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Abstract
This work deals with asymptotic and numerical solutions for emulsion flowing driven by a pressure gradient. The average
macroscopic description of a homogeneous continuous emulsion of high viscosity drops is modeled. A parameter involving
the product of the squares of the capillary number and the aspect ratio is the key parameter for developing a new asymptotic
solution. Explicit expressions of the velocity profile, the flow rate correction due to the drops stress contribution, drop
deformation, and the relative viscosity of the emulsion are shown as function of the capillary number ranging from 0 to
10 and emulsion viscosity ratio ranging from 2 to 20. The theoretical predictions by asymptotic theories developed in this
work are compared with those computed results by boundary integral method (BIM) for different viscosity ratios of a dilute
emulsion undergoing both pressure-driven flow and linear shear flow. Some discrepancies observed for moderate viscosity
ratio are identified and discussed. The present study for emulsion with moderate and high viscosity ratio and arbitrary
capillary number are still few explored in the current literature.

Keywords Emulsion flow · Pressure gradient · High viscosity ratio · Asymptotic solution · Boundary integral · Emulsion
viscosity

Introduction

Pipeline transportation of emulsions is difficult to predict or
control due to the complex interplay between the detailed
drop-level microphysical evolution and the macroscopic
flow. Consequently, the flow of emulsions in pipelines has
attracted the interest of several researchers (Derkach 2009).
Axisymmetric calculations have precisely mapped out the
condition for studies of drop deformation, orientation,
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breakup, and the consequences of the individual and col-
lective drop behavior to emulsion rheology (e.g., Rallison
1980; Stone 1994; Derkach 2009). There have been a few
theoretical studies of the influence of the viscosity ratio on
the emulsion the flows in capillaries. In fact, the studies
reported in the current literature are mainly focused on flow
of emulsions with unitary viscosity ratio. The pipeline flow
of emulsions with moderate and high viscosity ratio has
received less attention.

Some rigorous theoretical descriptions are available for
the effect of drop deformation on the rheology of a
dilute emulsion (e.g., Schowalter et al. 1968; Frankel and
Acrivos 1970; Barthés-Biesel and Acrivos 1973b; Cho and
Schowalter 1975; Nika and Vernescu 2016). In addition,
asymptotic analyses in the limit of small drop deformation
were developed by Barthés-Biesel and Acrivos (1973a) and
Rallison (1980). The theoretical calculations developed by
Barthés-Biesel and Acrivos (1973a) explored the limit of
drop deformation limited by surface tension, i.e., Cao � 1,
where Cao is the standard capillary number (μaγ̇ /σ o) with
a being the radius of the nondeformed drop, γ̇ the shear
rate, and σ o the uniform interfacial tension. Their theory is
very important to the prediction of drop breakup, essentially
because it occurs far from a spherical shape as imposed by a
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high drop-to-medium viscosity ratio theory with O(1/λ) �
1 (λ = μdrop/μmedium) such as the one used in the present
paper. The theory of Barthés-Biesel and Acrivos (1973a)
takes the near sphere analysis up to third order. They solved
the truncated series exactly and examined the stability of
the exact solution of the truncated equations. From this,
they predicted the breakup of droplets with a reasonable
agreement with available data. Davis et al. (1989) coupled
lubrication theory with boundary integral theory to describe
the relative motion of two unequal drops in near contact.
They showed that the interfacial mobility and internal
circulation within the drops allow the surrounding fluid to
drain from between two approaching spherical drops so that
coalescence can occur even in the absence of an attractive
force. A key finding is that the coalescence rates decrease
significantly with an increasing ratio of the drop viscosity to
solvent viscosity because the internal flow is then reduced
and it becomes more difficult for the solvent fluid to
be squeezed out from between two approaching drops.
Guido et al. (2004) reported experimental observations of a
single high viscosity drop dynamics under large amplitude
oscillatory shear. They provided experimental evidence of
a quite complex frequency response in drop dynamics.
A review paper discussing isolated drop deformation,
breakup, including cross-stream migration, and the effect of
surfactants under pressure-driven flow was written by Guido
and Preziosi (2010). More recently, Oliveira and Cunha
(2011) presented results of small deformation analysis
for an emulsion undergoing unsteady shear flows. They
explored the nonlinear frequency response for high strain
amplitudes for a dilute emulsion, where hydrodynamic drop
interaction is a negligible effect.

Computer simulations of emulsions have been devel-
oped to help the interpretation of experimental observations
(Mason et al. 1997) and to predict the complex microstruc-
ture of drop size distributions such as those shown by
experimental techniques of emulsion characterization (Xu
et al. 2005). The viscous behavior of oil-in-water emulsions
was investigated by Pal (2000) over a broad range of vol-
ume fraction of the drops. The influence of shear rate and
concentration applied on droplet deformation was system-
atically investigated experimentally by Tufano et al. (2008).
In that work, the non-Newtonian behavior of the emulsion
was interpreted in terms of relative viscosity versus particle
Reynolds number. Although most of the theoretical works
have been concerned with axisymmetric or two-dimensional
interface drop deformations, which require numerical treat-
ment of line integrals, several studies have considered the
more difficult case of three-dimensional drop distortion
(e.g., Youngren and Acrivos 1975; Rallison 1981; Tan-
zosh et al. 1992; Mo and Sangani 1994; Kennedy et al.
1994; Loewenberg and Hinch 1996, 1997; Coulliette and
Pozrikids 1998; Zinchenko and Davis 2002; Zinchenko and

Robert 2003; Cristini et al. 2001; Bazhlekov et al. 2004;
Oliveira and Cunha 2015). Large-scale multidrop numerical
simulations for investigating emulsion flow through porous
media and general rheology of concentrated emulsion of
deformable drops in extensional and shear flow have been
performed by Zinchenko & Davis in a series of recent works
(Zinchenko and Davis 2013, 2015, 2017a, b).

The regime of emulsion flow under a pressure gradient
with high and moderate viscosity ratios has not been
much explored in the current theoretical and experimental
literature . In this work, we examine a pressure-driven
emulsion-flow using the regular asymptotic method in
order to present new calculations for the regime of small
deformation theory in the limit of high viscosity ratio dilute
emulsion. The regime for a moderate viscosity ratio and
drop deformation is investigated by a three-dimensional
boundary integral method developed by Oliveira and Cunha
(2015). The relevant parameters for the problem that we
have investigated include the dispersed to continuous phase
viscosity ratio λ, the capillary number Caλ, and the capillary
number evaluated using the wall shear rate Caw. We develop
a theory for drop deformation and relative viscosity (i.e.,
intrinsic viscosity) of a dilute emulsion as function of the
capillary number and viscosity ratio under influence of a
shear rate gradient. The theoretical prediction developed in
the present article for high viscosity ratio dilute emulsions
are compared with results of numerical simulations based on
boundary integral method. A good quantitative agreement is
observed in the limit of dilute emulsion with moderate and
high viscosity ratio drop-ambient fluid. The discrepancies
observed mainly for moderate viscosity ratio are identified
and discussed.

Pressure-driven flow in cylindrical tubes

The fluid velocities within the dispersed and continuous
phases obey Stokes equations. The fluid velocity is every-
where continuous but the normal component of stress has
a discontinuity on drop surfaces due to interfacial ten-
sion; tangential traction may be discontinuous if Marangoni
stresses are important. We assume unidirectional flow so
that the effect of fluid inertia is absent, i.e., u ·∇u = 0.
Body forces are also ignored in the present analysis. Under
these conditions, one can write the governing equations as
follows:

∇ · u = 0, and ∇ · σ = 0, (1)

where u is the velocity vector, and σ = −pI + 2μD denotes
the stress tensor of the fluid with p being the mechanical
pressure and D = (1/2)(∇u + (∇u)T) the rate of deformation
tensor.
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Now, considering also that the fluid flowing through a
cylindrical tube is an dilute emulsion, an additional particle
stress tensor σ d must to be added to the standard Newtonian
stress contribution in order to account the bulk nonlinear
behavior from the complex dynamics of the drops in the
microscale (Batchelor 1970). In this sense, σ d is the stress
contribution of the disperse phase to the bulk stress tensor of
the emulsion assumed as being a continuous homogeneous
material. Actually, σ d denotes the bulk stresslet per unit
of volume produced by the drops on the ambient fluid. In
this work, the emulsion viscosity ratio, λ, is considered
moderate or high (i.e., in general λ ∼ 1 or greater than
it), and the particle volume fraction is always assumed
very small (dilute regime). The microscale flow around the
drop (inside and outside the particle) is assumed creeping
flow and consequently both having a very small Reynolds
number, i.e., Re = ργ̇ a2/μ � 1, and Reλ = Re(ρs/ρ)λ− 1

� 1 where ρ and ρs are the drop and ambient fluid density,
respectively. In addition, the macroscopic flow in the tube
scale is considered unidirectional (i.e., free of inertia as
well) since ReR = (ρUR/μ)(R/L) � 1. Here, the aspect ratio
R/L, in general, is a small parameter in capillaries. Thus,
the emulsion flow is a laminar (or parallel) flow. Since, in
this paper, the flow in the macro- and microscales are free
of inertia, we shall use a viscous scale for pressure given
by μγ̇ = μU/a instead of the common one used ρU2.
So, the Reynolds number will not appear explicitly in our
calculations.

A shear-induced particle diffusion has been shown
to play an important role on the rheology as involving
concentrated suspensions (e.g., Eckstein et al. 1977;
Leighton and Acrivos 1987). However, the phenomenon
as described in Cunha and Hinch (1996) at a infinitely
dilute limit (i.e., non-interacting drops) can be taken as a
second-order effect. The shear-induced particle diffusion in
an emulsion would require at least two drops interactions
in order to a small deformation during the drops collision
breaks the time reversibility of the Stokes flow (i.e., a small
amount of deformation could produce irreversible drops
trajectories) (Loewenberg and Hinch 1997). In a quadratic
shear like the flow explored here, there is still a shear rate
gradient. Therefore, even in the absence of inertia, the drops
could migrate radially toward the centreline (i.e., from the
wall-high shear to the center-low shear). The flux particle-
drift due to a shear rate gradient scales like a2φ2∇γ̇

(Phillips et al. 1992). Since this contribution is proportional
to φ2, it is just a second-order effect. In addition, the induced
deformation drift velocity vd by the asymmetrical stresslet
on the deformable drop close to the wall scales like vd ∼
λ−1Caγ̇ a3/y2

d (Chaffey et al. 1965). In this paper, the drops
are always very small compared with the tube diameter,
the viscosity ratio is moderate or high and the capillary
number Ca ∼ 1. Consequently, this drift velocity being

proportional to a3/y2
d , where yd is the distance between the

center of the drop and the wall, gives very small values of
the migration velocity compared to a typical velocity of the
flow γ̇ . Therefore, this migration effect will not produce
a substantial effect on the rheology of a high viscosity
emulsion composed of small drop.

The effect of drop-drop interactions on the rheology is
unimportant in the limit of very dilute emulsion explored
here. The coefficients O(φ) and O(φ2) of the shear-induced
diffusivities are always very small for dilute suspensions or
emulsions as compared with the diffusivities in concentrated
suspensions (Leighton and Acrivos 1987). We can justify
the assumption of neglecting drop shear-induce migration
here by considering the relative importance between the
timescale for a drop diffuses its own radius a, i.e., τ d ∼
a2/Dh and a convective time scale τ c ∼ λ/γ̇ . Here, Dh is the
hydrodynamic diffusion for instance the one proposed by
Cunha and Hinch (1996) for a dilute regime, Dh ∼ γ̇ a2φ.
A hydrodynamic Péclet number in the present context can
be defined as being Peh = τ d/τ c = (φλ)− 1. Now, since λ ∼
1 and φ � 1, then Peh � 1, that means deformation of the
drop by the flow dominates drop shear-induced dispersion.

Under these conditions, we can write the governing
equation of the equivalent continuous emulsion in the
absence of a coupling between particle volume fraction φ

and the flow at high Peh, as follows:

−∇p + μ∇2u + ∇ · σ d = 0. (2)

Setting up an axisymmetric cylindrical coordinate system,
the velocity field takes the form u = u(r)ez, where ez is the
unit vector parallel to the axial direction and r is the radial
coordinate. In this case, Eq. 2 written in terms of cylindrical
coordinates takes the form:

− ∂p

∂z
+ μ

1

r

∂

∂r

(
r
∂u

∂r

)
+ 1

r

∂

∂r

(
rσ d

rz

)
= 0 and (3)

− ∂p

∂r
+ 1

r

∂

∂r

(
rσ d

rr

)
− σd

θθ

r
= 0. (4)

In general, we may have a radial pressure gradient in
order to balance eventual normal stresses yielded from the
nonlinear part of the fluid stress tensor, like shows the Eq. 4
. Here, the extra stress tensor due the action of the disperse
phase is a function of the radial coordinate only, namely, σ d

= σ d(r). Therefore, analyzing Eq. 4, we argue that ∂p/∂r =
f(r), in such way that p = F(r) + M(z), where f(r) and F(r) are
functions of the radial coordinate, related by dF(r)/dr = f(r).
M(z) is some function of the axial coordinate only. In this
context, if we proceed the differentiation of the expression
for the pressure, p, in relation to the variable, z, one obtains
∂p/∂z = m(z), where m(z) = dM(z)/dz. From this, we found
that ∂p/∂z = h(r), where h(r) is a function of r only. In
particular, h(r) = m(z) is valid only in the case as both
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functions are constants. This condition leads G = −∂p/∂z to
be constant even for regime of non-Newtonian fluids.

The governing equations are made nondimensional by
considering typical characteristic quantities of the flow. The
reference length and velocity are Lc = R and Uc = Q/πR2,
where R is the tube radius and Q is the flow rate. We define
a typical shear rate and a characteristics pressure gradient as
being γ̇ c = Uc/R and Gc = μUc/R2, respectively. Since our
flow is free of inertia we have used a typical viscous scale
for the pressure gradient instead of Bernoulli scale ρU2

c /R.
Now, in terms of nondimensional quantities, (3) takes the
form:

1

r̃

d

dr̃

(
r̃
dũ

dr̃

)
+ 1

r̃

d

dr̃

(
r̃ σ̃ d

rz

)
= −G̃, (5)

where,

r̃ = r

R
, ũ = u

Uc

, G̃ = G

Gc

, σ̃ d = σd

μγ̇ c

, (6)

Integrating the momentum, (5) one finds out as follows:

dũ

dr̃
+ σ̃ d

rz = −G̃

2
r̃ . r̃ ∈ [0, 1]. (7)

The differential equation (7) is subjected to the nonslip
condition at the tube walls, ũ(1) = 0. The same equation
results in the classical Hagen-Poiseuille solution in the
absence of a drop volume fraction, i.e., φ = 0. In this
case, G̃ = 8. Equation 7 and the boundary condition
ũ(1) = 0 alone do not define a well-posed problem since
the nondimensional pressure gradient, G̃, is an unknown
quantity as φ is not null. In other words, if we impose a
pressure gradient through a tube, the fluid will flow at a
certain flow rate which defines the mean velocity Uc for a
given φ. Since the nondimensional flow rate is always the
unit for a given φ, consequently the following condition
must always verified:

Q̃ = 2
∫ 1

0
ũ(r̃)r̃dr̃ = 1. (8)

Therefore, for φ �= 0, an iterative method is necessary to find
G̃ such the integral equation (8) is satisfied.

Emulsion relative viscosity or intrinsic viscosity

The flow rate can also be used to define the relative or
effective viscosity in the flow through a cylindrical tube. In
principle, for any type of fluid, we can carry out an exper-
iment for measuring the flow rate as function of the pres-
sure gradient. From the linear part of the plot ∇p versus Q,

we can define the emulsion relative viscosity μ̃φ = μφ/μ by
using the equivalent Poiseuille law in terms of nondimen-
sional quantities. This leads to as follows:

μ̃φ = G̃

8
, (9)

Again, note that for a Newtonian fluid μφ /μ = 1, Eq. 9 gives
that G̃ = 8. However, for the case of a non-Newtonian
fluid, i.e., φ �= 0, and it implies G̃ > 8. In addition, we
define the nondimensional wall relative viscosity as follows:

μ̃w = μw

μ
= G̃

2˜̇γ w

. (10)

In Eq. 10, ˜̇γ w = (dũ/dr̃)r=1 is the nondimensional shear
rate in the wall (r = 1). The wall viscosity can be also be
also examined as function of the viscosity ratio, λ, and the
macroscopic capillary number defined in the next section.
Since μ̃w depends on the shear rate of the flow, it should
be also interpreted as being an apparent viscosity of the
emulsion and should be equivalent to the apparent viscosity
measured in simple shear flow rheometry, at the same shear
rate.

Equations 7 and 8 together with the nonslip boundary
condition at the tube wall define a closed nonlinear
differential problem for solving the flow as the additional
stress tensor due the disperse phase, σ d, is specified.

Constitutive equation for dilute emulsions

From this point, we suppress the tilde used for nondi-
mensional quantities in order to make the nomenclature as
simpler as possible.

Now, in order to solve Eq. 7, we propose a constitutive
equation for the stress σd

rz. This work deals with the
flow of dilute emulsions of high viscosity drops. In
this case, a constitutive model may be derived from the
complete description of the hydrodynamics in the drop
scale (e.g., Schowalter et al. 1968; Frankel and Acrivos
1970; Barthés-Biesel and Acrivos 1973b; Rallison 1980;
Oliveira and Cunha 2011). A volume average over the drop
stress can be used in order to compute the bulk effect
of the drop stress contribution. In this way, it is possible
to characterize a homogeneous emulsion on the level of
the material macroscale (e.g., Landau and Lifshitz 1987;
Batchelor 1967, 1970). For a dilute emulsion, we compute
the rheology just adding the particle stress contribution
(i.e., drop stresslet) on the fluid produced by each isolated
drop separately. Therefore, the hydrodynamic interactions
between drops are neglected in the present work.

For emulsions of high viscosity ratios undergoing shear
flows, the time for drop rotates being much smaller than
the time scale for distortion leads to a small deformation
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condition of the drop. Under this conditions, the theoretical
pair of constitutive equations for drop shape and stress
adopted for conditions of high viscosity ratio λ are
given respectively by Barthés-Biesel and Acrivos (1973a),
Rallison (1980), and Frankel and Acrivos (1970)

dA
dt

= Cap�W · A − Cap�A · W + 5

λ
Cap�E − cA, (11)

σ d

φ
=

(
5 − 25

2λ

)
E + 4(Cap�)−1A + 15

7
F[A,E], (12)

where Cap is the capillary number defined for the flow
through a cylindrical tube, � is the aspect ratio between the
radius of the drop and the cross-section, λ is the ratio of
the drop and continuous phase viscosities, c = 20/19 is a
constant related to the drop relaxation time due the action
of the surface tension, φ is the drop volume fraction , A
is symmetric second-order tensor related to the distortion
of the drop from the equilibrium spherical shape, E and W
are, respectively, the symmetric and anti-symmetric parts
of the nondimensional velocity gradient. Here, the operator
F [A,E] = A · E + E · A − 2/3(A : E)I, where I is the unit
tensor.

In general, the capillary number is defined as being
Ca = μγ̇ ca/σ , where μ is the dynamic viscosity of the
ambient liquid, γ̇ c is a characteristic shear rate, a is the drop
radius, and σ is the interfacial surface tension coefficient.
This nondimensional physical parameter represents the ratio
between the surface tension relaxation time, τσ ∼ μa/σ , and
a characteristic time of the nondisturbed flow, τf ∼ 1/γ̇ c.
In this study, the capillarity makes a similar role of the
Deborah number for flows of elastic liquids. However, for
an emulsion of high viscosity drops, the choice of the drops
viscosity instead of the continuous phase viscosity seems to
be more adequate, because, at moderate and high λ, drops
rotates much faster than it deforms (Rallison 1980; Oliveira
and Cunha 2011). Therefore, we have opted to define the
capillary number as being Caλ = λμγ̇ ca/σ . In pressure-
driven flow through a tube the shear rate is not constant
γ̇ c = Uc/R, but we can relate the local capillary number
definition based on the drop radius with a global capillary
based on the tube radius by the equation

Caλ = λμγ̇ ca

σ
= λμUc

σ

a

R
= Cap�. (13)

The aspect ratio � is the geometric parameter linking
the macroscopic flow capillary number, Cap, to the drops
scale capillary, Caλ. Actually, � makes the role of the
Knudsen number, where a is a characteristic length of the
emulsion internal scale and R is a global scale of the flow.
In this sense, this analysis is restricted to cases where �

� 1, in order to describe the emulsion as a continuous
homogeneous non-Newtonian liquid.

In the flow of the emulsion through a tube, the velocity
gradient is not constant, and consequently equations
(11) and (12) are coupled, and it must to be solved
simultaneously. The velocity field for an axisymmetric
steady unidirectional laminar flow in cylindrical coordinates
(r,z) is given by u = u(r)ez and, consequently E =
(1/2)(du/dr)(ezer + erez) and W = (1/2)(du/dr)(ezer −erez).
The steady-state condition is assumed and dA/dt = 0.
Under this condition, Eq. 11 reduces simply to a system of
algebraic equation in the components of A whose solution
is straightforward, resulting as follows:

Azz = 5ε

4λ

(
du

dr

)2
[
ε

(
du

dr

)2

+ 1

]−1

and (14)

Arz = 5
√

ε

4λ

du

dr

[
ε

(
du

dr

)2

+ 1

]−1

, (15)

where ε is the parameter defined as ε = (Cap�/c)2.

Drop deformation

Drop deformation can be quantified for small and moderate
distortion using the nondimensional Taylor’s parameter
(Taylor 1934)

DT = L − B

L + B
, (16)

where L and B are the maximal and the minimal deformation
lengths measured in the shear plane, respectively. In the
context of the small deformation theory (Rallison 1980;
Oliveira and Cunha 2011), the nondimensional drop’s
shape equation is given by r = 1 + n ·A ·n, where n
is the nondimensional normal vector point out from the
nondeformed drop and r is the nondimensional distance
from the drop centroid to a point on its interface. Therefore,
the principal radii of deformations are given by ri = 1 + αi,
where αi are the eigenvalues of A. In the present case, the
distortion tensor A is a rank two, symmetric, and traceless
matrix, with both eigenvalues of the same magnitude and
opposite signals, i.e., α1 = α and α2 = −α, with the
following:

α =
√

A2
zz + A2

rz. (17)

Thereafter, it follows that L = 1 + α and B = 1 − α so that
DT = α. Substituting Eqs. 15 and 14 in Eq. 17, one has the
following:

DT = 5

4λ

[
ε(du/dr)2

ε(du/dr)2 + 1

]1/2

. (18)

Equation 18 gives the Taylor deformation along the radial
coordinate depending on ε. At the wall (r = 1), one has
that ε(du/dr)2

r=1 = (Caλγ̇ w/c)2 = (Caw/c)2, where
Caw = Caλγ̇ w is the capillary number evaluated using
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the wall shear rate. Defining the wall Taylor deformation,
DTw, as being DT evaluated at the wall and attempting to the
definition of Caw, one can show as follows:

DTw = 5

4λ

(
Ca2

w

Ca2
w + c2

)1/2

. (19)

Equation 19 is used to compute the maximal deformation
reached by a drop in a dilute high viscosity emulsion, of
monodisperse drops, flowing through a circular tube, for
arbitrary Caw. It is worthy to mention that Eq. 19 predicts
the same behavior for drop deformation that is predicted
by Oliveira and Cunha (2011), for simple shear flow. The
expression for DTw is quite consistent with Taylor theory
(Taylor 1934) for small capillary numbers. In that case, as
Caw � 1, one can use series expansion to show that, as Caw
→ 0,

DTw = 19

16λ
Caw + O(Ca2

w), (20)

recovering the Taylor deformation law, toked for high
viscosity ratios.1 On the other hand, for ε →∞,

DTw → 5

4λ
, (21)

characterizing the constant shape of high viscosity ratio
drops observed for high capillary number (Oliveira and
Cunha 2011). Series expansion can also be employed to
produce asymptotic law for high capillary numbers, such
that, in the limit of Caw � 1 (but not infinity),

DTw = 5

4λ

(
1 − c2

2Ca2
w

)
+ O(Ca−4

w ). (22)

Figure 1 shows the Taylor deformation at the wall as
function of the capillary number evaluated at the wall. The
general theory given by Eq. 19 is represented by the solid
line. For low capillary numbers, we include the Taylor limit
for deformation (Eq. 20), represented by a double dot-
dashed line, both in the semilog scale (in the main chart)
as well in linear scale (in the insert). A close agreement
between the arbitrary capillary number theory and Taylor
limit is observed for Caw < 0.1. For high capillary numbers,
the single dot-dashed line shows the asymptotic limit given
by Eq. 22, which is almost coincident to Eq. 19 for Caw > 1.
The dashed line marks the deformation upper limit, given
by Eq. 21. Drop orientation could be determined computing
the angle between the eigenvector associated with the larger
eigenvalue of A and the unitary vector parallel to the axial

1In Taylor’s original work, DT = 19λ+16
16λ+16Ca, such that, for λ � 1,

DT = 19λ
16 Caλ + O(1/λ2).

Caw

λD
Tw

10
-2
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10
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Caw

D
Tw
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0.4

0.8

Fig. 1 Drop Taylor’s deformation at wall. Solid line: Eq.(19); dashed
line: Eq.(21) giving the λ → ∞ limit; double dot-dashed line: small
capillary limit, Eq.(20); single dot-dashed line: high capillary theory,
Eq.(22). The insert shows Taylor’s theory for the small capillary
number departing from Eq.(19) in linear scale chart

direction. In this way, the drop orientation is also a function
of the capillary number (Rallison 1984), such that, at low
shear rates (i.e., in Taylor regime), the drop orientation is
equal to π /4 and, for high shear rates, drops aligns to the
axial direction.

Stress contribution from disperse phase

By substituting the components of tensor A (15) and (14) in
the stress tensor given by Eq. 12, one obtains the following:

σd
rz = φ

(
5

2
− 25

4λ

)
du

dr
+ 5φ

cλ

[
ε

(
du

dr

)2

+ 1

]−1

. (23)

Now, substituting Eq. 23 into to Eq. 7, we have as follows:

μT

du

dr
+ ε

[
μB

(
du

dr

)3

+ G

2
r

(
du

dr

)2
]

= −G

2
r, (24)

where r ∈ [0, 1]. Additionally to Eq. 24, the boundary
condition u(1) = 0 must be kept. The parameters μT and
μB appearing in this solution are the emulsion viscosities at
the limit of low and high shear rates, respectively. Actually,
it corresponds to Taylor (Taylor 1932, 1934) and blob
viscosities, respectively, such as we have already defined
in our previous publication on dilute emulsion with high
viscosity ratio undergoing steady and oscillatory shear flow
(Oliveira and Cunha 2011). The expressions we have found
are

μT = 1 + φ

(
5

2
− 3

2λ

)
and μB = 1 + φ

(
5

2
− 25

4λ

)
.

(25)
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Equation 24 is a first-order, ordinary nonlinear differential
equation. For φ = 0, we have μT = μB = 1, and Eq. 24 can
be factored and written in the form[
ε

(
du

dr

)2

+ 1

] [
du

dr
+ G

2
r

]
= 0. (26)

Since ε ≥ 0, the first term on the left-hand side of Eq. 26 is
always positive. This condition implies that du/dr + (G/2)r
= 0, that leads to classical Hagen-Poiseuille flow for the
Newtonian ambient fluid. On the other hand, for φ �= 0, the
limit of low shear rate as ε → 0, Eq. 24 reduces to μTdu/dr
+ (G/2)r = 0, and the emulsion behaves like an equivalent
Newtonian fluid with an effective viscosity μT(φ). At the
limit of very high shear rates as ε →∞, the term inside
the brackets in Eq. 24 dominates and Eq. 24 takes the form
μBdu/dr + (G/2)r = 0. In this case, the emulsion behaves like
a Boger liquid with effective viscosity μB(φ).

Asymptotic solutions

In summary, the equation governing the axisymmetric flow
of a dilute emulsion of high viscosity drop is given by the
following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μT

du

dr
+ε

[
μB

(
du

dr

)3

+G

2
r

(
du

dr

)2
]

=−G

2
r, r∈[0, 1],

u(1) = 0,

Q(G) = 1.

(27)

Asymptotic solution for ε � 1: low shear rates

In Eq. 27, the physical parameter ε can assume small values
as Cap � 1. Under condition of ε � 1 (Hinch 1991), we
propose a regular asymptotic solution O(ε2) for the axial
velocity component in the form as follows:

u(r) = u0(r) + εu1(r) + ε2u2(r) + O(ε3). (28)

Now substituting u given by Eq. 27 into Eq. 28 and
collecting terms of the same order in ε, we obtain the
governing differential equations associated with O(1),
O(ε), O(ε2) of the approximated solution, respectively,

μT

du0

dr
+ G

2
r = 0, (29)

μT

du1

dr
+ μB

(
du0

dr

)3

+ G

2
r

(
du0

dr

)2

= 0, (30)

μT

du2

dr
+ 3μB

(
du0

dr

)2
du1

dr
+ G

2
r

(
du0

dr

du1

dr

)
= 0. (31)

The ordinary differential equations given by the Eqs. 29–31
are solved with the associated boundary conditions u0(1) =
u1(1) = u2(1) = 0. After some algebraic manipulations, we
found the following approximated velocity profile at O(ε2)

as follows:

u(r) = f1(λ)
G

2
(1 − r2) + εf2(λ)

G3

32
(1 − r4)

+ε2f3(λ)
G5

192
(1 − r6) + O(ε3),

(32)

where,

f1(λ) = 1

μT

, f2(λ) = μT − μB

μ4
T

and

f3(λ) = (μT − μB)(2μT − 3μB)

μ7
T

.
(33)

Since the nondimensional pressure gradient G is an
unknown quantity and consequently part of the solution,
Eq. 32 alone is not sufficient to fully describe the radial
velocity profile. In addition, the integral relation (8) for the
nondimensional flow rate must be satisfied for a given G,
i.e. Q(G) = 1. Therefore, for the velocity given in Eq. 32 we
have:

f1(λ)
G

8
+ f2(λ)

G3

48
ε + f3(λ)

G5

256
ε2 + O(ε3) = 1. (34)

We can rewrite (34) in terms of the nondimensional
emulsion relative viscosity defined in Eq. 9 in the following
form

f1(λ)μφ + 32

3
f2(λ)εμ3

φ + 128f3(λ)ε2μ5
φ + O(ε3) = 1.

(35)

Equation 35 is a polynomial of fifth order with respect to
μφ . The coefficients of the polynomial are rational functions
of λ and ε. For exploring the ε � 1 limit, we can use the
method of successive substitution in order to obtain solution
for the Eq. 35. Based on the expression of Eq. 35, we
propose the following recursive formula

μφ,n = 1

f1(λ)

(
1 − 32

3
f2(λ)εμ3

φ,(n−1) − 128f3(λ)ε2μ5
φ,(n−1)

)
,

(36)

where n = 1,2,. . . and μφ,0 is the emulsion viscosity for ε

= 0. Preserving the order of the approximation considered in
the method of our regular asymptotic expansion (36) can be
used for n = 1 and 2. Therefore, we obtain

μφ = 1

f1(λ)
+ 32f2(λ)

3f 4
1 (λ)

ε +
(

1024f 2
2 (λ)

3f 7
1 (λ)

− 128f3(λ)

f 6
1 (λ)

)
ε2

+O(ε3).

(37)
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Now substituting the expressions for f1(λ), f2(λ) and f3(λ)
give in Eq. 33, we obtain the following expression O(φ, ε2)

for the emulsion relative viscosity as follows:

μφ = μT − φ

λ

[
152

3
ε + 608ε2

]
+ O(ε3). (38)

The expression of the Eq. 38 already indicates the existence
of a pseudo-plastic behavior of the emulsion even at low
shear rate, once for ε → 0, μφ → μT.

Asymptotic solution for ε � 1: high shear rate

In order to calculate an expression of the relative viscosity
μφ for high ε, i.e., Cap � 1, we divide (24) by ε and make
the following change of variable 1/ε = ε′. This procedure
allows us to rewrite the governing equation given by the
Eq. 27 in the nondimensional form:

μB

du

dr
+ G

2
r = −ε′

[
μT

du

dr
+ G

2
r

](
du

dr

)−2

. (39)

For high shear rates (ε′→ 0), Eq. 39 recovers the Boger
fluid regime of a constant viscosity, i.e., μφ → μB. In this
limit, ε′� 1, we also propose an recursive equation in order
to obtain an approximate solution for Eq. 39 by using the
successive substitution method. We have as follows:(
du

dr

)
n

= − G

2μB

r

− ε′

μB

[
μT

(
du

dr

)
n−1

+ G

2
r

] (
du

dr

)−2

n−1
,

(40)

as n = 1, the first-order approximation is given by the
following:

du

dr
= − G

2μB

r + 2(μT − μB)

Gr
ε′ + O(ε′2). (41)

The velocity profile at this limit is calculated by integrating
Eq. 41 considering the boundary condition u(1) = 0:

u(r) = G

4μB

(1 − r2) + 2(μT − μB)

G
ln(r)ε′ + O(ε′2).

(42)

Now, we use the same procedure that has been applied to
the limit ε � 1 with Q − 1 = 0 and G = 8μφ . This leads to
the following:

f4(λ)μφ + f5(λ)

8μφ

ε′ + O(ε′2) = 1, (43)

where f4(λ) = 1/μB and f5(λ) = (μB − μT). Equation 43 can
be written as a second-order polynomial whose positive root
is obtained in terms of

√
ε′. As the solution of the interest

is O(ε′), we expand the results in a MacLaurin series in ε′
and one collect the first two terms. Through this procedure,

we obtain μφ = μB + [(μT − μB)/8]ε′ + O(ε′2), that
corresponds to the following:

μφ = μB + 19φ

32λ
ε−1 + O(ε−2). (44)

A numerical solution of the governing
equation for arbitrary ε

For emulsion flow regimes out of the range where the
asymptotic solutions presented in the previous section are
not valid, i.e., as ε ∼ 1 (or even arbitrary), a numerical
procedure is proposed in order to solve the governing
equation and the boundary condition given in Eq. 27. Hence,
the emulsion relative viscosity is obtained using the relation
μφ = G/8. For the case, φ = 0, the solution is given by
the classical Poiseuille flow with G = 8 and consequently,
μφ = 1.

Instead of working with the governing equation in the
form of the Eq. 27, Eq. 24 is replaced by the Eq. 7. In
this way, the final numerical procedure might be easily
changed to consider different constitutive equations or
even material data provided numerically. The numerical
integration starts considering an initial shear rate profile
of du/dr for given G and ε. Typically, we take as initial
guess the one given by the parabolic velocity profile of an
equivalent Newtonian emulsion with Taylor’s viscosity μT

(Taylor 1932). Actually, it is equivalent to make ε = 0 so that
Eq. 24 reduces to du/dr = −Gr/(2μT). The radial coordinate
of the unidirectional flow was divided into N control points,
following a standard finite differences approach.

Now, considering the Eq. 7 and also that G and r are
fixed, we define a function M(du/dr) as follows:

M(du/dr) = du

dr
+ σd

rz + G

2
r . (45)

We have used a Newton-Raphson procedure in order to
find root of Eq. 45 for each control point over the radial
direction. In this procedure, we treat M(du/dr) = 0 as an
algebraic equation in the variable du/dr, whose the solution
allows us to rewrite the original governing equation in the
form:⎧⎨
⎩
du

dr
(ri) = F(ri), i = 1 . . . N,

u(rN) = 0,
(46)

where F(ri) is the result of the Newton-Raphson computa-
tion at each control point ri. Once having the problem in the
form of Eq. 46, a second-order finite differences method is
used to get the algebraic differences equation given by the
following:

ui−1 − ui+1 = −2�rF(ri), (47)
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where �r = ri+ 1 − ri is the constant radial incremental
step. Equation 47 leads to a three-diagonal linear system
readily solved by a TDMA algorithm. Then, the flow rate
is computed using standard trapezoidal rule applied to the
integral in Eq. 8.

From a global perspective, the numerical procedure is
for a given parameter ε, taking G as an input, the Newton-
Raphson method finds the shear rate as function of r using
Eq. 45; the finite differences procedure determines the
velocity profile by solving linear equations system (47); and
the trapezoidal rule computes the flow rate. Symbolically,
that procedure might be taken as a real function I : R → R,
whose the input is the pressure gradient G and the output
is the flow rate Q, i.e., I(G) = Q. Finally, we have used
Newton-Raphson iterations to vary G enforcing the integral
constraint Q = 1.

The whole process is computationally cheap such that
small tolerances and refined grids can be handled by-
conventional desktop computers. In our simulations, we
have used a 106 points in the grid along radius and toler-
ances about 10− 10 for both Newton-Raphson procedures.

Figure 2 shows a comparison of the numerical solution
and the asymptotic solution for a dilute emulsion of high
viscosity ratio. The asymptotic solution is shown for the
limits at low and high ε. It is seen two plateaus of
constant relative viscosity at low and high shear rates.
Numerical and the asymptotic solutions coincide for both
asymptotic limits. In particular, for moderate shear rates
(i.e., ε ∼ 1), the numerical integration predicts typical
shear-thinning behavior of the high viscosity ratio emulsion.
Our asymptotic solutions indeed break down in this shear-
thinning region of the relative viscosity since drops presents
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Fig. 2 Emulsion relative viscosity as function of ε. Solid line:
numerical solution; dashed lines: asymptotic solutions developed here.
The inserts show more details of the asymptotic solutions O(ε),
O(ε2) (ε � 1) and O(1/ε) (ε � 1)

a significant deformation by the quadratic shear existing in
a pressure-driven flow through a circular tube.

A theory for a dilute emulsion of high
viscosity drops undergoing arbitrary shear
rates in a cylindrical tube flow

In the limit case of a dilute emulsion of high viscosity ratio
undergoing a pressure-driven flow, the velocity profile of
the flow may be decomposed in the form u(r) = u∞(r) +
u′(r), where u∞(r) is the quadratic part of u(r) proportional
to r2 and, u′(r) the nonlinear contribution of the drop phase.
In this asymptotic limit, we assume that the nonlinear
contribution is much smaller than the leader order quadratic
flow, i.e., |u′|/|u∞|� 1. In this way, we make a simple
approximation of the local capillarity number using the
well-known Poiseuille law for an equivalent fluid with
viscosity μB

2 in order to compute the shear rate |du/dr|.
This assumption implies that the local capillarity can be
taken approximately as being Ca� ≈ 4Caλr. In addition,
considering the ε definition, Eq. 24 can be rewritten in the
following form:

μT

du

dr
+ 1

c2

(
Cap�

du

dr

)2 [
μB

du

dr
+ G

2
r

]
= −G

2
r .

Now, applying the approximation Ca� ≈ 4Caλr, we obtain
that (Cap�du/dr)2 = Ca2

� = 16Ca2
λr

2, and therefore:

du

dr
= −G

2

(
r + 16Ca2

λr
3

c2

)(
μT + 16μBCa2

λr
2

c2

)−1

.

(48)

Equation 48 is a linear first-order differential with a
straightforward solution. Applying the nonslip boundary
condition u(1) = 0, the velocity profile is determined and
using the nondimensional flow rate continuity constraint
Q − 1 = 0, we finally derive a more general expression
for the relative viscosity μφ of a dilute high viscosity
ratio emulsion undergoing a pressure-driven for arbitrary
capillary numbers Caλ. After few algebraic manipulations,
we find an expression for the emulsion relative viscosity
only in terms of φ, Caλ and λ resulting in the following:

μφ = μBCa4
λ

[
Ca4

λ − c2(μT − μB)

23μB

Ca2
λ

+ μT (μT − μB)c4

27μB

ln

(
16μB

c2μT

Ca2
λ + 1

)]−1

.

(49)

2In terms of dimensional variables u∞ = 2Uc

[
1 − (

r
R

)2
]
, thus

du∞

dr
= −4Uc

r

R2 , where Uc = GR2

8μB
.
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Of more interest, however, is the expression in the limit of
high viscosity dilute emulsion. So, we must retain only the
order O(φ/λ) of the Eq. 49 as considering the theoretical
limit of a high λ dilute emulsion. Therefore, performing
a Taylor expansion of Eq. 49 in the variable φ/λ, and
truncating at O(φ/λ), we obtain the following:

μφ = μB + 25

38

[
Ca2

λ − c2

16
ln

(
16

c2
Ca2

λ + 1

)]
φ

λCa4
λ

,

(50)

that represents the approximation O(φ/λ) at arbitrary
capillary numbers for the Eq. 49.

Now, we verify the high and low shear rate limits of the
equation (50). Firstly, taking the limit of Caλ →∞, one may
see as follows:

25

38

[
Ca2

λ − c2

16
ln

(
16

c2
Ca2

λ + 1

)]
φ

λCa4
λ

→ 0,

and consequently μφ → μB as Caλ →∞, as expected. On
the other hand, at very low shear rates as Caλ → 0, the
second contribution on the right-hand side equation of the
Eq. 50 reduces to the following:

25

38

[
Ca2

λ − c2

16
ln

(
16

c2
Ca2

λ + 1

)]
φ

λCa4
λ

→ 19φ

4λ
,

and we found that as Caλ → 0, μφ → μT = 1 + φ(5/2
− 3/(2λ)), that corresponds to the Taylor viscosity at the
limit of very high viscosity ratio, as defined before (Taylor
1932, 1934). We emphasize that Eq. 50 is one important
theoretical result of this paper which predicts for arbitrary
capillary numbers (or shear rates) the relative viscosity of
a dilute emulsion of high viscosity drops undergoing a
pressure-driven laminar flow throughout a tube of circular
cross-section.

Comparison between theoretical prediction and numerical
integration

The main plot of Fig. 3 shows a shear-thinning behavior
of the relative viscosity, of a dilute emulsion of high
viscosity drops in pressure-driven flow, as considered in
this work. The emulsion relative viscosity decreases with
increasing Caλ, ranging from 0.01 to 100 . This occurs
because the increase in drop deformation produces a
decrease in the global energy dissipation of the flow as
compared with the condition of lower Caλ, leading to a
diminution of the emulsion relative viscosity. This shear-
thinning behavior of emulsions was previously reported
in the context of boundary integral numerical simulations
for emulsions undergoing linear simple shear flow (e.g.,
Kennedy et al. 1994; Loewenberg and Hinch 1996; Cunha
and Loewenberg 2003; Oliveira and Cunha 2015). We can
see also from this plot the asymptotic limits of low and high
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Fig. 3 Emulsion viscosity as function of the capillary number. Main
plot: solid line is the relative viscosity calculated by Eq.(50); circles
are computed numerically as described in this section; in the main
plot Caλ = ε1/2. Insert: solid line is the emulsion viscosity undergoing
simple shear flow as predicted by the O(φ/λ) asymptotic theory
(Oliveira and Cunha 2015); diamonds is the wall relative viscosity as
defined in Eq.(10), computed using numerical simulation; in the insert
Caw = λμ ˙γ wa/σ , where ˙γ w = (du/dr)r=1

nondimensional shear rates corresponding to the plateaus
of constant relative viscosities. A very good agreement
between the numerical solution for the flow governed by the
Eq. 27 and the theoretical prediction given by Eq. 50 can
be observed. Actually, the maximum relative deviation from
the numerical and analytic results was less than 0.05%, for
Caλ ≈ 0.2.

The symbols in the insert of Fig. 3 show the behavior of
the wall relative viscosity as defined in Eq. 10, as function
of the capillary number evaluated at the wall, given by
Caw = λμ ˙γ wa/σ . The solid line represents the emulsion
viscosity undergoing simple shear flow as predicted by a
O(φ/λ) asymptotic theory (Oliveira and Cunha 2015)3 , at
the same shear rate. In the present work, μw is calculated
considering the definition given by Eq. 10 and numerically
computing du/dr(1), as described in this section. The wall
relative viscosity in pressure-driven flow is a rheological
meaningful quantity comparable to the viscosity measured
in uniform shear rate flows like simple shear. In fact, a
very good agreement between numerical predictions and
simple shear relative viscosity is achieved, such that the
maximum relative deviation between this two measures is
less than 0.1%, happening again for Caw ≈ 1, where the
shear thinning is stronger. In the constant viscosity plateaus,

3For simple shear flows, at the O(φ/λ) limit, Eq.(39) of Oliveira and
Cunha (2015) gives that μφ = μB + 5cφ

λ(c2+Ca2
λ)

.
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at low and high capillary numbers, the difference between
μφ and μw vanishes.

A distinctive difference between the plots in Fig. 3
is a shift in the shear thinning. While μφ shear-thinning
practically stops for Caλ ≈ 1, it is very intense for μw

for Caw ≈ 1. Now, we argue that this discrepancy can
be attributed to the difference in the capillary number
experiment by the drop. We can show that for a given
Caλ in the main plot of Fig. 3 the local shear rate (and
consequently the local capillary number) experienced by a
drop is stronger for r > 1/4, resulting in a stronger viscosity
decreasing. Actually, even if Caλ = Cap, the mean local
capillary number experienced by the fluid in the cross-
section of a tube is larger than Caλ. The spatial average of
the local capillary in a tube cross-section can be computed
as follows:

Ca� = λμa

σ

1

πR2

∫ R

0

du

dr
2πrdr, (51)

where du/dr = 4Ucr/R2. Using du/dr = 4Ucr/R2 into the
Eq. 51, we find the following:

Ca� = 8

3

λμa

σ

U

R
= 8

3
Caλ. (52)

Consequently, Ca� ∼ 4rCaλ and Ca� > Caλ for r > 1/4.
Therefore, along 3/4 of the tube radius, the local capillary is
larger than it would be in simple shear flow at Caλ.

Boundary integral method: drop surface velocity
and drop stress contribution

One of the main goals of the present work is to study
the pressure-driven flow of an emulsion of moderate
viscosity ratio, λ, such that asymptotic theory as described
in “Constitutive equation for dilute emulsions” is no
longer valid. For this end, a boundary integral method
(BIM) implementation has been used in order to generate
constitutive data on dilute emulsions for several viscosity
ratios in the range 2 ≤ λ ≤ 20. Actually, the numerical
method is not the focus of the present paper and only a
brief description will be presented here, for the sake of
completeness. For a detailed description of the boundary
integral method applied to emulsion flows, see Bazhlekov et
al. 2004; Oliveira and Cunha 2015 and Siqueira et al. 2017,
2018.

We have used a boundary integral representation of the
velocity field at drop interface for an isolated drop in the free
space, valid for dilute emulsion flows. The nondimensional
fluid velocity at the drop surface us(xo) is given by the
following:

us (xo) − λ − 1

4π(λ + 1)

∫
S

u(x − xo) · T (x − xo) · n(x)dS(x) = L(xo),

(53)

where,

L(xo) = 2Caλ

λ(λ + 1)
u∞(xo)

− 1

4π(λ + 1)

∫
S

�f (x) · G(x − xo)dS(x).
(54)

In Eqs. 53 and 54, xo is a point on the drop surface S, n is the
exterior normal vector related to S, and u∞ represents the
nondisturbed velocity field, far from the drop. In this work,
u∞ is always a simple shear flow, with origin in the center
of the nondeformed drop. The nondimensional traction
jump across the surface �f considers a clean drop (i.e.,
the absence of Marangonni effects) with a homogeneous
interfacial tension coefficient. Under this condition, �f =
κn, where κ = ∇·n is the nondimensional local mean
curvature. The tensorial kernel functions G and T are,
respectively, the stokeslet and stresslet in the free space and
this Green functions are given by the following:

G(x − xo) = I
r

+ (x − xo)(x − xo)

r3
(55)

and

T (x − xo) = −6
(x − xo)(x − xo)(x − xo)

r5
, (56)

where I is the unit tensor and r = √‖ x − xo ‖. The drop
surface was discretized using a mesh of planar triangular
faces. Nonplanar control surfaces were defined around the
nodes by connecting neighbor triangles around. The Stokes’
theorem was used to compute n and κ for each grid node.
The singular integrals in Eqs. 53 and 54 were transformed
to regular contour integrals by assuming constant curvature
in the surface containing a pole xo (Bazhlekov et al.
2004; Siqueira et al. 2017) and no numerical singularity
subtraction is needed. A second-order trapezoidal rule based
on two-points Newton-Cotes formula was used to compute
the resulting regular contour integrals. For λ�= 1, Eq. 53 is a
second kind Fredholm equation, requiring iterative solution.
The existence of eigensolutions of Eq. 53, related to rigid
body motion and isotropic expansion, severely reduces the
convergence rate of iterative methods. Wielandt deflation
was employed to purge that eigensolutions, allowing fast
convergence of Gauss-Seidel iterations. Once velocity has
been computed, drop shape can be updated by moving grid
nodes as material particles traveling with velocity us. In
other words, the equation dxo/dt = us(xo) is evolved in time
from a initial shape. A second-order Runge-Kutta method,
equipped with adaptive time-step and nontopological mesh
relaxation procedure, was used to this end (Siqueira et al.
2017).
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The stress contribution from the disperse phase in a dilute
emulsion is given by Batchelor (1970) as follows:

σ d = 3φ

4π

∫
S

[x�f + (λ − 1)(un + nu)]dS. (57)

Trapezoidal surface integration was employed to compute
the integral in Eq. 57. For each simulation, three different
meshes, progressively finer (1002, 1212, and 1442 nodes
respectively), were used in order to allow extrapolation to
mesh-independent results, as described in Siqueira et al.
(2017).

Stress data tabulation

A new set of numerical simulation has also been performed
using BIM as described in the section “Boundary integral
method: drop surface velocity and drop stress contribution.”
An important innovation has also been that our boundary
numerical procedure may compute the solution of the
nonlinear emulsion undergoing pressure-driven flow by
using an additional stress tensor, σ d, provided from a table
of stress data. In this case, instead of applying the theoretical
expression restrict to very high viscosity ratios λ given by
Eq. 23, a table of σd

rz as function of the shear rate has
been used in order to provide disperse stress contribution
in the range 2 ≤ λ ≤ 20. This is done assuming that in
the neighborhood of a small droplet such that a/R � 1,
the local parabolic flow may be approximated by a local
simple shear. In terms of nondimensional quantities, a local
capillary number Ca� can be defined for each radial position
of the flow around an isolated droplet as follows:

Ca� = λμaγ̇ (r)

σ
. (58)

where γ̇ (r) is the shear rate evaluated at the drop’s centroid.
The dimensional local shear rate is given by γ̇ (r) =
(Uc/R)|du(r)/dr|, and Eq. 58 leads to the following:

Ca� = Cap�

∣∣∣∣du(r)dr

∣∣∣∣ . (59)

Thus, if Cap and � are known parameters, a table of
numerical data for σd

12 versus Caλ can be generated
under simple shear flow condition and directly accessed by
making Caλ = Ca�. In another words, Eq. 59 gives the ratio
between the capillary number in a simple shear and the
equivalent parameter in the pressure-driven flow at the same
viscosity ratio.

In our simulations, we have generated σ d data for
capillary numbers in the interval Caλ ∈ [10− 2, 102]
using 250 points logarithmically spaced. The tabulated
stress is then used in the numerical procedure described in

the section “A numerical solution of the governing equation
for arbitrary ε” by replacing the algebraic expression for
σd
rz in Eq. 45 by a linear interpolation procedure in the σ d

table. In order to check the validity of our method, we have
tested the tabulation procedure by generating a σ d table
with 250 points in the same capillary number range but
using the asymptotic theory in the form of Eq. 23. Then,
we have compared results from stress tabulation method
and the conventional numerical solution, observing that the
maximal deviation from μφ results were less than 0.05%.

The real motivation behind this numerical approach is
the possibility of using tabulated stress data, generated by
numerical simulations (e.g., BIM) or even by experimental
data to perform more robust simulations of pressure-driven
flow of emulsions. The focus of the present work is on dilute
emulsions of λ ∼ 1, but this numerical procedure might
be used for simulations of higher drop volume fractions
of homogeneous or disperse drop radius distributions,
generated in the simple shear flow.

Emulsion relative viscosity for moderate viscosity
ratios

In this work, we have used the BIM and tabulation
procedure as described in the section “Boundary integral
method: drop surface velocity and drop stress contribution”
and “Stress data tabulation,” in order to compute the
emulsion relative viscosity as function of the viscosity ratio
ranging from λ = 2 to λ = 20. The tabulation procedure using
boundary integral simulation data were used to simulate
pressure-driven flow for Caλ = 0.1 and Caλ = 0.5 with
a drop volume fraction of φ = 0.05. Figure 4 shows a
comparison between numerical results of the emulsion
viscosity as function of the viscosity ratio λ using tabulation
of BIM stress data and the results theoretically predicted by
Eq. 50. The theory gives a good quantitative picture of the
phenomenon for λ around 5 and Caλ = 0.1. The emulsion
viscosity increases for increasing λ because the drop at very
high λ describes approximately a rigid body motion and the
emulsion viscosity tends to an upper bound limit equivalent
to the effective Einstein viscosity (Einstein 1956). For Caλ

= 0.5, at the same low volume fraction, the theoretical
predictions are systematically smaller than those observed
by tabulation of BIM stress data, because the drop starts
having a substantial degree of deformation for λ = 10, where
we can see already a perceptible discrepancy even at this
high-drop viscosity ratio. For smaller λ, the results indicate
a fast decreasing of the relative emulsion viscosity as λ

decreases. This variation can be observed for both Caλ = 0.1
and Caλ = 0.5. For λ < 10, the emulsion relative viscosity is
strongly dependent on λ as Caλ is O(1). Consequently, the
behavior of this intrinsic rheological quantity as predicted
by the theory proposed in this work is at best only of
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Fig. 4 Emulsion relative viscosity as function of the viscosity ratio
drop fluid λ. In this plot, 2 ≤ λ ≤ 20. Solid line and circles: Caλ

= 0.1 and φ = 0.05. Solid line: theoretical prediction by (50), circles:
tabulation of BIM stress data. Dashed line and squares: Caλ = 0.5
and φ = 0.05. Dashed line: theoretical prediction by (50), squares:
tabulation of BIM stress data. The upper bounder limit represented
by the horizontal dotted line corresponds to the Einstein viscosity
(Einstein 1956), which is independent of λ

qualitative value for smaller values of λ, because BIM
simulations attained drop deformations that were larger than
those found theoretically. Even this limited agreement is
gratifying for engineering applications.

Comparison with previous works available
in the literature: linear and quadratic shear flows

The physical parameter we have defined in this work
in general are slightly different of the ones defined in
previous works available in the literature. For instance, in
the paper by Coulliette and Pozrikids (1998) on drops in
pressure-driven flow they used boundary integral numerical
method for viscosity ratio always equal to unity. Their
problem is slightly different of the one explored here.
They have examined the pressure-driven transient motion
of a periodic file of deformable liquid drops through a
cylindrical tube with circular cross-section, at low Reynolds
number condition. A flow similar to the one assumed by red
blood cells in flow through capillaries (i.e., microvessels).

Despite the limitations mentioned above, there are some
promising results. We made a comparison of the emulsion
relative viscosity determined in the present work with the
equivalent quantity for the motion of an isolated drop
in simple shear performed numerically using a boundary
integral method (BIM) by Kennedy et al. (1994), for a
viscosity ratio λ = 6.4. It is worth to mention that the
nondimensionlization employed in this reference work is
different of ours, and it is necessary to compatibilize it prior

to perform the comparisons. In addition, our results for λ

= 4 were also compared with BIM results of Coulliette and
Pozrikids (1998) for a periodic array of drops undergoing
pressure-driven flow in a cylindrical tube for λ = 1 (the
only λ available in that paper). These result are shown
in Fig. 5.

Figure 5 shows a comparison between the results of this
work with those of we compare our results to those of
Kennedy et al. (1994). Those authors report results for the
disperse phase stress contribution σd

12, that is equivalent
to the whole contribution of the stresslet integral (Eq. 57).
In order to isolate only the disperse phase contribution of
the nondimensional viscosity in our results, the quantity
μw − 1 must be computed. The range of capillary is
right in the shear-thinning region and a good qualitative
agreement among the curves in the plot is observed.
Actually, the maximal relative difference observed between
the wall relative viscosity μw computed using the small
deformation theory and Kennedy’s et. al. BIM work is
around 10%. When using our tabulation procedure, the
results are even closer, and the maximal relative difference
is 8%. Considering the comparisons presented in the main
chart of Fig. 5, we argue that the differences observed could
be mainly associated to the type of the flow, since in our case
the flow is quadratic in contrast with the linear shear used
by Kennedy et al. (1994). A regression analysis was used to
fit a power law to the curves in the shear-thinning region.
For the pressure-driven flow, a scaling law like Ca

−1/5
w is

found for both asymptotic results and for tabulated stress,
as well. The results indicate a remarkable agreement of the

Caw ,  Caλ

(μ
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1)
 ,

σd 12
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μ φ ,
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Fig. 5 Comparison of the present results with those ones of previous
works available in the literature. In the main chart, white squares
indicate a result of disperse phase contribution to the effective viscosity
in linear shear from Kennedy et al. (1994); Solid line: numerical
solution for quadratic shear using small deformation theory; dashed
line: numerical solution for quadratic shear using stress data tabulation.
In the insert, we compare our results for λ = 4 to the results of
Coulliette and Pozrikids (1998), for λ = 1
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shear-thinning behavior between our theoretical predictions
and the BIM based on the tabulated stresses. In contrast,
for the linear flow the decaying is proportional to Ca

−1/10
λ .

The stronger shear thinning observed in the pressure-driven
flow could be related to the quadratic velocity profile, with
high shear rates at the tube wall. It is not surprising because
an emulsion is a non-Newtonian fluid and no universal law
with respect the flow is expected. In addition In addition,
the insert of Fig. 5 shows a comparison between our results
and three values of relative viscosity available in Coulliette
and Pozrikids (1998), for φ = 4.6%. In that case, the range
of capillary number is in the low shear rate plateau and the
shear-thinning behavior is not perceptible. The difference
between results is always less than 3%. We can see that
the apparent viscosities reported by Coulliette and Pozrikids
(1998) for λ = 1 are slightly greater than our predictions
for λ = 4. This difference can be attributed to the strong
effect of the wall on the drop in a pressure-driven flow
as the size of the drop is comparable to the diameter of
the cylindrical capillary tube, in the reference situation. In
this case, a drift velocity produced by wall-drop interaction
and deformation-induced migration are significant in the
pressure-driven flow of aligned drops in a capillary tube as
explored by Coulliette and Pozrikids (1998). Certainly, the
different viscosity ratios (i.e., λ = 1 in the reference and
λ = 4 in the present work) also should contribute to the
differences between results.

In general, from all comparisons done, we can see at
least a good qualitatively agreement between the results. In
particular, our findings are consistent with the conclusions
drawn by Kennedy et al. (1994) and Coulliette and Pozrikids
(1998) in linear shear as well as for the array of drops
in pressure-driven flow. It was difficult to obtain a direct
experimental result test of our theoretical prediction for
the emulsion relative viscosity and wall viscosity of a
dilute emulsion with moderate or high viscosity ratios under
pressure-driven flow.

Concluding remarks

Our understanding on the behavior of emulsion flows
with moderate and high viscosity contrast drop fluid
through a tube has been significantly broadened by the
present theoretical investigation, even in a dilute regime.
Equation 50 was one of the most significant theoretical
propose of this paper, which predicts the relative viscosity
(or intrinsic viscosity) of a dilute emulsion of high viscosity
drops flowing through a tube of circular cross-section. This
high λ theory proposed for dilute emulsion in quadratic flow
is valid for any arbitrary capillary or shear rates.

We have found that a dilute emulsion with moderate
and high viscosity ratio under pressure-driven flow presents

a shear-thinning behavior like the one observed in linear
shear. Both the wall viscosity and the relative intrinsic
viscosity decrease as the capillary number increases for
all values of viscosity ratios examined. The theoretical
calculations and the boundary integral simulations showed
the same dependence of the relative viscosity on the
emulsion viscosity ratio for both capillary number tested
with a drop volume fraction of 5%.

We have shown that our analysis predicts the relative
viscosity of a dilute emulsion of high viscosity drop as
function of the capillary number Caλ and the viscosity ratio
λ. For Caλ = 0.1 and φ = 5%, our theoretical predictions and
numerical results performed by using a tabulation of stress
data from BIM simulations were found to be in very good
agreement even for a moderate viscosity ratio, i.e., λ = 5. For
smaller values of λ and Caλ > 0.2, the agreement was found
to be only qualitative. From all comparisons of our results
with previous work, it was seen at least a qualitatively
agreement between the results. In general, our findings were
consistent with the conclusions draw by Pozrikids and co-
authors for the array of drops in pressure-driven flow as
well as for a drop in linear shear. On the other hand, it was
difficult to obtain a direct experimental result test of our
theoretical prediction for the emulsion relative viscosity and
wall viscosity of a dilute emulsion with moderate or high
viscosity ratios under pressure-driven flow.

The present study for emulsions with moderate and high
viscosity ratios and arbitrary capillary numbers are still
few explored in the current literature. The present work
may elucidate some of the relevant physical consideration
governing the high viscosity ratio oil-water emulsion
flooding mechanisms in practical applications of oil
recovery processes.

In this paper, the small contributions of shear-induced
migration of microdrops were neglected, but this phe-
nomenon could be considered even in the dilute limit
involving two particle interactions as have been shown
by Cunha and Hinch (1996) and Loewenberg and Hinch
(1997). In the case of pressure-driven flow, we can have
a diffusion process associated with a gradient in particle
volume fraction added to a particle migration induced by
a shear rate gradient. We plan in the future to incorporate
this phenomenon for describing emulsion flow in pressure-
driven flow by coupling the governing equations of the
flow already explored here with a new nonlinear diffusion
equation for the drop volume fraction φ.
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