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Abstract
The rheological characterization of a human blood, through modeling and analysis of transient flows and large-amplitude
oscillatory shear (LAOS) flow, has made tremendous progress recently. We show how various components, and modifications
of two recent scalar, structural kinetic, thixotropic models, can offer several modeling and prediction improvements, and compare
our results to theMaxwell-like Bautista-Manero-Puig (BMP) model, and a recent transient model based on the Herschel-Bulkley.
We explore the weakness of the legacy blood models, and then, we apply this newly improved model to recently published data
from the literature in order to demonstrate its efficacy in modeling steady state, transient, and oscillatory shear flow. Following
this effort, we demonstrate a novel approach using the sequence of physical phenomena (SPP) to facilitate interpretation,
characterization, mapping, and “fingerprinting” of transient blood data from the literature. We compare the SPP approach to
other LAOS analysis techniques in the literature and show how our approach can function as a mechanical-property diagnostic
blood analysis tool. The goal of this work is a deeper understanding of the microstructural basis and validity of structural
thixotropic blood models, and transient flow analysis techniques and procedures.
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Introduction

Human blood is a known shear-thinning, viscoelastic, and
thixotropic complex material with a yield stress, viscosity,
and structure that will undergo aging when outside of the
human body (Baskurt et al. 2009; Apostolidis et al. 2015;
Apostolidis and Beris 2015; Coussot 2017; Malkin et al.
2017; Bessonov et al. 2016; Flormann et al. 2016; Sousa
et al. 2016; Valant et al. 2016; Ewoldt and McKinley 2017;
Herrera-Valencia et al. 2017). Therefore, to mitigate aging to a
limited extent, an anticoagulant protocol must be followed to
get any rheological measurements (Merill 1969; Apostolidis

and Beris 2015; Apostolidis et al. 2016; Baskurt et al. 2009;
Bessonov et al. 2016). Working with human blood and
performing rheological experiments is not trivial. For this
work, we are using previously published steady state results
from Sousa et al. (2013), Tomaiuolo et al. (2016), andMoreno
et al. (2015), as well as transient data fromBureau et al. (1979,
1980) and large-amplitude oscillatory shear (LAOS) data from
Sousa et al. (2013). This effort does not espouse a new exper-
imental technique, or take issue with the current best practices
in blood rheology, but only to shed light on a new proposed
modification of an existing thixotropic model, which is a com-
bination of best features of already proven blood and structur-
al kinetic models (Mewis 1979; Apostolidis et al. 2015;
Armstrong et al. 2016a). Our proposed modified model has
a more robust predictive capability by fully taking into ac-
count the viscous nature of the blood medium, and viscous
contribution from the “microstructure” of the blood, as it ag-
gregates and breaks down during shear flow, as well as the
elastic contribution to the total stress from the stretching,
breaking, and reforming of the microstructure (Apostolidis
et al. 2015; Moreno et al. 2015; Armstrong et al. 2016a;
Larson 2015; Wei et al. 2016).
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The nonthixotropic steady state modeling approaches
shown here will focus on the Herschel-Bulkley model and
the Casson model (Mewis and Wagner 2012; Apostolidis and
Beris 2015; Apostolidis et al. 2015; Bessonov 2016). In addi-
tion, we will compare steady state modeling approaches using
the Carreau and Cross models (Mewis and Wagner 2012;
Bessonov et al. 2016).

With respect to the thixotropic modeling techniques show-
cased here, there are two generic approaches as follows:

σtot ¼ σe ξ;γ˙
� �þ σv ξ;γ˙

� �
; ð1Þ

where the total stress is the summation of an elastic contribu-
tion and a viscous contribution both functions of the current
value of structure ξ and the shear rate γ̇. The nondimensional
structure parameter ξ takes on values between [0 1], whereby
these values represent a completely structured and unstruc-
tured material, respectively (Mujumdar et al. 2002; Dullaert
and Mewis 2006; Blackwell and Ewoldt 2014; de Souza
Mendes and Thompson 2013; Apostolidis et al. 2015;
Armstrong et al. 2016a). The other modeling approaches
highlighted in this manuscript incorporate the Maxwell para-
digm. The Maxwell structure is used in the Bautista-Manero-
Puig (BMP) model, albeit with a fluidity parameter φwhich is
the inverse of viscosity, and White-Metzner with an evolving
viscosity, which is generically represented by

σþ η
G
σ˙ ¼ ηγ˙ ; ð2Þ

where σ is the deviatoric stress, η is the viscosity, and G is the
elastic modulus. The BMP model uses φ a structural
parameter with inverse viscosity units which becomes the
fluidity only at steady state conditions, while the Stickel
et al. (2013) EVP-like model uses a Herschel-Bulkley equiv-
alent expression to represent viscosity as a function of the
yield stress, power law parameter, and consistency parameter
(Bautista et al. 1999; Stickel et al. 2013). We will use the shear
stress component of the deviatoric stress only here.

With respect to the history of the structural kinetic models, in
1939, Goodeve first used a scalar, structural, kinetic expression
for the structure parameter, denoted as ξ, which he then corre-
lated to number of possible bonds formed with nearest neighbor
aggregates or particles. The parameter ξ takes on values ranging
between zero and one [0 1], where a value of 1 corresponds to a
fully structuredmaterial, and a value of 0 to a fully broken down
structure due to deformation (Armstrong et al. 2016a, b; Mewis
and Wagner 2012). Over the years, there have been many con-
tributions to the scalar, structure parameter models including
work from Mujumdar et al. (2002), Dullaert and Mewis
(2006), Saramito (2009), Mewis and Wagner (2012),
Dimitriou et al. (2012), de Souza Mendes and Thompson
(2013), Blackwell and Ewoldt (2014), and Armstrong et al.
(2016a). Mujumdar et al. (2002) were the first to separate the

elastic and viscous contributions to the evolving stress, and
Dullaert and Mewis (2006) added to this with a structural vis-
cous term. Importantly, Dimitriou et al. (2012) were able to
separate the elastic and viscous components of the strain and
shear rate. Most recently, there have been contributions from
Larson (2015) andWei et al. (2016) with an approach that brings
in numerous thixotropic “harmonics.” With respect to human
blood scalar, thixotropic, structure parameter models,
Apostolidis et al. (2015) made significant contributions by
allowing the elastic stress component to evolve in time by sep-
arating the elastic and viscous strain and shear rate, respectively
(Apostolidis et al. 2015). All of these contributions were com-
bined in recent work by Armstrong et al. (2016a). We are now
proposing to add these recent contributions to blood modeling
by way of a superposition of a structural viscosity term added to
the overall stress equation from the Apostolidis et al. (2015)
work, as shown in the modified Delaware thixotropic model
by Armstrong et al. (2016a).

The present work focuses on the rheological characterization
of human blood using contemporary steady state and scalar,
structural, thixotropic models using published data from the
literature.Wewill then explore the present state of bloodmodel-
ing starting with the modeling of steady state data using well-
known steady state models. We then discuss how the prepon-
derance of these steady state models struggle in their ability to
predict transient conditions. Following this, we show the ability
of a recent thixotropic, structural kinetic model by Apostolidis
et al. (2015) with and without modifications that have previous-
ly been shown to improve predictive capability for thixotropic
systems by Armstrong et al. (2016a). The proposed modifica-
tions will be used to fit and predict the rheology of published
transient data from Bureau et al. (1979, 1980). In addition, we
compare our structural kinetic, thixotropic modeling to the re-
cently published nonstructural kinetic Bautista-Manero-Puig
Bautista model by Bautista et al. (1999).

The published blood data sets highlighted in this manuscript
were used to further the development of a simple structural
kinetic thixotropic model for blood flows that incorporates elas-
tic and viscous contributions to the total stress that depend on a
time- and shear rate-dependent structure parameter (Mujumdar
et al. 2002; Dullaert andMewis 2006;Mewis andWagner 2012;
Dimitriou et al. 2012; Apostolidis et al. 2015; Armstrong et al.
2016a, b). In addition, we highlight the novel sequence of phys-
ical phenomenon (SPP) approach as a way to analyze data.
Contemporary work on thixotropy modeling using a structural
kinetic approach includes a wide variety of approaches, e.g.,
Mewis and Wagner (2009), Mewis and Wagner (2012), de
Souza Mendes and Thompson (2012, 2013), Dimitriou et al.
(2013), de Souza Mendes and Thompson (2013), Larson
(2015), Blackwell and Ewoldt (2014), Armstrong et al.
(2016a), and Wei et al. (2016). The Dullaert and Mewis struc-
tural kinetic model for thixotropy has been the basis of “type I”
models as defined by de Souza Mendes and Thompson (2012,
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2013). Work to evolve Bingham-like constitutive models that
incorporate a structure parameter include contributions by
Mujumdar et al. (2002) and more recently, Blackwell and
Ewoldt (2014), Armstrong et al. (2016a), and Wei et al. (2016)
is to develop a quantitative, microstructural understanding that
can ultimately be used for the rational formulation the thixotro-
pic, shear-thinning material blood.

With this accomplished, we then highlight the use of a novel,
recently published transient and LAOS data analysis technique,
SPP by Rogers (2012, 2017). The SPP framework allows one
to analyze a continuous, transient data flow signal and carefully
compare several flow metrics such as elasticity and viscosity.
This enables the construction of an elasto-viscous unique “fin-
gerprint” or mapping allowing comparisons to other similarly
constructed fingerprints for comparison.We show and compare
several ways to visualize the SPP framework using our finger-
printing technique, the Cole-Cole plot, and modified Cole-Cole
plot using published blood data form Bureau et al. (1980) and
Sousa et al. (2013). Other metrics from SPP include the torsion
and curvature (Rogers 2012, 2017), where torsion is known to
be a measure of nonlinearity (Rogers 2017).

The SPP framework is a model independent to transient and
LAOS analysis technique that allows one to compare elastic and
viscous components of a stress signal directly by way of a Cole-
Cole plot, the modified Cole-Cole (first-time derivatives of the
moduli) plot, and a unique fingerprinting method demonstrated
here (Rogers 2012; Rogers and Lettinga 2012). The SPP finger-
printing methodology is a novel technique to view the evolution
of the elastic and viscous moduli over a period of flow with
respect to strain and shear rate. Before this, the de facto Small
Amplitude Oscillatory Shear (SAOS) and Large Amplitude
Oscillatory Shear (LAOS) analysis technique has been the G′
andG″ analysis, as well as fast Fourier transform (FFT) harmon-
ic analysis of the stress signal. To this, Ewoldt et al. (2008),
Ewoldt (2013), and Dimitriou et al. (2013) added the
Chebychev polynomial analysis technique, similar to fast
Fourier time transform, but in the Chebychev space domain.
These intrinsic material functions, when calculated, could then
be used to construct a mapping of values in a pseudo-
fingerprinting manner unique to a certain material’s rheology
(Ewoldt et al. 2010). In addition, meaning was given to the
Chebychev material functions (Ewoldt 2013). More recently,
the asymptotically nonlinear material function framework was
contributed by Blackwell and Ewoldt (2014) and Ewoldt and
Bharadwaj (2013, 2014, 2015). The asymptotically nonlinear
material function framework allows to explore the transition
region between SAOS and LAOS (Blackwell and Ewoldt
2013; Ewoldt and Bharadwaj 2013, 2014, 2015).

We will show the efficacy of the SPP approach, and demon-
strate that we can generate unique sets of viscoelastic finger-
prints of evolving moduli for transient and LAOS data directly
to compare elastic and viscous contributions to total stress, in
addition to the Cole-Cole plot andmodified Cole-Cole analysis.

The abovementioned approach can be used in conjunction with
transient and LAOS flows only (Rogers 2012, 2017). The SPP
methodology is favored due to fact that SPP uses each data
point from a given data set, whereby other LAOS analysis
frameworks use only G′ and G″ to represent an entire period
of oscillatory data. In addition, the traditional analysis frame-
works FFT and Chebychev can only be applied to SAOS or
LAOS (Gurnon and Wagner 2012). SPP allows one to use all
the data, and sheds light on the significant shortcomings of the
other analysis frameworks. In addition, all transient experi-
ments can be analyzed with SPP, not only oscillatory experi-
ments. This generalization is a significant improvement over
more traditional methods, where no data is wasted, and all
transient experiments can be analyzed.

There is also significant interest in using LAOS to study
material properties and potentially, for determining parameters
in rheological constitutive models (Hyun et al. 2011; Rogers
et al. 2012; Germann et al. 2016). The models of interest here
are all blood rheological models. In the following, we provide
a description of the published blood data from literature, along
with a summary of the models highlighted here and a brief
description of the model parameter fitting algorithm used. The
published blood data used here consisted of steady state data
fromMoreno et al. (2015), Sousa et al. (2013), and Tomaiuolo
et al. (2016), while the transient data is from Bureau et al.
(1980), and the LAOS data from Sousa et al. (2013).

The present work focuses on the rheological characterization
of human blood using contemporary steady state and structural,
thixotropic models using published data from the literature. We
will then explore the present state of blood modeling starting
with the modeling of steady state data using well-known steady
state models. We then discuss how the preponderance of these
steady state models struggle in their ability to predict transient
conditions. Following this, we show the ability of a recent
thixotropic, structural kinetic model by Apostolidis et al.
(2015) with and without modifications shown to work for
thixotropic systems by Armstrong et al. (2016a) to fit and pre-
dict the rheology of published transient data from Bureau et al.
(1979, 1980). In addition, we compare our modeling efforts to
one more recently published nonstructural kinetic models, the
Bautista-Manero-Puig (Bautista et al. 1999).

With this accomplished, we then highlight the use of a
novel, recently published transient and LAOS data analysis
technique, SPP by Rogers (2012, 2017). The SPP framework
allows one to analyze a continuous, transient data flow signal
and carefully compare several flow metrics such as elasticity
and viscosity. This enables the construction of an elasto-
viscous unique fingerprint or mapping allowing comparisons
to other similarly constructed fingerprints for comparison. We
show and compare several ways to visualize the SPP frame-
work using our fingerprinting technique, the Cole-Cole plot,
and modified Cole-Cole plot using published blood data form
Bureau et al. (1980) and Sousa et al. (2013). Other metrics
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from SPP include the torsion and curvature (Rogers 2012,
2017), where torsion is known to be a measure of nonlinearity
(Rogers 2017).

Materials and methods

This work involved the use of already published data from
three literature sources. Our intent is use published steady state
human blood data from Sousa et al. (2013), Moreno et al.
(2015), and Tomaiuolo et al. (2016) and transient data from
Sousa et al. (2013) and Bureau et al. (1980). We will briefly
discuss the respective experimental protocols here.

The Bureau et al. (1980) is the oldest data set used here.
The data was taken using series of “triangular” step-up/
down in shear rate functions, also known as “sawtooth”
pattern, to generate hysteresis curves in stress. The rheom-
eter used was a semi-automatic coaxial cylinder
microviscometer constructed by Chaix-Meca using a cup
and bob analogue geometry, and the blood was treated with
the anticoagulant EDTA. The Sousa data incorporated an
Anton-Paar Physica MCR301 with parallel plate geometry,
with a rough surface on the upper plate, and the
anticoagulant was EDTA. Tomaiuolo et al. (2016) data
was taken with the Anton-Paar Physica MCR301 with a
double-gap, cup and bob geometry, and EDTA as the
blood anticoagulant. With the exception of the Bureau
et al. (1980) data, all of the data was taken at 37 °C, while
Bureau et al. was at 25 °C. All of these details can be found
here (Bureau et al. 1980; Sousa et al. 2013; Moreno et al.
2015; Tomaiuolo et al. 2016). Moreno et al. (2015) used a
TA Instrument AR-G2, a double concentric cylinder fix-
ture, with EDTA as the anticoagulant. We utilize here two
sets of this data with reported “high-cholesterol” measure-
ments (H1, H2) and two sets of this data with reported
“low-cholesterol” (L1, L2) (Moreno et al. 2015). The
EDTA has been shown not to appreciably affect the rheo-
logical signatures Sousa et al. (2013).

With these respective data sets, we show fitting results
for first a series of six simple models from literature rou-
tinely used to fit steady state data that compare well to each
other in goodness of fit. We then highlight the limitations
of the simple models by showing that the only models that
can model transient flow appropriately are the structural
kinetic models demonstrated by Apostolidis et al. (2015)
and Armstrong et al. (2016a), as well as the nonstructural,
but still dynamic BMP model, which has a term for an
evolving fluidity term. In addition, the BMP model is dem-
onstrated due to its pseudo-structural kinetic approach
modeling an evolving fluidity (Bautista et al. 1999). We
test the model fit for transient data fitting with data of
Bureau et al. (1980). Finally, we demonstrate how the se-
ries of physical phenomena can be used to interrogate

LAOS data for elastic and viscous signatures (Bureau
et al. 1980; Sousa et al. 2013; Rogers 2017).

In each of the respective fits, the models are fit using the
parallel tempering algorithm, a stochastic, global optimization
technique recently developed and improved by Armstrong
et al. (2016b). The values for objective functions are com-
pared, and the Akaike information criteria were calculated,
which assign a penalty for number of parameters (Akaike
1974). Brief model descriptions are offered. For the transient
Bureau et al. (1980) blood data, the data was digitized, then fit
to a series of empirical functions to facilitate the parameter
fitting with the parallel tempering. The empirical functions
were fit using the lsqcurvefit command in MATLAB. The
SPP elastic and viscous signatures, Cole-Cole plots, and mod-
ified Cole-Cole plots were created inMATLAB using the SPP
algorithm (Rogers 2017).

Results and discussion

In this section, we introduce the necessary details related to all of
the models, discuss each of the model parameters, and show the
fitting results of the models and data using the parallel tempering
algorithm. The steady state and transient data fits are compared
and analyzed using a cost function and the Akaike information
criteria. This is followed by a demonstration of the SPP analysis
technique applied to LAOS and transient flow.

This section is further broken into three subsections: the
first of which will be a comparison and description of sev-
eral current simple models with the ability to fit steady
state human blood data; followed by the second subsection
that focuses on fitting recent structural kinetic thixotropic
models, the BMP model, the Stickel et al. EVP-like dy-
namic “Herschel-Bulkley,” and the White-Metzner with
Carreau-Yasuda used to describe the evolving viscosity as
a function of the shear rate to transient data; and the third
subsection will first give a cursory overview of traditional
ways to analyze LAOS data and then discuss and demon-
strate a more contemporary, novel approach to interpreting
large-amplitude oscillatory shear and transient data using
the SPP framework (Rogers 2012, 2017).

First, we will explore the ability of seven different
models with varying numbers of parameters from three to
nine parameters to model recently published, steady state
blood data. The simplest of the model is the classic
Herschel-Bulkley model and it has three parameters
(Mewis and Wagner 2012). For each model, we will pro-
vide a brief description of each parameter, and then
compare each model by fitting the models to a series of
steady state data sets from literature. We are using four
steady state sets of data from Moreno et al. (2015) that
have varying cholesterol levels, two sets of data from
Sousa et al. (2013), and one set of steady state data from
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Tomaiuolo et al. (2016). The model comparison will con-
clude with a comparison of the cost function, and Akaike
information criterion metric, which assigns a penalty for
parameters. With the Akaike information criteria, we rank
order the six simple models for steady state data fitting,
and discuss strengths and weaknesses (Akaike 1974;
Sousa et al. 2013; Moreno et al. 2015).

Our first model to be compared is the classic Herschel-
Bulkley three-parameter model shown below:

σ ¼ σy0 þ Kγ˙
n
; ð3Þ

where σy0 is the yield stress, K is the consistency parameter,
and n is the power law dependence. This model is extremely
accurate in fitting steady state data; however, due to the fact
that it is does not contain a way to bring in time dependence in
its native form, it breaks down for transient flows.

For the dynamic, transient blood data of Bureau et al.
(1980), we fit a “dynamic” version of the Herschel-Bulkley
model recently published by Stickel and coworkers (Stickel
et al. 2013). A version of this model was postulated by
Saramito (2009), whereby the model was called the
“elastoviscoplastic model based on the Herschel-Bulkley
viscoplastic model” (Saramito 2009). In addition, Dimitriou
et al. (2012) worked on a similar construct with a strain and
shear rate broken into elastic and plastic components. We use
the model by Stickel et al. (2013) by adding only one addi-
tional parameter to the Herschel-Bulkley, G, the elastic mod-
ulus, as follows:

1

G
σ˙ þmax 0;

σj j−σy0

k σj jn
� �1=n

σ ¼ γ˙ ; ð4Þ

where the parameters all have the same interpretation as
Herschel-Bulkley shown in Eq. 3, with the addition of G,
elastic modulus. In this way, we can give the Herschel-
Bulkley model a characteristic time of stress evolution. The
original Herschel-Bulkley cannot model the transient data
without this modification as well.

We next explore the very similar Carreau-Yasuda and mod-
ified Cross models, both with five parameters each and both
shown below:

η−η∞
η0−η∞

¼ 1þ λγ˙
� �a� � n−1ð Þ=a

; ð5Þ

η−η∞
η0−η∞

¼ 1

1þ λγ̇ð Þmð Þa ; ð6Þ

where η0 and η∞ represent the zero and infinite shear vis-
cosity, respectively; λ is the relaxation time; and m, n, and
a are the power law-like parameters and fitting constants
(Mewis and Wagner 2012; Bessonov et al. 2016). It can be
argued that these models represent a slight improvement in
modeling evolution due to fact that they both contain a

relaxation time. It is duly noted that these models estimate
the viscosity, and when multiplied into shear rate can pre-
dict the current stress as follows: σ ¼ η γ̇ð Þγ̇. A weakness
with these models is the lack of a yield stress term, and
blood is known to have a yield stress, which over the range
of data we fit is seemingly not a factor as we take the
lowest stress value at the lowest shear rate as the low shear
viscosity term in Eqs. 5 and 6. In reality, it has been argued
that the manifestation of a yield is in reality a very high
value of a zero-shear viscosity (Barnes 1997). This is the
interpretation of yield stress-like term used in the Carreau-
Yasuda and modified Cross models, where a zero-shear
viscosity values is used as the limiting case of low shear
rate and not a yield stress term (Barnes 1997).

For the transient data fitting with the Carreau-Yasuda, we
turn to the White-Metzner model, which is essentially the
Maxwell model with a function for viscosity based on the
shear rate. We will use Eq. 5 in conjunction with the following
(Bird et al. 1987):

σþ η γ̇ð Þ
G

σ˙ ¼ η γ˙
� �

γ˙ ; ð7Þ

where G is the elastic modulus and η γ̇ð Þ is given by Eq. 5,
the Carreau-Yasuda model. Again, the model by itself does
not have the ability to effectively evolve its values of stress for
the transient flow of blood. There is a full tensorial version of
the White-Metzner, with a full deviatoric stress tensor, that we
have not used here, but ostensibly could be used with an upper
convected form to potentially solve for at least for the first
normal stress difference if one desired.

The next model to be showcased is the classic Casson
model, also has two parameters, and was originally designed
tomodel steady state blood rheology (Merill 1969;Mewis and
Wagner 2012; Apostolidis et al. 2015). It is shown below:

σ1=2 ¼ σy0
1=2 þ η∞γ

˙� �1=2
; ð8Þ

where again σy0 is the yield stress and η∞ is the infinite shear
viscosity. This model is on par with the Herschel-Bulkley for
accuracy, as shown in Table 1, and is well suited for fitting and
modeling steady state human blood rheology data, however
also lacks the capability to fit transient, oscillatory, and more
complicated rheological flow conditions due to its lack of an
evolutionary term to model an evolving structure, viscosity, or
fluidity (Merill 1969; Mewis and Wagner 2012; Apostolidis
et al. 2015).

The next three models are all either thixotropic models
or have the capability to model shear thinning through an
ordinary differential equation, or set of simultaneous ordi-
nary differential equations that can model an evolving
structure, fluidity/viscosity, and stress as a changing
value with a certain time constant. The first models
discussed here will be structural kinetic models, one
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which was specifically designed to fit transient human
blood data, the other which includes our modifications to
the first that contain additional viscous terms. The
modifications we are proposing are inspired by recent
work of Armstrong et al. (2016a) and were originally de-
rived for more generic thixotropic materials undergoing
transient rheological conditions. The modified Delaware
thixotropic model was itself the result of a combination
of several other recently published structural kinetic thixo-
tropic models (Mujumdar et al. 2002; Dullaert and Mewis
2006; Mewis and Wagner 2012; Dimitriou et al. 2013; de
Souza Mendes and Thompson 2013; Blackwell and Ewoldt
2014; Armstrong et al. 2016a). In its present incarnation,
we use ξ to represent our scalar structure parameter that
represents a normalized number of attachments between
[0 1] to nearest neighbors, where a value of 0 would be a
fully broken down structure, and a value of 1 would be the
fully formed structure at rest (Goodeve 1939; Mujumdar
et al. 2002; Blackwell and Ewoldt 2014; Armstrong et al.
2016a, b).

The first thixotropic blood model introduced here in the
steady state comparison is the Apostolidis et al. blood thixo-
tropic model (Apostolidis et al. 2015). Suffice to say here that
this model considers the total strain and total shear rate as a
linear superposition of the elastic and the plastic component as
follows:

γ ¼ γe þ γp ↔ γ˙ ¼ γ˙ e þ γ˙ p; ð9Þ

where the subscript e and p represent the elastic and plastic
components, respectively (Mujumdar et al. 2002; Dullaert and
Mewis 2006; Mewis and Wagner 2012; Armstrong 2015;
Armstrong et al. 2016a). Note that the total strain, γ (and,
correspondingly, the total shear rate, γ̇ ), is decomposedwithin
the MDTmodel into an elastic, γe (correspondingly γ̇e ), and a

plastic, γp (correspondingly γ̇p ), contributions. Equation 9

long with the following:

γ˙ p ¼

γ̇

2−
γej j
γmax

� � γ˙ ≥0

γ̇

2þ γej j
γmax

� � γ˙ < 0

8>>>>>>><
>>>>>>>:

and ð10Þ

γmax ¼ min
γ0
ξ2
; γ∞

� �
; ð11Þ

where γmax is the maximum allowable strain (set to unity for
blood) and γ0 is the critical strain. Together, Eqs. 9–11 com-
municate the full picture of how this thixotropic model is able
to accomplish the breakdown of the elastic and plastic com-
ponents of the strain and shear rate. In addition to this, there
are a series of three ordinary differential equations in time,
shown below for the evolution of the elastic strain, the struc-
ture parameter, and the elastic modulus:

dγe

dt
¼ γ˙ p−

γe

γmax
γ˙ p
�� ��; ð12Þ

dξ
dt

¼ σy0

η∞
kξ 1−ξð Þ þ ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4η∞γ̇p

σy0

s" #
; ð13Þ

dG

dt
¼ −kGξ G−ξG0ð Þ; ð14Þ

where σy0 is the yield stress, η∞ is the blood viscosity, G is
the elastic modulus, and the kis represent the characteristic
time of structure and elastic modulus evolution, respectively
(Dimitriou et al. 2013; Apostolidis et al. 2015; Armstrong
et al. 2016a, b). The structural evolution equation has two

Table 1 Steady state fitting results using published steady state human blood data from Moreno et al. (2015), Sousa et al. (2013), Tomaiuolo et al.
(2016), and Bessonov et al. (2016)

Model Equations Parameters Cost
functions

RSS AIC AICc

Casson σ1=2 ¼ σ1=2
y0 þ η∞γ̇ð Þ1=2 2 : σy0, η∞ 0.01058 0.2007 0.6269 2.8489

Herschel-Bulkley σ ¼ σy0 þ Kγ̇n
3 : σy0, K, n 0.00607 0.1171 1.5208 5.8697

Carreau-Yasuda η ¼ η0−η∞ð Þ 1þ λγ˙
� ��

aÞ n−1ð Þ =aþ η∞ σ ¼ ηγ˙ 5 : η0, η∞, λ, a,
n

0.01069 0.1905 6.5211 22.0203

Modified Cross η ¼ η0−η∞ð Þ 1

1þ λγ̇ð Þmð Þa þ η∞ σ ¼ ηγ˙ 5 : η0, η∞, λ, a,
m

0.01074 0.1913 6.5342 22.0334

BMP φ ¼ 1=2 − kλγ˙
2−φ0


 �h
þ kλγ̇2−φ0


 �

2 þ 4kλγ̇φ∞Þ1=2� σ ¼ γ̇

.
φ

4 :φ0, φ∞, λ, k 0.04169 0.7635 7.3986 15.4742

Apostolidis et al. γ ¼ γe þ γp↔γ˙ ¼ γ˙ e þ γp γe ¼ γp−
γ̇e

γmax
γ˙ p
�� �� ξ˙ ¼ κλ

−ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̇e

γmax
þ 1−ξð Þ

s !
γmax ¼ min

γ̇e

γmax
γmax

� �
G˙ ¼ kGξ G0−ξGð Þ

σ ¼ Gγe þ η∞γp

6 : γ∞, γ0, σy0,
HCT, cf, kG,
kξ

0.0175 0.3193 9.3682 46.3237
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terms, the first to account for structure breakdown of shear rate
and the second to account for Brownian buildup of structure.
The elastic modulus has its own characteristic time of evolu-
tion, and it describes the evolution of the elastic modulus of
the blood. Components of Eqs. 10–14 are combined to form
the overall constitutive equation shown below:

σ ¼ Gγe þ η∞γ
˙
p: ð15Þ

To enhance the predictive capability for human blood, we
propose modifying Eq. 15 by adding a term to account for
structurally induced viscosity with power law dependence as
follows:

σ ¼ Gγe þ ξKSTγ
˙ n
p þ η∞γ

˙
p; ð16Þ

where KST is the structural consistency parameter, n is the
power law dependence, and ξ is the current structure level,
inspired by Armstrong et al. (2016a). The enhanced
Apostolidis et al. blood thixotropic model combination allows
for accurate accounting of the current level of the structural
viscosity contribution. This is a legitimate addition due to
the fact that it is widely known that blood forms aggregates,
and structures at low shear rates, that are in turn broken down
during high shear rates. This continuous evolution of blood
structure contributes a viscous term to the overall shear stress
that can now be accounted for with the middle term of Eq. 16.

The next model we consider is the BMP model, which is
based on a Maxwell-like, tensorial framework; however, we
only use the shear component in xy direction here, even
though this construct does have the capability to model nor-
mal forces. The BMP bases the stress calculation on the in-
verse of viscosity, the fluidity, and includes an evolution term
for the fluidity which as an evolution constant, k, and a relax-
ation time λ. The function for evolving fluidity, φ, and the
constitutive equation for stress evolution as a function of the
current value of the fluidity are shown below:

dφ
dt

¼ φ0−φð Þ
λ

þ k φ∞−φð Þσγ˙ ; ð17Þ

σþ 1

G0φ
dσ
dt

¼ γ̇
φ
; ð18Þ

whereG0 is the elastic modulus and the product ofG0 andφ
gives the characteristic time of stress evolution in a Maxwell-
like fashion. This is the form of the BMP we use here. The
other terms of the deviatoric stress tensor are not used.

For the steady state analysis, we use the steady state repre-
sentation of all the model Ordinary Differential Equation
(ODE) and solve for respective values at steady state. This
means that at steady state, we set the values of the ODEs to
zero. For the transient analysis in the next section, the full
ODEs are first solved and then are fit to the transient data of
Bureau et al. (1980). It is mentioned here that to calculate the

infinite shear viscosity for BMP, Apostolidis et al., and the
enhanced Apostolidis et al. blood thixotropic models, the
empirical relationship developed by Apostolidis and Beris
(2014, 2015) is used,

η∞ ¼ np 1þ 2:0703� HCTþ 3:7222� HCT2
� �

exp −7:0276 1−
T0

T

� �� 
;

ð19Þ

where np is the plasma viscosity (taken here to be 1.67E
−3 Pa s or 1.67E−2 dyne/cm3 s), HCT is the hematocrit level,
and T0 and T represent the reference temperature and temper-
ature at which the data is taken (Barbee and Cokelet 1971;
Apostolidis and Beris 2014; Apostolidis et al. 2015). While
the Apostolidis models also incorporate the following empir-
ical relationship to deduce the yield stress:

σy0 ¼ HCT− 0:3126� c f
2−0:468� c f þ 0:1764

� �� �2
 �
� 0:5084 cf þ 0:4517ð Þ2

 �

;

ð20Þ
where cf is the fibrinogen concentration (Apostolidis and
Beris 2014, 2015; Apostolidis et al. 2015).

Table 1 below shows a comparison of each of the models
fitting seven different sets of steady state blood data from
literature as follows: four sets from Moreno et al. (2015),
two sets from Sousa et al. (2013), and one set from
Tomaiuolo et al. (2016). The comparison metrics are as fol-
lows: cost function shown in Eq. 21:

Fss ¼ ∑
N

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi− f ið Þ2
yi

 !vuut
0
@

1
A=N; ð21Þ

where yi is the value of the data, fi is the value of each model
prediction, and N is the number of points of the data set. It was
necessary to normalize our data by the data stress values due
to the typical order of magnitude differences in steady state
human blood data. All the steady state model fitting and tran-
sient model fitting were completed using a recently published
parallel tempering algorithm, incorporating a cost function of
the form shown in Eq. 21 or Eq. 26 (Armstrong et al. 2016b).
There were seven published steady state, blood data sets ana-
lyzed, and the cost function values shown in Table 1 repre-
sents the average values over the seven sets of data.
Furthermore, we incorporated into our comparison of the
models residual sum of squares, which is defined as

RSS ¼ ∑
N

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi− f ið Þ2
yi

s0
@

1
A: ð22Þ
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In order to present a fair comparison between models, and
allow a penalty for more parameters, we also incorporate the
Akaike information criterion (AIC) metric, which penalizes
good data fits for additional parameters (Akaike 1974),

AIC ¼ 2k þ 2 ln RSSð Þ; ð23Þ
where k is the number of model parameters and RSS is defined
in Eq. 22. For success, the AIC or Akaike information criteria
will be minimized, and the penalty incurred by additional
parameters will be mitigated by a smaller value of RSS. The
use of AIC allows a balance between model complexity and
model simplicity, and discourages the addition of fitting pa-
rameters that do not directly tie to the physics of the material.
This seems to be implicitly used by the authors whenever they
speak of which model is “the best” when fitting a particular
data set. This point could also be made more clearly. Lastly,
for the purposes of comparison and to correct for small data
sets, we incorporate the corrected Akaike information criteria
as follows:

AICc ¼ AICþ 2 k þ 1ð Þ k þ 2ð Þ
n−k−2ð Þ ; ð24Þ

where n denotes the sample size and k represents the number
of parameters (Akaike 1974).

Steady state fitting

In this section, we start with the six sets of data we have
received permission to show from Moreno et al. (2015) and
Sousa et al. (2013) shown in Fig. 1.

In Fig. 1, there are several trends in the data that are worthy
of pointing out. The first is the obvious apparent yield stress at
the lowest values of shear rate shown here. The second is that
at the higher values of shear rate, several of the curves are
overlapping. In the recent paper by Moreno et al. (2015), it
was shown that the yield stress and viscosity of the blood have
statistically significant correlations with cholesterol levels.

Below in Table 1, there are seven columns: the first is the
model name, the second are the appropriate equations at
steady state introduced above, the third is the number of and
a listing of parameters, the fourth column is the value of the
cost function from the parallel tempering parameter fitting, the
fifth is the residual sum of squares value, the sixth is the
Akaike information criterion, and the seventh is the corrected
Akaike information criterion. For the most part, each of the
seven sets of data was individually fit to each of the models,
and the above mentioned metrics were calculated as shown in
Table 1. The parameter values are not shown in Table 1, only
the model comparisons. The parameter values from the fits are
shown in Tables 2, 3, 4, 5, 6, and 7 below. In general, we can
say that we want the smallest values of the individual metrics

possible, where negative numbers are okay for the AIC. For
example, the model that shows the best fitting capability is at
the top of Table 1, and it is the Casson model. The AIC is the
lowest value for this model due to the fact that it only uses two
parameters, while the second place Herschel-Bulkley has
three of the four lowest values of the other comparison met-
rics. The model in last place for this investigation was the
Apostolidis et al. thixotropic blood model due to its four high
values of the metrics calculated.

Table 1 shows the best fit results of the six models com-
pared here. The parameters of each of the models were fit with
the parallel tempering algorithm described by Armstrong et al.
(2016b). Interestingly, we know from Moreno et al. (2015)
that the high-cholesterol and low-cholesterol steady state data
show that there are several parameters that are postulated to by
influenced by high-density lipoproteins and low-density lipo-
proteins. Those results are corroborated by our fittings. With
respect to the Sousa et al. (2013) data, set A is a male and set B
is a female. It is extremely interesting to note that with respect
to the rank ordering in Table 1, the first four models, on their
own and without modifications, cannot successfully model
transient and LAOS data. However, we acknowledge here that
the Herschel-Bulkley can be modified as shown by Saramito
(2009), Stickel et al. (2013), and Dimitriou et al. (2013) to
accommodate evolving shear rate, and the Carreau-Yasuda
and modified Cross can be utilized in conjunction with a
Maxwell-like equation like Eq. 2, for example, as a function
for the evolving viscosity term, like the White-Metzner model
(Bird et al. 1987). Whereby under this construct, the elastic
modulus would stay constant. A similar construct was ana-
lyzed recently by Stickel et al. (2013) and Merger et al.
(2016). In this manuscript, we only utilize the base model
for the Herschel-Bulkley, Carreau-Yasuda, and modified
Cross models for the steady state fitting and comparison,
and the other versions for the transient data.

1 10 100

0.01

0.1

1

Moreno et al. (2015), H1
 Moreno et al. (2015), H2
 Moreno et al. (2015), L1
 Moreno et al. (2015), L2
 Sousa et al. (2013), A
 Sousa et al. (2013), B

(P
a)

(s-1)

Fig. 1 Published steady state blood data from Moreno et al. (2015) and
Sousa et al. (2013). The steady state blood data labeled H1 and H2 are
high-cholesterol samples, while the steady state blood data labeled L1 and
L2 are low-cholesterol samples. The Sousa et al. (2013) steady state blood
data has two sets of data one male (A) and one female (B)
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In Tables 2, 3, 4, 5, 6, and 7, the results of each of the model
fitting is shown, for each of the sets of steady state blood, in
rank order from best steady state blood data fitting capability
to the least. Again, here, it is interesting to note that the Casson
model, originally developed for steady state modeling of
blood data, is outperformed by the more generic Herschel-
Bulkley model (Merill 1969; Mewis and Wagner 2012) if
value of the cost function is considered alone. Additionally,
we again point out that the yield stress for the high-cholesterol
blood data of Moreno et al. (2015) does indeed appear to be
larger in magnitude than that of the low-cholesterol blood data
for several of the models. This trend is also apparent for the
zero-shear and infinite shear viscosities for the Carreau-
Yasuda, modified Cross, and BMP models. This suggests
the existence of a possible correlation between cholesterol
level and yield stress, as well as blood viscosity.

In addition, we again point out that to successfully model
and fit model parameters to transient data of Bureau et al.
(1980), the first four models, although at the top of the ranking
for steady state model fitting, are not suitable for the transient
fits due to their lack of ability to model evolving structure and
viscosity. It is also obvious that through this modeling and
parametric analysis, it has started to show what the expected
values for “normal” or healthy blood are, whereby one can
postulate that deviations from the known or accepted values
could potentially indicate pathologies. The parameters re-
ferred to here are the zero-shear and infinite shear viscosities,
the yield stress, and the various model relaxation times fit and
shown below in Tables 2, 3, 4, 5, 6, and 7.

Furthermore, the nonthioxotropic models do not have the
ability to effectively evolve viscosity (structure) values of stress
for the transient flow of blood, but this effect is not easily
visualized when limited to steady state analysis. As such, the
steady state modeling takes out the time evolution of the struc-
ture, creating the appearance of nonthixotropic models ade-
quately predicting steady state responses. The way to identify
thixotropy is in the time dependence of the material response,

which any steady state test necessarily, and by definition avoids.
The transient data fitting section is the most important when it
comes to the thixotropy of blood and will demonstrate the clear
weakness of the nonthixotropic models.

Transient data fitting

In this subsection, we demonstrate the efficacy of the four
models from the previous section that have the ability to mod-
el transient flow conditions using previously published data
from Bureau et al. (1980). The fifth model depicted here is the
enhanced Apostolidis thixotropic blood model (Eq. 16),
which includes a structural viscosity term similar to the struc-
tural viscosity term from the modified thixotropic model
(Armstrong et al. 2016a). All of the best fit parameters for
each respective model used are shown in Tables 8, 9, 10, 11,
and 12 for each of the four blood types from Bureau et al.
(1980). First, we show in Fig. 2a, b the step-up/down in shear
rate sawtooth function used by Bureau et al. (1980). We will
fit the five models with the ability to predict transient data to
the normal, diabetic, and anemic blood rheology data from
Bureau et al. (1980). This will allow the demonstration of
the five models in action, and possibly allow for parametric
analysis and correlation between model parameters and blood
pathology. Again, we use the stochastic, parallel tempering
algorithm to perform the parameter fitting using the solution
to both sets of low shear and high shear for each type of blood
listed, and for each model (Armstrong et al. 2016b). The re-
sults of each fitting are shown below, with the best fit param-
eter values for each set of model fit shown in Tables 8, 9, 10,
11, and 12.

γ˙ ¼ γMAXt for t≤ tmax=2
γ˙ ¼ γMAX tmax−tð Þ for t > tmax=2

; ð25Þ

Table 2 Herschel-Bulkley fitting
results Parameter High cholesterol Low cholesterol Sousa Tomaiuolo

H1 H2 L1 L2 A B

σy0 0.0554 0.0234 0.0035 0.0068 0.0177 0.0128 0.0063

K 0.0430 0.0062 0.0035 0.0039 0.0074 0.0065 0.0085

n 0.7638 0.9142 0.8479 0.8457 0.8779 0.8770 0.8521

Table 3 Casson model fitting
results Parameter High cholesterol Low cholesterol Sousa Tomaiuolo

H1 H2 L1 L2 A B

σy0 0.0495 0.0117 0.0023 0.0042 0.0097 0.0071 0.0039

η∞ 0.0101 0.0029 0.0014 0.0014 0.0031 0.0028 0.0036
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More details of the Bureau transient data are here: Bureau
et al. (1980) and Apostolidis et al. (2015). The Bureau data
sets include two separate sawtooth step-up/down in shear rate
functions, starting from a shear rate of zero, stepping up to a
maximum shear rate, then stepping back to zero. There are
two sawtooths or triangle functions for each type of blood
used in his paper. The first sawtooth function is a linear pro-
gression from zero up to a shear rate that is smaller in magni-
tude (γ̇max;1 ¼ 0:12 s−1; γmax;1 ¼ 0:018 ) than the second

sawtooth, before going back to zero. While the second saw-
tooth function is a linear progression from zero to a larger
shear rate (γ̇max;2 ¼ 1:01 s−1; γmax;2 ¼ 0:022 ) than the first

step-up sawtooth function, before going back to zero. In con-
clusion, the γMAX value of the first sawtooth is smaller in
magnitude than the γMAX value of the second sawtooth. The
sawtooth shear rate functions are shown in Eq. 25.

Figure 3a–d shows the results of fitting the fivemodels to the
normal blood transients from Bureau et al. (1980) with the
intrinsic capability to fit transient data: BMP; Apostolidis
et al.; enhanced Apostolidis et al. blood thixotropic model, re-
spectively; Stickel et al. EVP-like; and White-Metzner with
Carreau-Yasuda. While Fig. 4a, b shows the structure evolution
for the normal blood using the Apostolidis et al. and enhanced
Apostolidis et al. More details of the Bureau transient can be
found here: Bureau et al. (1980) and Apostolidis et al. (2015).

Figure 3a–d shows the best fit for the three transient models
of interest. Note that in Fig. 3a, it appears that the stress (in
dyne/cm3) was not enough to break down the structure sub-
stantially, and that it stays relatively formed during flow, al-
though there is a clear and obvious hysteresis loop. The break-
ing of the structure was more apparent in Fig. 3b as shown by

the steep slope initially, and then ramp-down staying relatively
on same slope. Figures 3a–d and 4a, b show the direction of
the step-up/down as well as the directions of the structural
evolutions. With respect to the normal blood qualitatively,
each of the models is accurately fitting the data with respect
to the general trend, while the BMP struggles slightly.
Tables 9, 10, and 11 bear out this conclusion. Figure 4a, b
shows the evolution of the structure starting from a virgin
material, ξ equal to one, or completely structured. The high
shear rate case shown in Fig. 4b obviously induced a bigger
structure breakdown. The modeling of the structure also bears
out for the low and high shear rate cases that the structure does
not return to its starting value. Although it is assumed that
upon the cessation of flow, the structure will completely relax
if given the time to do so. It is interesting that although the
enhanced Apostolidis has a slightly lower value of cost func-
tion, the Akaike information criterion gives the best fit the
original version due to the penalty of adding two addition
parameters KST and n. Due to the fact that Fig. 3d shows the
inability of the White-Metzner and the Stickel et al. EVP-like
model to fail to model the hysteresis loop properly, it is clear
that these models struggle with thixotropic materials.

The diabetic blood transient fitting results are shown in
Fig. 5a–d, while the diabetic structural evolution for the
Apostolidis and enhanced Apostolidis are shown in Fig. 6a, b.

As seen in Fig. 3a–d, we seem the same trends in Fig. 5a–d,
where the best fits are given by the three transient models of
interest that have the ability to model evolving structure or
viscosity. The breaking of the structure was more apparent
in Fig. 5b as shown by the steep slope initially, and then
ramp-down staying relatively on same slope. Figures 5a–d

Table 4 Carreau-Yasuda model
fitting results Parameter High cholesterol Low cholesterol Sousa Tomaiuolo

H1 H2 L1 L2 A B

η∞ 0.0100 0.0035 0.0013 0.0016 0.0033 0.0030 0.0036

η0 0.0987 0.0309 0.0054 0.0109 0.0261 0.0203 0.0220

λ* 1.1111 1.1779 0.6519 1.0821 1.1926 1.1798 2.2785

a 24.6304 24.2229 17.2712 26.8019 28.8844 29.8746 27.4719

n 0.3902 0.2245 0.4913 0.3160 0.3124 0.3301 0.4145

Table 5 Modified Cross model
fitting results Parameter High cholesterol Low cholesterol Sousa Tomaiuolo

H1 H2 L1 L2 A B

η∞ 0.0100 0.0035 0.0013 0.0016 0.0033 0.0030 0.0036

η0 0.0987 0.0309 0.0054 0.0109 0.0261 0.0203 0.0220

λ* 1.1127 1.1814 0.6496 1.0825 1.1970 1.1842 2.2781

a 0.0442 0.0474 0.0448 0.0407 0.0369 0.0322 0.0352

m 13.7875 16.3289 11.3641 16.8024 18.6117 20.7932 16.6408
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and 6a, b again show the direction of the step-up/down as well
as the directions of the structural evolutions. With respect to
the diabetic blood qualitatively, each of the models is hitting
the mark with respect to the general trend, while it appears that
the original Apostolidis struggles slightly. Tables 9, 10, and 11
show for the diabetic blood fitting that each of the three
models yields similar accuracy as shown by the values of
the AIC. Although, in this case, the clear winner is the en-
hanced Apostolidis. Again, Fig. 6a, b shows the evolution of
the structure starting from a virgin material, or structure value
of 1, or completely structured. Even with the additional pa-
rameter penalty, the best model here was the enhanced
Apostolidis. Again, due to the fact that Fig. 5d shows the
inability of the White-Metzner and the Stickel et al. EVP-
like model to fail to model the hysteresis loop properly, it is
again clear that these models struggle with thixotropic mate-
rials (Bird et al. 1987; Stickel et al. 2013).

The anemic blood transient fitting results are shown in
Fig. 7a, b, while the anemic structural evolution for the
Apostolidis and enhanced Apostolidis are shown in Fig. 8a, b.

Figure 7a–d shows the best fit for the three transient models
of interest. The trends in Fig. 7a–d are similar to Figs. 3a–d
and 5a–d.With respect to the anemic blood, qualitatively, each
of the models is hitting the mark, while it appears that the
original Apostolidis struggles slightly again. Tables 8, 10,
11, and 12 show for the anemic blood fitting that each of the
three models yields similar accuracy as shown by the values of
the AIC. Although, in this case, the clear winner is the BMP
(according to the AIC value). Even with the additional param-
eter penalty, the best model here was the BMP. Again, due to
the fact that Fig. 7d shows the inability of the White-Metzner

and the Stickel et al. EVP-like model to fail to model the
hysteresis loop properly (Bird et al. 1987; Stickel et al. 2013).

In this section, we use a slightly different version of the cost
function and AIC as follows:

Ftrans ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi− f ið Þ2

q� �s
=N; ð26Þ

and

AIC ¼ 2kþ 2 ln Ftransð Þ; ð27Þ

where due to the large number of points we divide the residual
sum of square by number of points, the cost function is accu-
mulated, k is the number of parameters, and do not normalize
each residual by the value of the actual value of the data yi.
The use of AIC here ensures a fair comparison and a penalty
for number of parameters, and the smallest value shows the
best fit (negative numbers are okay).

To sum up the transient fitting using the Bureau et al.
(1980) transient data for four types of blood, normal, diabetic,
anemic, and umbilical, according to the fitting results shown
in Tables 8, 9, 10, 11, and 12, each of the five model fits
appears equally capable. Each of the three top models for
modeling thixotropic materials compared Apostolidis, en-
hanced Apostolidis, and BMP, each won in at least one cate-
gory (i.e., normal, diabetic, anemic, and umbilical). With re-
spect to lowest average cost function, the best model for fitting
the four types of blood transient data fromBureau et al. (1980)
was the enhancedApostolidis et al. thixotropic bloodmodel as

Table 7 Apostolidis et al.
thixotropic blood model Parameter High cholesterol Low cholesterol Sousa Tomaiuolo

H1 H2 L1 L2 A B

σy0 0.0192 0.0026 0.0001 0.0001 0.0034 0.0030 0.0041

η∞ 0.0100 0.0035 0.0013 0.0016 0.0033 0.0030 0.0036

cf 0.1471 0.1537 0.2484 0.2947 0.2312 0.2712 0.2349

HCT 1.1418 0.4877 0.0156 0.1277 0.4611 0.4071 0.4959

G 4.8334 5.1232 5.0226 4.8366 4.8169 5.0246 5.0148

γ0 0.0074 0.0010 0.0001 0.0002 0.0012 0.0009 0.0008

Table 6 BMP model fitting
results Parameter High cholesterol Low cholesterol Sousa Tomaiuolo

H1 H2 L1 L2 A B

φ∞ 94.1065 284.0688 795.8678 620.6003 299.4799 334.3429 279.5128

φ0 10.1338 32.4132 184.0556 92.1591 38.3118 49.2843 45.5367

λ* 0.2326 0.2249 1.0696 7.7283 0.7606 2.3713 2.3778

k 0.6145 4.9693 0.9250 0.2968 1.4081 0.5748 1.5640
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shown in Table 13. With respect to the lowest value of the
AIC, the best model for fitting the four types of blood transient
data from Bureau et al. (1980) was the BMP as shown in
Table 14. Two models must be removed from consideration
due to the fact that they could not capture the crossover shown
in the hysteresis loop of the Bureau et al. (1980) data as shown
in Figs. 3d, 5d, and 7d.

Although this was only by a slight margin, the enhanced
Apostolidis was penalized for more parameters by the
Akaike information criteria as shown in Tables 13 and
14. Therefore, a conclusion cannot be drawn about which

model is best for the dynamic blood fitting here. However,
we hypothesize that pathological blood could require the
choice of appropriate model; however, at this point, we
must gather, model, and compare more normal and patho-
logical blood data. We can say that dynamic models with
the capability to model evolving structure and viscosity are
required and preferred for accurate modeling results. A
table of pathological model parameters may also aid in
identifying appropriate correlations between respective
model parameter values and the actual pathology moving
forward. Again, we mention here that from Tables 8, 9, 10,

Table 9 Enhanced Apostolidis
et al. thixotropic blood model
fitting results for the four types of
transient blood data blood in
Bureau et al. (1980)

Enhanced Apostolidis et al. thixotropic blood model

Notes: 8 parameters; ξ[0 1];
μ(T,HCT); thixotropic model; 3
ODEs

Blood type (Bureau et al. 1980)

Parameter Description Normal Diabetic Umbilical Anemic Units

cf Fibrinogen
concentration

0.186 0.100 0.124 0.100 g/dL

kξ Time constant
evolution of λ

1.316 2.350 2.865 2.622 s−1

kG Time constant
evolution of G

0.541 1.217 1.695 1.252 s−1

τy0 Yield stress 0.025 0.016 0.018 0.016 dyne/cm3

η∞ Viscosity 0.043 0.043 0.043 0.043 dyne s/cm3

G Elastic modulus 0.648 0.399 0.460 0.400 dyne/cm3

KST Structural contribution
to viscosity

0.061 1.306 0.293 0.888 dyne s/cm3

n Power law of structural
viscosity

0.843 1.191 1.262 1.144 –

Results of parameter fitting Average

Cost function 2.115E−03 5.638E−03 1.900E−03 2.232E−03 2.97E−03
AIC 3.683 5.644 3.469 5.191 4.497

Table 8 Apostolidis et al.
thixotropic blood model fitting
results for the four types of
transient blood data blood in
Bureau et al. (1980)

Apostolidis et al. thixotropic blood model

Notes: 6 parameters; ξ[0 1];
μ(T,HCT); thixotropic model; 3 ODEs

Blood type (Bureau et al. 1980)

Par002E Description Normal Diabetic Umbilical Anemic Units

cf Fibrinogen concentration 0.200 0.203 0.100 0.149 g/dL

kξ Time constant evolution
of λ

1.718 12.401 1.779 4.820 s−1

kG Time constant evolution
of G

0.402 1.62E−06 0.398 0.033 s−1

τy0 Yield stress 0.027 0.028 0.016 0.021 dyne/cm3

η∞ Viscosity 0.043 0.043 0.043 0.043 dyne s/cm3

G Elastic modulus 0.697 0.708 0.399 0.532
dyne/cm3

Results of parameter fitting Average

Cost function 2.29E−03 1.09E−02 2.58E−03 7.00E−03 5.70E−03
AIC −0.159 2.966 0.078 2.078 1.241
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11, and 12, it is clear that one can start to accumulate a
database of values for normal, healthy blood for appropri-
ate models to begin the process of looking for correlations
with pathological blood, and deviations outside normal
ranges of values of respective model parameter values
(Bird et al. 1987; Bautista et al.(1999); Stickel et al.
2013; Apostolidis et al. 2015; Armstrong et al. 2016a).
Additionally, the only models we have shown that can
more or less accurately measure steady state and the qual-
itative and quantitative features of the thixotropic elasto-
visco-plastic blood transient data are the models that allow
for a direct modeling of the evolution of either a structure
parameter or viscosity and fluidity via either a relaxation

time, or a kinetic rate parameter, or both (Ewoldt and
McKinley 2017).

Interpreting LAOS blood data using series
of physical phenomena

Traditionally, there has been in the rheology community a rote
way to analyze large-amplitude oscillatory shear in one of two
analogous ways, each involving a form of a fast Fourier trans-
form or FFT. They are shown below only to give the evolution
of transient flow analysis,

Table 11 Stickel et al. model
fitting results for the four types of
transient blood data blood in
Bureau et al. (1980)

Stickel et al. dynamic Herschel-Bulkley

Notes:6 parameters; μ(T,HCT);
“dynamic Herschel-Bulkley”; 1
ODE

Blood type (Bureau et al. 1980)

Parameters Description Normal Diabetic Umbilical Anemic Units

cf Fibrinogen
concentration

0.139 0.144 0.100 0.106 g/dL

k Consistency
parameter

0.156 0.407 0.177 0.313 dyne/cm3 sn

n Power law 0.626 0.863 0.789 0.796 (−)
τy0 Yield stress 0.020 0.020 0.016 0.016 dyne/cm3

η∞ Viscosity 0.043 0.043 0.043 0.043 dyne s/cm3

G Elastic modulus 0.503 0.518 0.399 0.414 dyne/cm3

Results of parameter fitting Average

Cost function 6.537E−03 1.119E−02 4.141E−03 8.657E−03 7.63E−03
AIC 1.939 3.014 1.026 2.501 2.120

Table 10 BMP model fitting
results for the four types of
transient blood data blood in
Bureau et al. (1980)

Bautista-Manero-Puig (BMP) model

Notes: 6 parameters; fluidity; 2 ODEs Blood type (Bureau et al. 1980)

Parameters Description Normal Diabetic Umbilical Anemic Units

cf Fibrinogen
concentration

0.100 0.274 0.100 0.180 g/dL

kφ Time constant evolution
of φ dec.

0.386 0.081 0.434 0.099 s−1

λ Time constant evolution
of φ inc.

5.097 1.939 2.898 3.242 s

φ0 Zero-shear fluidity 1.441 1.358 2.165 1.529 (dyne s/cm3)−1

φ∞ Infinite shear fluidity 23.375 23.375 23.375 23.375 (dyne s/cm3)−1

G Elastic modulus 0.399 0.981 0.399 0.630 dyne/cm3

Results of parameter fitting Average

Cost function 4.21E−03 4.99E−03 3.93E−03 2.23E−03 3.84E−03
AIC 2.411 1.398 0.924 −0.210 1.131
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σ tð Þ ¼ γ0 ∑
N

n¼1;odd
G

0
m ω;γ0ð Þsin nωtð Þ þ G″

m ω;γ0ð Þcos nωtð Þ
h i

;

ð28Þ

where γ0 is the strain amplitude, ω is the frequency of
oscillation, n is the harmonic, G′s are the elastic components,
and the G″s are the viscous components of in-phase and out-
of-phase contributions (Giacomin and Dealy 1993; Ewoldt
et al. 2008; Blackwell and Ewoldt 2014; Ewoldt and
Bharadwaj 2013; Dimitriou et al. 2013; Merger et al. 2016).
There is also the expansion of each of the elastic and viscous
moduli as follows in a power series:

σ tð Þ ¼ ∑
M

m¼1;odd
∑
n

n¼1;odd
γm0 G

0
mm ωð Þsin nωtð Þ þ G″

mm ωð Þcos nωtð Þ
h i

:

ð29Þ
In addition to the frameworks described in Eqs. 28 and 29,

there has been much work using Chebychev coefficients to
decompose stress signals into elastic and viscous components
(Dimitriou et al. 2012; Dimitriou et al. 2013). With this de-
composition, the elastic and viscous contributions are as fol-
lows:

σ
0 ¼ γ0 ∑

n odd
en ω;γ0ð ÞTn xð Þ; ð30Þ
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Fig. 2 a Low strain amplitude step-up/down in shear rate function of
B u r e a u e t a l . ( 1 9 8 0 ) s h o w n i n E q . 2 5
w i t h γ̇max;1 ¼ 0:12 s−1; γmax;1 ¼ 0:018; tmax ¼ 12:5 s. b H i g h
strain amplitude step-up/down in shear rate function of Bureau et al.

(1980) shown in Eq. 25 with γ̇max;2 ¼ 1:01 s−1; γmax;2 ¼ 0:022; tmax

¼ 46 s (Bureau et al. 1980)

Table 12 White-Metzner with
Carreau-Yasuda model fitting
results for the four types of
transient blood data in Bureau
et al. (1980)

Carreau-Yasuda with White-Metzner blood

Notes:8 parameters; μ(T,HCT);
“dynamic Careau-Yasuda”; 1 ODE

Blood type (Bureau et al. 1980)

Parameters Description Normal Diabetic Umbilical Anemic Units

cf Fibrinogen
concentration

0.168 0.258 0.101 0.272 g/dL

a 0.498 2.110 2.031 0.588 (−)
λ Time constant

evolution of
viscosity

8.505 1.733 3.388 1.211 s

τy0 Yield stress 0.023 0.036 0.016 0.038 dyne/cm3

η∞ Viscosity 0.043 0.043 0.043 0.043 dyne s/cm3

G Elastic modulus 0.590 0.917 0.402 0.976 dyne/cm3

η0 Zero-shear viscosity 2.012 0.698 0.480 0.875 dyne s/cm3

n 0.003 0.049 0.001 0.144 (−)
Results of parameter fitting Average

Cost function 4.868E−03 5.639E−03 4.086E−03 4.843E−03 4.86E−03
AIC 5.350 5.644 4.999 5.339 5.333
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Fig. 3 a Normal blood undergoing a ramp-up/down in shear rate as
shown in Fig. 2a for low shear rate, with best fit of Apostolidis,
enhanced Apostolidis, and BMP. b Normal blood undergoing a ramp-
up/down in shear rate as shown in Fig. 2b for high shear rate, with best
fit of Apostolidis, enhanced Apostolidis, and BMP. c Normal blood
undergoing a ramp-up/down in shear rate as shown in Fig. 2a for low

shear rate, with best fit of Stickel et al. and White-Metzner with Carreau-
Yasuda. d Normal blood undergoing a ramp-up/down in shear rate as
shown in Fig. 2b for high shear rate, with best fit of Stickel et al. and
White-Metzner with Carreau-Yasuda (Bureau et al. 1980; Apostolidis
et al. 2015; Armstrong et al. 2016a)
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Fig. 4 a Normal blood structural evolution while undergoing a ramp-up/
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evolution undergoing a ramp-up/down in shear rate as shown in Fig. 2b
for high shear rate, with best fit of Apostolidis, enhanced Apostolidis, and
BMP (Bureau et al. 1980; Apostolidis et al. 2015; Armstrong et al. 2016a)
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where x is the nondimensionalized strain, γ/γ0, Tn(x) is the
nth-order Chebychev polynomials, and en is the elastic
Chebychev polynomial. Additionally,

σ
0 ¼ γ˙ 0 ∑

n odd
vn ω;γ0ð ÞTn yð Þ; ð31Þ

where y is the nondimensionalized strain, γ̇=γ̇0, Tn(y) is the
nth-order Chebychev polynomials, and vn is the viscous
Chebychev polynomial. Dimitriou et al. (2012) also mention
that in the linear regime, en → G ′ and vn → G″ = ωη ′

(Ewoldt et al. 2013; Blackwell and Ewoldt 2014). From this
understanding, Ewoldt and coworkers further defined a set
of four local parameters, one set of elastic moduli, and
one set of viscous moduli to capture local behavior, and
interpret viscoelastic material LAOS data. Ewoldt and

coworkers go on to say that the two elastic moduli look as
follows:

G
0
M ¼ dσ

dγ

����
γ¼0

¼ ∑
n odd

nG
0
n ¼ e1−3e3 þ…; ð32Þ

and

G
0
L ¼

σ
γ

����
γ¼γ0

¼ ∑
n odd

nG
0
n −1ð Þn−12 ¼ e1 þ e3 þ…; ð33Þ

where G
0
M is the minimum strain modulus and G

0
L is the

large strain modulus. Equations 32 and 33 also show the tie
between the Chebychev and Fourier coefficients. There is
an analogous set of moduli for viscous measures as
follows:
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Fig. 5 a Diabetic blood undergoing a ramp-up/down in shear rate as
shown in Fig. 2a for low shear rate, with best fit of Apostolidis,
enhanced Apostolidis, and BMP. b Diabetic blood undergoing a ramp-
up/down in shear rate as shown in Fig. 2b for high shear rate, with best fit
of Apostolidis, enhanced Apostolidis, and BMP. c Diabetic blood
undergoing a ramp-up/down in shear rate as shown in Fig. 2a for low

shear rate, with best fit of Stickel et al. and White-Metzner with Carreau-
Yasuda. d Diabetic blood undergoing a ramp-up/down in shear rate as
shown in Fig. 2b for high shear rate, with best fit of Stickel et al. and
White-Metzner with Carreau-Yasuda (Bureau et al. 1980; Apostolidis
et al. 2015; Armstrong et al. 2016a)
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Fig. 7 a Anemic blood undergoing a ramp-up/down in shear rate as
shown in Fig. 2a for low shear rate, with best fit of Apostolidis,
enhanced Apostolidis, and BMP. b Anemic blood undergoing a ramp-
up/down in shear rate as shown in Fig. 2b for high shear rate, with best fit
of Apostolidis, enhanced Apostolidis, and BMP. c Anemic blood
undergoing a ramp-up/down in shear rate as shown in Fig. 2a for low

shear rate, with best fit of Stickel et al. and White-Metzner with Carreau-
Yasuda. d Anemic blood undergoing a ramp-up/down in shear rate as
shown in Fig. 2b for high shear rate, with best fit of Stickel et al. and
White-Metzner with Carreau-Yasuda (Bureau et al. 1980; Apostolidis
et al. 2015; Armstrong et al. 2016a)
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Fig. 6 aDiabetic blood structural evolution while undergoing a ramp-up/
down in shear rate as shown in Fig. 2a for low shear rate, with best fit of
Apostolidis, enhanced Apostolidis, and BMP. b Diabetic blood structural

evolution undergoing a ramp-up/down in shear rate as shown in Fig. 2b
for high shear rate, with best fit of Apostolidis, enhanced Apostolidis, and
BMP (Bureau et al. 1980; Apostolidis et al. 2015; Armstrong et al. 2016a)
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η
0
M ¼ dσ

dγ̇

����
γ̇¼0

¼ v1−3v3 þ… ð34Þ

and

η
0
L ¼ σ

γ̇
¼
����
γ̇¼γ˙ 0

¼ v1 þ v3 þ… ð35Þ

where η
0
M is the minimum-rate dynamic viscosity, η

0
L is the

large-rate dynamic viscosity, and en and vn are the elastic and
viscous nth-order Chebychev polynomials. This analysis is
performed by Sousa and coworkers on human LAOS data
(Ewoldt et al. 2013; Sousa et al. 2013). These measures are
calculated over a period of LAOS while at alternance, and
presently do not aid with the interpretation of more generic
flows, like those described in Bureau et al. (1980) paper
shown in Fig. 2a, b. We show the mathematical evolution of
LAOS analysis techniques here to explicitly acknowledge the
improvement of transient flow interpretation and then to
demonstrate that the techniques cannot be used to interpret
or analyze generic transient flows, while SPP can be used
for all transient flows. In other words, we would not be able
to interpret the elastic and viscous signatures of the Bureau
et al. (1980) data without the SPP technique.

More recently, Rogers (2012, 2017) has investigated and
found a new way to represent transient data, which does not
rely on a single metric, or series of metrics of elasticity and
viscosity per oscillating period, but give an equivalent metric
per data point at each time step of data recorded during the
actual oscillation itself. The framework is SPP. This frame-
work relies on first building an array consisting of strain, shear
rate, and stress over a transient rheological test, which is then
analyzed in the Frenet-Seret apparatus (Rogers 2012, 2017).
The new framework strengths are as follows: it uses all the
data, can decompose all transient data into an elastic and vis-
cous signal, and provides interpretation of parameters includ-
ing the torsion. The framework also allows for calculation and
analysis of the rate at which the elasticity and viscosity are
changing during flow. In addition, the Cole-Cole plots can be
constructed for further interpretation (Rogers 2012, 2017)
using Fig. 9 shown below from Rogers 2017.

Step 1 of Rogers SPP is to define the A matrix as ALAOS

≡ Aγ Aγ̇=ω Aσ
� �

≡ γ tð Þ γ̇ tð Þ=ω σ tð Þ½ � taken from Rogers
(2017), where each of the column vectors of the A matrix
consists of the data from the rheometer; the first column is
the strain, the second the shear rate, and the third the stress.
It is noted here that in many instances, the raw data stress
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Fig. 8 a Anemic blood structural evolution while undergoing a ramp-up/
down in shear rate as shown in Fig. 1 for low shear rate, with best fit of
Apostolidis, enhanced Apostolidis, and BMP. b Anemic blood structural

evolution undergoing a ramp-up/down in shear rate as shown in Fig. 1 for
high shear rate, with best fit of Apostolidis, enhanced Apostolidis, and
BMP (Bureau et al. 1980; Apostolidis et al. 2015; Armstrong et al. 2016a)

Table 13 Overall fitting results
rank ordered by cost function Model Normal Diabetic Umbilical Anemic Average

Cost function

1. EAAB 2.115E−03 5.638E−03 1.900E−03 2.232E−03 2.97E−03
2. BMP 4.21E−03 4.99E−03 3.93E−03 2.23E−03 3.84E−03
*3. WM-CY 4.868E−03 5.639E−03 4.086E−03 4.843E−03 4.86E−03
4. AAB 2.29E−03 1.09E−02 2.58E−03 7.00E−03 5.70E−03
*5. DHB 6.537E−03 1.119E−02 4.141E−03 8.657E−03 7.63E−03
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signal is too noisy, and FFT reconstruction is performed to
smooth the stress signal. The reconstructed stress signal is
then used in the A matrix. Typically, the FFT reconstruc-
tion manipulations are performed using a form similar to
Eq. 28. Series of physical phenomena has the following
form:

σ tð Þ ¼ G
0
tγ tð Þ þ G″

tγ
˙ tð Þ=ωþ σoff tð Þ; ð36Þ

where G
0
t tð Þ, the evolving elastic modulus; G″

t tð Þ, the
evolving viscous modulus; and σoff(t), the offset, are evolving
functions of time, while still maintaining their original char-
acter of elastic modulus and viscous modulus. The third
evolving term, σoff(t), or offset, is an offset, loosely correlated
with degree of nonlinearly in the flow or rheological experi-
ment. To calculate each of these terms from Eq. 36, one must
manipulate the A matrix consisting of the strain, shear rate,
and stress data by constructing the Frenet-Seret apparatus of
mutually orthogonal tangent, principal normal, and binormal
vectors as follows (Pressley 2010; Rogers 2017):

T ¼ Ȧ
Ȧk k ; ð37Þ

where T is the tangent vector, pointing in the “direction
of instantaneous travel,” and “dot” notation refers to the
first-time derivative, while the double-line notation is
the norm. With the tangent vector calculated, we calculate
the normalized temporal derivative of the tangent vector as
follows:

N ¼ Ṫ
Ṫk k ; ð38Þ

where again the dot notation is the first derivative with respect
to time and N is the principal normal vector. With these cal-
culations complete, we calculate the binormal vector as fol-
lows:

B ¼ T� N: ð39Þ

The Frenet-Seret apparatus is made up of the binormal,
tangent, and principal normal vectors. It is the components

of the binormal used to calculate G
0
t tð Þ, G}

t tð Þ, and σoff(t).
This is shown below in Eqs. 40–42:

G
0
t tð Þ ¼ −

Bγ tð Þ
Bσ tð Þ ; ð40Þ

G″
t tð Þ ¼ −

Bγ̇=ω tð Þ
Bσ tð Þ ; ð41Þ

and

σoff tð Þ ¼ 1

ω2
€σ tð Þ; ð42Þ

where the Bi components represent the x, y, and z compo-
nents of the binormal vector, with the x corresponding to γ(t),
the y to the γ̇ tð Þ, and the z component to the σ(t). The double-
dot formalism is the second derivative of the stress, and ω is
the frequency. This presentation offers only a brief synopsis of
the SPP and Frenet-Seret apparatus. For more background,
check these references (Pressley 2010; Rogers 2012, 2017;

Rogers and Lettinga 2012). The derivatives of G
0
t tð Þ and G}

t
tð Þ can also be calculated to construct a modified Cole-Cole
plot as follows:

G˙
0

t ¼ τ A˙
�� �� Nγ

Bσ
−
BγNσ

B2
σ

Þ
�

ð43Þ

and

G˙
″
t ¼ τ A˙

�� �� Nγ̇=ω

Bσ
−
Bγ̇=ωNσ

B2
σ

Þ;
�

ð44Þ

where again the dot indicates the first derivative with respect
to time and τ is the torsion, a known indicator of nonlinear
behavior, which is calculated as

Fig. 9 Cole-Cole paradigm plot
interpretation legend (Rogers
2012, 2017)

Table 14 Overall fitting results rank ordered by AIC (Akaike 1974)

Model Normal Diabetic Umbilical Anemic Average

AIC

1. BMP 2.411 1.398 0.924 −0.210 1.131

2. AAB −0.159 2.966 0.078 2.078 1.241
*3. DHB 1.939 3.014 1.026 2.501 2.120

4. EAAB 3.683 5.644 3.469 5.191 4.497
*5. WM-CY 5.350 5.644 4.999 5.339 5.333
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τ ¼ − A˙
�� ��N⋅B: ð45Þ

With a series of transient experiments, one can build a series
of similar rheological experiments with differing strain ampli-
tudes, for example, a series of step-up/step-down in shear
rate experiments with varying strain amplitudes or a series of
LAOS experiments with varying strain amplitudes (with same
frequency). Typically, in a LAOS experiment, the strain will
vary as γ(t) =γ0 sin(ωt), with γ0 equal to the strain amplitude
and ω equal to the oscillation frequency. The first derivative of
the strain with respect to time is the shear rate. With each of the
moduli calculated for each experiment, the three-dimensional
color map can then be created over each experiment, and each
strain amplitude in such a way to invoke a unique fingerprint
of properties. On the x axis is strain, the y axis shear rate, and
the z axis, or color axis, representing some value of interest like
the elastic or viscous modulus, or the instantaneous rate of
change of the elastic or viscous modulus. This is approach
followed here for the Bureau et al. (1980) transient, and
Sousa et al. (2013) LAOS data, and the approach will demon-
strate the unique set of curves, plots, and figure to assist with
characterizing blood. In addition to the blood rheology finger-
print plots, one can create the standard Cole-Cole plot, which
is a plot of the evolving elastic modulus on the x axis vs.
the evolving viscous modulus on the y axis.

In this work, we will demonstrate the Cole-Cole plots, the
LAOS modulus fingerprinting, and the SPP modulus plots to
show how one can characterize transient data. First, we will
analyze two sets of LAOS blood data from Sousa et al. (2013),
with different values of strain amplitude, and the same value

of frequency. Typically, LAOS data has two parameters, a
strain amplitude γ0 and a oscillation frequency ω. A standard
strain-controlled experiment has strain as a sinusoidally oscil-
lating function of time as shown in Eq. 46,

γ tð Þ ¼ γ0sin ωtð Þ; ð46Þ
while the shear rate, the first-time derivative of strain, is given
as

γ˙ tð Þ ¼ γ0ωcos ωtð Þ; ð47Þ
where the strain vector and the shear rate vector form the first
two vectors of the Amatrix described in the first paragraph of
this section. The third stress vector or σ(t) vector is the mea-
sured quantity of a strain-controlled experiment from the rhe-
ometer. Both the elastic projections and the viscous projec-
tions of the two sets of LAOS data analyzed here are both
shown in Figs. 10a, b and 14a, b below (Giacomin and
Dealy 1993; Dimitriou et al. 2013; Rogers 2012, 2017).

Figure 10a, b shows the viscous and elastic projections,
respectively, from a set of LAOS data from the work of
Sousa et al. (2013) at γ0 = 10; ω = 0.631(rad/s). Starting
from the number 1 in the figure, we can trace out each of the
trajectories. If we had a purely viscous signature, we would
see a straight line, for the viscous projection, while the elastic
would show a circle. If we had a purely elastic signature, the
elastic projection would be a straight line, and the viscous
projection would be a circle. Clearly, we are at a combination
of frequency, ω, and strain amplitude, γ0, that leave a thixo-
viscoelastic signature, which hypothetically has not caused
full destruction of the structure, and furthermore, this structure
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a bFig. 10 a Viscous projection
(Sousa et al. 2013) LAOS data,
γ0 = 10; ω = 0.631(rad/s). b
Elastic projection (Sousa et al.
2013) LAOS data, γ0 = 10; ω =
0.631(rad/s) (Sousa et al. 2013;
Armstrong et al. 2016a, b). The
black dashed line represents the
FFT-reconstructed stress signal
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is contributing to the elasticity, and to some extent evolving
viscosity as the structure have a resistance to flow (Ewoldt and
McKinley 2017). The Cole-Cole plot and modified Cole-Cole

plot shown in Fig. 9a, b, respectively, show how the elasticG
0
R

and viscous moduliG}
R are evolving, and how their respective

time derivatives are evolving.
Again, the arrows are shown to give the reader a general

idea of the evolution of both curves. The evolution of G
0
R and

G
0
R with respect to time are shown in Fig. 12a, b, and show yet

another way of observing the modulus evolution. With Figs. 9
and 11a, the Cole-Cole plot legend, one can gain a better
understanding of how the complex material blood behaves
over a period of LAOS oscillation at this particular combina-
tion of frequency and strain amplitude. For example, in Fig.
11a, we see at point 1, we start with a purely elastic signature
that soon crosses over the 45° line and is fluidized, and be-
comes a more viscous signature. With respect to blood, this
could mean more structure at first, and as the shear rate in-
creases, the structure is broken down leading to more viscosity
and less elasticity. The signal then crosses the y axis, meaning

closer to fully viscous, and there is a purely viscous signature
and recoil. This is followed by reforming of the structure as
the shear rate applied to the blood decreases, and the structure
has time to rebuild allowing for a predominantly elastic
signature.

The moduli vs. time and the first-time derivative of the
moduli are shown in Fig. 12a, b. This visualization strategy
is not quite as useful as the Cole-Cole and modified Cole-Cole
plots. The fingerprinting technique we introduce in this man-
uscript is shown in Fig. 13a, b, whereby the viscous finger-
print is shown in Fig. 13a, and the elastic fingerprint is shown
in Fig. 13b.

To create this imagery, two vectors are utilized and then
read intoMathematica. The first array for Fig. 13a consisted of

AE ¼ γ γ̇G
0
t

� �
, and the second was AV ¼ γ γ̇G″

t

� �
. With

the array into Mathematica, and by using the “Temperature
Map” command, we can now create a three-dimensional
figure, or a “heat map” with the shear rate as the x axis, strain
as the y axis, and the third dimension the value ofG}

t . For Fig.

13b, the value depicted is G
0
t. In Mathematica, one can set the
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color scales or accept the default. One can now conceivably
look up the strain and shear rate to find the corresponding
values of the moduli within the confines of the flow. For a
cursory consistency check, one can check the same set of (x,y)
coordinates in both the viscous and elastic fingerprint and see
that as one is at a maximum, the other is at a minimum and
vice versa. This is onemore way to visualize any transient data
set of a thixo-elasto-viscous flow field with respect to the
moduli (Rogers 2017; Ewoldt and McKinley 2017). One can
follow the black arrows shown in Fig. 13a over the period of
LAOS flow to visualize how the elastic and viscous compo-
nents evolve.

Figure 10a, b shows the viscous and elastic projections,
respectively, from a set of LAOS data from the work of

Sousa et al. (2013) at γ0 = 100; ω = 0.631(rad/s). Starting
from the number 1 in the figure, we can trace out each of the
trajectories. If we had a purely viscous signature, we would
see a straight line, for the viscous projection, while the elastic
would show a circle. If we had a purely elastic signature, the
elastic projection would be a straight line, and the viscous
projection would be a circle. Clearly, we are at a combination
of frequency, ω, and strain amplitude, γ0, that leave a thixo-
visco-elastic signature, which hypothetically has not caused
full destruction of the structure, and furthermore, this structure
is contributing to the elasticity, and to some extent evolving
viscosity as the structure have a resistance to flow (Ewoldt and
McKinley 2017) (Fig. 14). The Cole-Cole plot and modified
Cole-Cole plot shown in Fig. 11a, b, respectively, show how
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(Sousa et al. 2013) LAOS data,
γ0 = 100; ω = 0.631(rad/s). b
Elastic projection (Sousa et al.
2013) LAOS data, γ0 = 100;
ω = 0.631(rad/s) (Sousa et al.
2013; Armstrong et al. 2016a, b).
The black line represents the FFT-
reconstructed stress signal
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Fig. 13 a Elastic projection fingerprint. b Viscous projection fingerprint of Sousa et al. (2013)γ0 = 10; ω = 0.631(rad/s). Black arrows show the
evolution of LAOS flow
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the elastic G
0
t and viscous moduli G″

t are evolving, and how
their respective time derivatives are evolving.

Again, the arrows are shown to give the reader a general idea

of the evolution of both curves. The evolution of G
0
R and G

0
R

with respect time are shown in Fig. 16a, b and show yet another
way of observing the modulus evolution. With Figs. 9 and 15a,
the Cole-Cole plot legend, one can gain a better understanding
of how the complex material blood behaves over a period of
LAOS oscillation at this particular combination of frequency
and strain amplitude. For example, in Fig. 15a, we see that we
are now starting with a more viscous signal due to the fact that
the strain amplitude is 100, therefore breaking all of the struc-
ture down, giving a more pure viscous signature. With respect
to blood, this could mean a lot less structure at first, and that the
structure remains in this broken-down configuration during the
flow almost entirely due to the larger shear rate. The signal then
crosses the y axis, meaning there is a purely viscous signature
and recoil here.

The moduli vs. time and the first-time derivative of the
moduli are shown in Fig. 16a, b. This visualization strategy

is not quite as useful as the Cole-Cole and modified Cole-Cole
plots. The fingerprinting technique we introduce in this man-
uscript is again shown in Fig. 17a, b for this LAOS data set
(Sousa et al. 2013), whereby the viscous fingerprint is shown
in Fig. 17a, and the elastic fingerprint is shown in Fig. 17b.

To create this imagery, two vectors are utilized and then read

into Mathematica. The first array for Fig. 17a consisted of AE

¼ γ γ̇G
0
t

� �
and the second AV ¼ γ γ̇G″

t

� �
. With the array

into Mathematica, and by using the Temperature Map com-
mand, we can now create a three-dimensional figure, or a heat
map with the shear rate as the x axis, strain as the y axis, and the
third dimension the value of G″

t . For Fig. 17b, the value

depicted is G
0
t. As previously mentioned in Mathematica, one

can set the color scales or accept the default. This is another
example a way to visualize any transient data set of a thixo-
elasto-viscous flow field with respect to the moduli (Rogers
2017; Ewoldt and McKinley 2017). With the full picture easily
viewed in all of these visualizations, one canmake comparisons
between not just different flows but also different samples of
blood to start to parse out effects of pathology, etc.
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We essentially now show the same analysis framework
for the Bureau et al. (1980) transient blood data for normal
and the diabetic blood with the same functions and parameters
that define the shear rate from Eq. 36. For types of transient
flow that are nonoscillating, we use a different form of Eq. 36
with ATrans≡ Aγ Aγ̇ Aσ

� �
≡ γ tð Þ γ̇ tð Þ σ tð Þ½ �, leading to a

reconstruction of the stress as follows:

σ tð Þ ¼ G
0
tγ tð Þ þ η

0
tγ
˙ tð Þ þ σoff tð Þ; ð48Þ

where η
0
t tð Þ is given by

η
0
t tð Þ ¼ −

Bγ̇ tð Þ tð Þ
Bσ tð Þ tð Þ

; ð49Þ

and this is a good time to recall that η
0
t tð Þ ¼ G″

t tð Þ
ω , where ω is

the frequency of oscillation. For some transient flows, ω is not
always clearly defined.

Figure 18 demonstrates the Cole-Cole plot for the normal
blood, with the low shear step-up and step-down sawtooth

function (as seen in Fig. 2a), while Fig. 19a, b shows the
evolution of the moduli with respect to time. The reader is
reminded that this stress vs. shear rate (pseudo-viscous
projection) of the data is shown in Fig. 3a for normal blood
(Bureau et al. 1980).

From Fig. 18, it is clear that the blood starts from purely
elastic signature as we expect due to the fact that the shear rate
started from zero. It then evolves into a more viscous signature
as the shear rate is ramped up the maximum value, and then
begins to show more elastic signatures as the shear rate de-
creases towards the end of the shear rate sawtooth, or triangle
function. With a comparison to the legend in Fig. 9 (Rogers
2017), we can see that the normal blood goes through a cycle
of thinning and softening as the structure breaks down, and
thickening and hardening as the structure in the blood relaxes.

To create this imagery, two vectors are utilized and then
read into Mathematica. The first array for Figure 20a consists

of AE ¼ γ γ̇G
0
t

� �
and second (Fig. 20b) is AV ¼ γ γ̇ η

0
t

� �
.

With the array into Mathematica, and by using the
Temperature Map command, we can now create a three-
dimensional figure, or a heat map with the shear rate as the x
axis, strain as the y axis, and the third dimension the value of

η
0
t. For Fig. 20b, the value depicted isG

0
t. In Mathematica, one

can set the color scales or accept the default. Similar to the
LAOS data SPP analysis, the same technique can be use with
a more generic transient flow, where one can now theoretically
look up the strain and shear rate to find the corresponding
values of the moduli within the confines of the flow and per-
form a consistency check in both the viscous and elastic fin-
gerprints and see that as one is at a maximum, the other is at a
minimum and vice versa (Rogers 2017; Ewoldt andMcKinley
2017).

Figure 21 demonstrates the Cole-Cole plot for the diabetic
blood, with the low shear step-up and step-down sawtooth
function (as seen in Fig. 2a), while Fig. 22a, b shows the

a b

Fig. 17 a Elastic projection fingerprint. b Viscous projection fingerprint of Sousa et al. (2013) γ0 = 10; ω = 0.631(rad/s), γ0 = 100; ω = 0.631(rad/s).
Black arrows show the evolution of LAOS flow
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evolution of the moduli with respect to time. The reader is
reminded that this stress vs. shear rate (pseudo-viscous
projection) of the data is shown in Fig. 5a for diabetic blood
(Bureau et al. 1980). One can also reference Fig. 6a to check
the various model predictions of structure evolution.

From Fig. 21, it is clear that the diabetic blood starts from
purely elastic signature as we expect due to the fact that the
shear rate started from zero. It then evolves into a more vis-
cous signature as the shear rate is ramped up the maximum
value, and then begins to show more elastic signatures as the
shear rate decreases towards the end of the shear rate sawtooth
function. With a comparison to the legend in Fig. 9 (Rogers
2017), we can see that the normal blood goes through a cycle
of thinning and softening as the structure breaks down, and
thickening and hardening as the structure in the blood relaxes.
The bottom line here is that there is a unique Cole-Cole evo-
lution for the diabetic blood and normal blood, which could

lead to a technique in which the pathology could be identified
with just the mechanical information from the sawtooth
function. Figure 22 shows the evolution of the moduli for
diabetic blood as a function of time.

We have demonstrated the novel new SPP framework and
analysis for the normal and diabetic blood of Bureau et al.
(1980) and the LAOS data from Sousa et al. (2013). This
technique allows for a more robust, deep, and far-reaching
understanding of what is happening to the material with re-
spect to elastic and viscous stress during the entire evolution
of a rheology experiment. It is also stated here that a recon-
struction of the stress signal using Eq. 36 or Eq. 48 is spot on
every time.

Each of the Cole-Cole plot interpretation via use of Fig. 9
shows how the material is behaving with respect to its original
starting point, while the modified Cole-Cole plot shows the
rate of change with respect to time of the Cole-Cole plot. In
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Fig. 20 a Elastic projection. b Viscous projection using series of physical phenomenon modulus fingerprinting of normal blood (Bureau et al. 1980).
Black arrows show the evolution of sawtooth function
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addition, we demonstrate several ways to view the moduli in
such a way to show uniqueness of the material. For example,
the novel fingerprinting technique could be used to identify
pathological blood sample should there exist a database of
fingerprints a priori to compare to. This could be done numer-
ically by comparing values of the moduli over a single evolu-
tion, period, or step-up/down experiment. We anticipate push-
ing a more complete demonstration of this technique in future
work with our own data.

Conclusions

In essence, we have here shown a snapshot of where contem-
porary blood modeling of steady state, transient, and LAOS
analysis and mapping stands. The state of modeling has
steadily improved over the years since the inception of some
of the original models shown byMerill (1969) andMewis and
Wagner (2012). We have also shown that the simple steady
state models can model steady state well, but lack the robust

transient terms required for evolution of structure and
viscosity which occur naturally as human blood undergoes
transient flows. The more advanced models allow for the
evolution of structure and viscosity do not perform as well
for steady state but make up for this during transient flows
as demonstrated. However, those models have the best chance
of accurately predicting transient flows. Here, we
demonstrated an enhanced thixotropic blood model based on
the work of Apostolidis et al. (2015) that was at least as good
as its peer models. The enhanced Apostolidis et al. model was
augmented with a term to account for structural viscosity of
blood, at a cost of two additional parameters a power law, n,
and the structural viscosity, KST. This follows previous work
byArmstrong et al. (2016a). Tables 13 and 14 show the results
tabulated with respect to overall cost function and AIC, re-
spectively. We argue that although adding the two parameters
adds an AIC penalty, in this case, the penalty does not out-
weigh the fact that the new terms represent the actual physics
of structural viscosity contribution. The structural viscosity
adds a nontrivial component to overall viscosity and is well
documented in the literature (Bureau et al. 1980; Sousa et al.
2013; Apostolidis et al. 2015).We acknowledge that structural
kinetic modeling is reaching a limit, and have noticed in fitting
this system and other similar systems that there is still a vis-
coelastic timescale that is not accurately captured (Apostolidis
et al. 2015; Armstrong et al. 2016a, 2017). The future now lies
in constructing a model that can simultaneously model the
thixotropic timescales associated with structural buildup and
breakdown as well as the viscoelastic timescales of the
underlying material. This may involve invoking a more
thermodynamically consistent framework using tensor and/
or conformation models as shown in Bird et al. (1987) and
Beris et al. (2008).

The transient and LAOS visualization techniques shown
here also allow for a new look at characterizing, “fingerprint-
ing,” and mapping human blood rheological experiments.
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This may open up a new avenue to approach diagnosing var-
ious pathological conditions. We will demonstrate this in fu-
ture work using the modeling, visualization, and interpretation
methodologies outlined here. The best approach to modeling
any rheological data is to simultaneously fit the steady state
with transient data to more than one family of models (i.e.,
thixotropic, purely viscoelastic, or a combination), and use the
same model and set of parameters fit to make predictions for a
different set of data. A good analysis will simultaneously in-
corporate the LAOS and sawtooth fingerprinting using one or
all of the techniques espoused here. From this type of human
blood modeling, we will begin to use modeling as a tool to
understand the microstructural underpinnings of blood rheol-
ogy, and its connection to pathological conditions. We will
move in this direction with our own data in the future.
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