the calculation. In the range explored for ν, the cost function
has a unique minimum corresponding to ν0, signifying
that the methodology to evaluate ν from spatio-temporal
velocity distributions works well in instances without noise.

In assessing the influence of noise on the evaluation of
ν, the variation of the cost function is investigated near
where it takes a minimum value. Here, Gaussian noise of
zero-mean is generated at every data point of u(r, t) and
is added to the velocity data. Noise level σN is given as
the fraction normalized by the local maximum velocity
Umax(r). The actual noise level on u(r, t) measured by UVP
is at least larger than 0.1% (σN/Umax(r) > 10−3). The
results obtained from the velocity data calculated from the
exact solution in Eq. 10 with different time resolutions, �t ,
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F(
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to
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l
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Fig. 2 Variation of the cost function with ν around minimum setting
value of ν0 = 1000 mm2/s

f0�t = 0.03 and 0.005, are plotted in Fig. 3. Here, fitted
parabolic curves, obtained using the least-squares method,
have been superimposed on the plots. The viscosities evalu-
ated decrease monotonically with respect to −σ 2

N for both
time resolutions and have large deviations even at rela-
tively small noise levels of around 0.01% in σN/Umax(r).
For larger �t , there is less influence from the added noise
because enhancements of noise contributed by the numeri-
cal differentials are smaller.

The monotonic decrease of ν may be explained as larger
noise amplification in the radial derivatives in Eq. 9,
especially the second-order derivative (the other two terms
produce no strong impact on noise transfer). The radial
derivative term in Eq. 11 always has a larger deviation from
the correct values without noise than the time derivative
term, because of the second-order derivative in the radial
term. To satisfy the balance of equation, the estimated ν

must be smaller. By simplifying the equation for the cost
function, Eq. 11, this is modeled simply as

F(�ν, ε) =
∑

[A − (ν0 + �ν)Bε]2 (12)

where A and B are values of the differential calculations in
condition without noise, so that A ≈ ν0B, and �ν and ε

are the deviations from ν and the noise amplification rate,
ε > 1. The local minimum of the cost function is found to
be ν0 + �ν satisfying the relation

∂F

∂�ν
= −2

∑
ABε + 2(ν0 + �ν)

∑
B2ε2 = 0.

Assuming A = ν0B, the estimated value from the preceding
condition is a fraction of the correct value of ν, ν0,
specifically

ν0 + �ν

ν0
=

∑
B2ε∑
B2ε2

. (13)
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Fig. 3 Estimated values ofν for different noise levels σN obtained using
two different sampling times, without POD filtering and frequency-
domain analysis; the solid and dashed lines represent fitted parabolic
curves of the plots obtained using the least-squares approximation
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This fraction is always smaller than unity. That is, the mono-
tonic decreasing trend in ν stems from the enhancement
in noise from the second-order derivative in the radial
direction.

From Fig. 3, the influence of measurement noise on
the evaluation of ν is significant and non-negligible, and
therefore, eliminating noise from the velocity data is
required. From the standard treatment of measured UVP
data, filtering based on the (snapshot) proper orthogonal
decomposition (POD) (Sirovich 1987) provides an effective
solution in achieving this purpose (Takeda 1999; Furuichi
et al. 2003; Tasaka et al. 2016). POD is good and objective
at extracting organized flow structures. In the present
configuration, the flows are well-organized structures and
unorganized components are filtered out as noise. From
Fig. 3, the present POD filtering can suppress the influence
of noise, but there is still a certain influence of noise
remaining in the evaluation. Here we remark that, after
the filtering, data with a fine time resolution provides
much better results than rougher ones. This is because the
enhancement of noise by taking numerical differentials is
reduced by POD filtering, and the fine time resolution now
can provide better estimation of the differentials.

Frequency-domain analysis

As examined above, the influence of noise and its enhance-
ment using numerical differentials cannot be avoided com-
pletely by filtering the velocity data. Instead, here we
propose a novel algorithm to evaluate rheological properties
from the velocity data employing the equation of motion
as the method of analysis in the frequency domain free of
difference calculation.

Theory

Taking the Fourier transform with respect to t , Eq. 3
becomes

τ̂ + iω
μ

E
τ̂ = μ

(
∂û

∂r
− û

r

)
, (14)

where the Fourier transform is denoted

τ̂ (r, ω) = F[τ(r, t)], û(r, ω) = F[u(r, t)]. (15)

The Fourier transform changes the differential equation into
an algebraic equation that can be solved for τ̂ ,

τ̂ (r, ω) =
μ

(
∂û
∂r

− û
r

) (
1 − iω

μ
E

)
1 + (

ω
μ
E

)2
. (16)

Cauchy’s equation of motion, Eq. 1, is also converted into

iωρû =
(

∂

∂r
+ 2

r

)
τ̂ . (17)

Using Eqs. 16 and 17, finding μ and E become an optimiza-
tion problem for the cost function,

F(E,μ; r) =
∫ �

0

[
iωρû −

(
∂

∂r
+ 2

r

)
τ̂

]2

dω. (18)

That is, μ and E are determined by minμ,EF (E,μ; r). Inside
the square bracket of Eq. 18 is a complex function that needs
to be decomposed into its real and imaginary parts for the
numerical calculation. We define

τ̂ (r, ω) = μ

1 + (
ω

μ
E

)2 [Re(r, ω) + iIm(r, ω)] , (19)

where

Re(r, ω) = ∂r�[û] − 1

r
�[û] + ω

μ

E

(
∂r�[û] − 1

r
�[û]

)
,

Im(r, ω) = ∂r�[û] − 1

r
�[û] − ω

μ

E

(
∂r�[û] − 1

r
�[û]

)
.

Substituting these into Eq. 18, the integrand becomes

[
iωρû−

(
∂

∂r
+ 2

r

)
τ̂

]2

=
[
ωρ�[û] + �

(
∂

∂r
+ 2

r

)
Re

]2

+
[
ωρ�[û]−�

(
∂

∂r
+ 2

r

)
Im

]2

, (20)

where

� = μ

1 + (
ω

μ
E

)2
.

Viscometry

To evaluate the applicability of the frequency-domain analy-
sis proposed in this study, we perform a viscosity analysis on
both velocity data created from the exact solution in Eq. 10
with artificial noise and UVP measurement data.

Taking the Fourier transform of the equation for
Newtonian fluids yields

iωû = νDrû, û = Ru(r, ω) + iIu(r, ω). (21)

The cost function defined in Eq. 18 becomes

F(ν; r) =
∫

�

[
iωû − νDrû

]2
dω

=
∫

�

[
(νDrRu+ωIu)

2+(ωRu−νDrIu)
2
]
dω. (22)
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The actual flows in the USR system are time periodic and
discrete Fourier transform (DFT) is applicable for the anal-
ysis. From the definition of the Fourier series expansion,

u(r, t) = a0(r)

2
+

N∑
k=1

[ak(r) cos �ωkt + bk(r) sin �ωkt] ,

(23)

where

�ω = 2π�f . (24)

The cost function is expressed as

F(ν; r) =
N∑

k=1

(
A2

k + B2
k

)
, (25)

where

Ak(r) = �ωkbk − νDrak, Bk = �ωkak + νDrbk . (26)

The range of frequencies (or range of k) for the summation
above is determined from the sampling frequency on u(r, t),
�f , and the number of data, N, from �f (k = 1) to N�f

(k = N). Taking a wide range of frequencies, however,
would induce noise caused by measurement error that is not
related to the cylinder oscillation. A narrow range, k1�f <

f0 < k2�f , is set around the driving frequency of the
cylinder oscillation f0. The cost function is little modified
as

Ff0(ν; r) =
k2∑

k=k1

(
A2

k + B2
k

)
. (27)

To avoid the propagation of measurement noise caused by
the numerical differentials of r included in the differential
operator Dr , an Mth power series approximation on ak(r)

and bk(r) is introduced,

ak(r) =
M∑

m=0

αmrm, bk(r) =
M∑

m=0

βmrm. (28)

Substituting this into definitions of Ak and Bk , Eq. 26,
provides

Ak(r) = �ωk

M∑
m=0

βmrm − ν

M∑
m=0

(m2 − 1)αmrm−2, (29)

Bk(r) = �ωk

M∑
m=0

αmrm + ν

M∑
m=0

(m2 − 1)βmrm−2. (30)

We perform numerical experiment as in “Numerical
evaluation of influence of noise” to check the applicability
of the present theory and procedure. The velocity data is
processed by DFT, and ak and bk in the Fourier series are
approximated by fifth-order polynomials (i.e., M = 5 in

Eq. 28). In the power spectrum of
√

a2
k + b2

k , there is a

sharp peak corresponding to the oscillation frequency f0.
Because the frequency resolution, �f , is determined by the
number of data and the time resolution, the peak frequency
fc does not always coincide with f0 and spreads over several
frequencies. In the present case, fc = 1.0101 Hz and three
frequencies nearby contribute more than 97% of the total
fluctuation in kinetic energy. Within the frequency band,
k1–k2 in Eq. 27, two conditions, f = fc ∼ f0 and
f = fc ± �f , are examined. Nevertheless, there is no
quantitative difference in values of ν associated with the
conditions. Hence, we adopt the condition f = fc from
here on. The results of evaluation of kinematic viscosity
at different noise levels are summarized in Fig. 3 with the
original results (without noise treatment) and the POD-
filtered velocity data. The value of ν evaluated in the present
frequency-domain analysis stays the same regardless of the
noise level, whereas the others decrease with increasing
the noise level. The frequency-domain analysis provides
slightly smaller values than the others and the correct value,
ν0 = 1000 mm2/s, in relatively low noise conditions. This
is mainly caused by small disagreement between fc and f0

due to the sampling frequency and sampling data number
of u(r, t). Nevertheless, it produces the small deviation
even at relatively large noise levels than expected in actual
situations with UVP measurements.

Application of viscometry

The frequency-domain analysis is applied on spatio-
temporal velocity measurement data obtained from silicone
oil (ν = 300 mm2/s at 25 ◦C) and presented in Yoshida et al.
(2017) with an evaluation of its kinematic viscosity using
phase information. A 145-mm-diameter acrylic cylinder
filled with oil was periodically oscillated with f0 =
1 Hz frequency and through an 80◦ angular amplitude.
The measurement line of the velocity profiles was set at
�y = 15 mm; the UVP was performed with a 30-ms time
resolution and a 0.62-mm spatial resolution (measurement
direction). Figure 4 shows the spatio-temporal velocity
distribution over three oscillation cycles. The velocity
variation appears smooth compared with typical velocity
profile measurements; considerable roughness is apparent
in comparison with ideal velocity profiles.

We processed the velocity distribution using the DFT
method and obtained Fourier coefficients ak and bk as
radial profiles. Then, a fifth-order polynomial fitting was
performed on the profiles with f = fc ≈ f0 to ensure
a smooth radial dependence (Fig. 5). An unavoidable
characteristic of the UVP measurement is relatively large
deviations near the boundaries around r/R = 1. The
deviations appear mainly in bk(r), and therefore, we have
omitted these points in the fitting. The fitted curves
approximate the plotted data well apart from data points for
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Fig. 4 Spatio-temporal velocity distribution measured for 300 mm2/s
silicone oil in a cylinder oscillating at f0 = 1 Hz frequency through an
80◦ angular amplitude

bk near the cylinder wall. Following the process established
in the last section, the cost function, Eq. 27, was calculated
at each radial position in the range, 100 ≤ ν ≤ 500, and is
displayed as a distribution over the ν–r plane (Fig. 6). The
local viscosity is taken to be the local minimum of the cost
function at each radial position. The radial profiles of the
cost function form a “valley” with ν uniquely determined.
This valley is shallower in the inner region of the cylinder
because the amplitude of the velocity fluctuations is smaller
and information is not sufficient for the evaluation.

From the frequency-domain analysis, the radial profile
of ν was estimated (Fig. 7) using the polynomial approxi-
mation and compared with ν estimated from a phase-slope
analysis on the same data given in Yoshida et al. (2017). The
local slope of the phase delay of the velocity fluctuation with
respect to the cylinder oscillation reflects the local viscosity,
and comparing the phase slopes obtained from the analyti-
cal solution, Eq. 10, and experimental data yields the local
kinematic viscosity. Similar values were obtained although
with deviations; ν given by the phase analysis exhibit large
deviations in the interior of the cylinder, whereas those
obtained from the frequency-domain analysis yield similar

r/R
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b k
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Fig. 5 Fifth-order polynomial fittings (white curve) of the radial
profiles for ak and bk , where red and blue plots represent the original
discrete values of ak and bk , respectively
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Fig. 6 Gray-scale distribution of the cost function F(r; ν)

values. The phase analysis also employs the Fourier trans-
form and suppresses the influence of measurement error
on the velocity fluctuations. Nevertheless, the phase infor-
mation extracted from very small velocity fluctuations is
not representative of the flow, and hence, calculations using
numerical differentials propagate errors. In contrast, pro-
files of the Fourier coefficients at the main frequency retain
almost all information in representing the flow, and thus,
this method provides an advantage when analyzing visco-
metric data. Further, returning to the original purpose of the
study, the frequency-domain analysis is applicable to lin-
ear viscoelastic analysis using the rheological model. We
remark that the evaluation of the kinematic viscosity from
the experimental data of 300 mm2/s oil using the cost func-
tion in Eq. 11 is unable to determine the local minimum of
ν over the range 100 ≤ ν ≤ 500 even with POD filtering.

Linear viscoelastic analysis of bubble suspension

According to the same idea on the viscometry adopting
Fourier series expansion of u(r, t) (Eq. 23) and power series

 present
 phase analysis
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Fig. 7 Radial profiles of the estimated kinematic viscosity from a
frequency-domain analysis (solid line) and for comparison a phase
profile analysis (circles) from Yoshida et al. (2017)
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approximation on the Fourier coefficients (Eq. 28), the cost
function for the linear viscoelastic analysis in Eq. 18 is
modified into

Ff0(E, μ; r) =
k2∑

k=k1

(
A2

k + B2
k

)
, (31)

where

Ak(r) =
M∑

m=0

[−ρ�ωkβmrm

+ �(m2 − 1)(αm − �ωkμβm/E)rm−2
]
, (32)

Bk(r) =
M∑

m=0

[
ρ�ωkαmrm

+ �(m2 − 1)(βm + �ωkμαm/E)rm−2
]

. (33)

The algorithm is examined on an analysis of a polyacry-
lamide aqueous solution (1 wt%), which has shear-rate-
dependent viscosity and elasticity, to check its applicability
for more complex fluids before performing linear viscoelas-
tic analysis of bubble suspensions. Spatio-temporal velocity
information was captured in the same system of oscillating
cylinder (see Fig. 1) that was also used in our previous stud-
ies (Tasaka et al. 2015; Yoshida et al. 2017). The setting
parameters for the oscillation are f0 = 1 Hz (in frequency)
and � = 90◦ (in amplitude). For the analysis, the veloc-
ity data was processed by the DFT method to derive Fourier
coefficients ak(r) and bk(r) in Eqs. 32 and 33 correspond-
ing to the Fourier component of f = f0. Fifth-order power
series approximation is then adopted to approximate their
radial profiles. In the evaluation of the cost function in
Eq. 31 for the linear viscoelastic analysis, the phase differ-
ence in linear viscoelastic analysis δ is used as a parameter
instead of E. Viscosity μ and δ are obtained at each radial
position by the analysis as shown in Fig. 8; the values are
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Fig. 8 Variations of viscosity μ and phase difference in linear
viscoelasticity δ with respect to shear rate γ̇ for 1 wt% polyacrylamide
aqueous solution, where μ calculated by the phase profile analysis
(Yoshida et al. 2017) from the same velocity data is also plotted
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Fig. 9 Fifth-order polynomial fittings (white curve) of the radial
profiles for ak and bk obtained in the bubble suspension, where red
and blue plots represent the original discrete values of ak and bk ,
respectively

plotted against the amplitude of shear-rate variations γ̇0,
which is given from the Fourier coefficients and calculated
using power series approximation in Eq. 28 as

γ̇0 =

√√√√√
[

M∑
m=0

(m−1)αmrm−1

]2

+
[

M∑
m=0

(m − 1)βmrm−1

]2

.

(34)

In the figure, the viscosity calculated by phase profile anal-
ysis (Yoshida et al. 2017) from the same velocity data is
also plotted for comparison. The viscosity evaluated by
the linear viscoelastic analysis gradually decreases with γ̇0

and expresses shear thinning characteristics of the solution.
Along the decrease of viscosity, δ approaches to 90◦, mean-
ing that the solution loses elastic property toward a pure
viscous body.
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Fig. 10 Gray-scale distribution of the cost function, F(δ, μ; r =
0.9R), for the bubble suspension
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Table 2 Evaluation results of viscosity μ, phase difference in linear viscoelasticity δ, and elasticity E calculated from μ and δ through Eq. 8 at
different radial position r/R, where the amplitude of local shear-rate variation γ̇0 is calculated from the velocity data through Eq. 34, and |μ∗|
indicates effective viscosity normalized by the original viscosity value of the oil, μ0 = 0.97 Pa s

r/R γ̇0 (s−1) μ (Pa s) δ (◦) E (Pa) |μ∗|/μ0

0.95 15.89 1.46 77.1 39.8 1.46

0.9 14.28 1.32 86.1 121.2 1.36

0.85 12.46 1.17 90.0 – 1.21

0.8 10.53 1.05 90.0 – 1.08

0.75 8.63 0.99 90.0 – 1.02

0.7 6.90 0.97 90.0 – 0.99

0.65 5.45 0.99 90.0 – 1.02

0.6 4.32 1.05 90.0 – 1.08

We now come back to the linear viscoelastic analysis
of a bubble suspension by the frequency-domain analysis
established above. Fourier coefficients ak(r) and bk(r) in
Eqs. 32 and 33 are given by the DFT method performed
on the velocity data of the bubble suspension used in
“Viscoelastic analysis of bubble suspensions”. Then, fifth-
order power series approximation is performed on radial
profiles of the coefficients corresponding to f = fc ≈ f0

(1 Hz). The profiles are approximated well as shown in
Fig. 9. In the calculation of the cost function, phase delay of
the linear viscoelasticity described in Eq. 8 is changed as a
parameter instead of E in the range from 50◦ to 90◦ with an
increment of 0.1◦. Exploring the range of μ was set around
the original viscosity of the base liquid of the suspension,
1000 mm2/s silicone oil, μ0 = 0.97 Pa s, from 0.5 to 1.5 Pa s
with an increment of 0.005 Pa s.

An example of the calculated cost function is shown
in Fig. 10 as the distribution of F on the δ–μ plane for
r = 0.9R. The distribution is expressed in logarithmic gray
scale, and there is a single local minimum point; values of
δ and μ are given as values on this point. At least in the
range of δ and μ we examined, the cost function increases
monotonically from the local minimum point, and the values
are uniquely given. For r/R < 0.9, the local minimum point
attaches to the boundary of δ = 90◦, but uniqueness of the
solution is unchanged.

Results of estimations of δ and μ according to the cost
function calculated at each radial position from r/R = 0.6
to r/R = 0.95 are summarized in Table 2. Elasticity E

is calculated through Eq. 8 with μ and f0 in cases that
δ < 90◦. |μ∗| denotes effective complex viscosity defined
as

|μ∗| = μ√
1 + (ωμ/E)2

. (35)

The linear viscoelastic analysis separated influences of
unsteady bubble deformations in the oscillating shear flows
on the momentum propagation into viscous and elastic

contributions. In the table, δ takes 90◦ without a region
r/R ≥ 0.9, and the elastic contribution appears in the
region. This is reasonable because the capillary number
exceeds effectively the critical capillary number to allow
bubble deformations in this range, and the deformation
bubbles existing nearby the wall show considerable
deformations (Tasaka et al. 2015). In the oscillating shear
flows, the bubbles experience periodically strong shear
and relaxation. The elastic effect may be provided by
restoring the original spherical shape in the relaxation.
Effective viscosity normalized by original viscosity of the
oil, |μ∗|/μ0, distributes around unity within the deviation
order of the volume fraction of bubbles, 2% for r/R ≤ 0.8.
This is in good agreement with knowledge of effective
viscosity for spherical bubbles.

Conclusion

To achieve a stable evaluation of the linear viscoelasticity
in bubble suspensions as complex multiphase fluids using
USR, we assessed the influence of measurement noise
enhancement in the evaluation of rheological properties
using the equation of motion with measurement data
of spatio-temporal velocity fluctuations. By avoiding
calculations of numerical differential using velocity data, a
frequency-domain analysis was proposed for applications in
linear viscoelastic analysis. By taking the Fourier transform
of the equation of motion and the constitutive equations
(the rheological models), time derivatives are converted
to algebraic calculations, and further, approximating the
radial profiles of Fourier coefficients by finite power series
enables an evaluation of the rheological properties without
requiring calculation of numerical differentials. In rheology,
this novel combination of techniques was scrutinized using
numerical experiments by considering noise artificially
generated in viscometric data. The present method provided
better estimates of viscosity in comparison with dealing
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with raw velocity data and POD filtering. The technique was
also applied to actual velocity data measured in 300 mm2/s
silicone oil as a Newtonian fluid, and the estimations
were in reasonable agreement with previous results. The
frequency-domain analysis was then extended to the linear
viscoelastic analysis, and its applicability was examined
on a polyacrylamide aqueous solution, which is a shear
thinning, viscoelastic fluid. The analysis finally achieved
separation of influences of unsteady bubble deformation
into viscous and elastic contributions on the momentum
propagation.

The algorithm proposed here is aptly applicable in a
wider range of velocity-profiling rheometry. And, it may be
able to support to evaluate, e.g., fluids taking shear banding
effects and solutions with distributions of concentration.
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