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Abstract Entanglement network of carboxymethyl cellulose
(CMC) was characterized based on the dynamic viscoelastic-
ity of the concentrated solutions in an ionic liquid. According
to the concentration dependence of the molecular weight be-
tween entanglements (Me),Me for the molten state (Me,melt) for
CMC was estimated to be 3.9 × 103 as a chain variable
reflecting the chemical structure of the polysaccharide.
Furthermore, relations between Me,melt and other chain vari-
ables were examined to elucidate the specificity in the entan-
glement properties of CMC and related polysaccharides. It
was shown that the number of entanglement strands (Pe), the
ratio of the cube of the tube diameter, and the volume occu-
pied by the entanglement strand, for CMC was 72 being sig-
nificantly larger than the universal value of ca. 20 recognized
for flexible polymers. Anomalous values of Pe > 20 were also
obtained for related polysaccharides such as cellulose and
amylose.
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Introduction

Polymer chains in melts or in concentrated solutions tend to
interpenetrate so that their chain dynamics are topologically

constrained. This so-called entanglement coupling of poly-
mer chains, which is influential in the rheological behavior
of the polymer systems at long times, can be characterized
by the molecular weight between entanglements (Me)
(Masuda et al. 1972; Ferry 1980; Doi and Edwards 1986).
In fact, Me is often referred to as an essential quantity for
discussing the rheological behavior of polymer systems
with the entanglement coupling. In addition, Me for a poly-
mer melt (Me,melt) is recognized as a material constant
reflecting the chemical structure of the polymer. This means
thatMe,melt is not only a rheological parameter representing
the whole polymer system but also one of fundamental var-
iables describing the nature of the individual polymer chain.
Since there are various fundamental chain variables besides
Me,melt describing the chain dimension as well as the entan-
glement nature, the establishment of interrelations among
the chain variables should be helpful in understanding the
nature of the entanglement coupling. So far, many experi-
mental and theoretical studies have been conducted for flex-
ible polymers and several interrelations have been obtained
empirically (Lin 1987; Kavassalis and Noolandi 1989; Wu
1989; Graessley and Edwards 1981; Colby et al. 1992;
Fetters et al. 1994, 2007). Above all, there is an interesting
suggestion known as the Lin Noolandi conjecture (Lin
1987; Kavassalis and Noolandi 1989; Colby et al. 1992;
Fetters et al. 2007). With the characteristic ratio (C∞), the
unperturbed mean-square end-to-end distance of a real
polymer chain which consists of n backbone bonds of length
l is given by 〈R2〉0 = C∞nl

2 = Nb2. This equationmeans that a
real chain can be expressed by the equivalent freely jointed
chain with N Kuhn monomers of length b. The occupied
volumes of a chain Vc and a Kuhn monomer V0, whose
molar masses are M and M0 (M0 = M/N), respectively, are
given by Vc =M/ρNAand V0 =M0/ρNA, where ρ is the den-
sity and NA is the Avogadro’s number. Hence, the packing
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length p, which is defined as the ratio of Vc and 〈R2〉0, is
given by:

p ¼ Vc

R2
� �

0

¼ V0

b2
ð1Þ

In a similar manner, the so-called tube diameter a, which is
the unperturbed root-mean-square end-to-end distance of an
entanglement strand of the molar massMe, is obtained as a

2 =
Ne b

2, where Ne is the number of Kuhn monomers in this
strand. The occupied volume of the entanglement strand Ve
is given by Ve =Me/ρNA = V0Ne. Then, the Lin Noolandi con-
jecture suggests that Pe, the number of entanglement strands
of the volume Ve within an entanglement strand volume a3,
becomes a fixed quantity. Here, Pe is defined as:

Pe ¼ a3

Ve
ð2Þ

Since Pe for a polymer can be calculated usingMe and C∞,
the above criterion has been tested about a wide variety of
flexible polymers whose chain variables have been reported
in the literature (Fetters et al. 2007). However, comparison
among the chain variables for polysaccharides is far from
satisfactory partly due to the experimental difficulties
(Brown et al. 1963; Nakanishi et al. 1993; Horinaka et al.
2012a).

Carboxymethyl cellulose (CMC) is a polysaccharide
whose hydrogens on the hydroxyl groups are partly substitut-
ed by carboxymethyl groups. This polysaccharide is soluble in
water and therefore has been widely used as thickening and
stabilizing agents applicable to, for example, foods, cosmetics,
and dyes. The variety of practical applications of CMC em-
phasizes the importance of the rheological behavior of CMC
systems. Actually, extensive studies on the rheological behav-
ior of the aqueous systems have been performed at a broad
range of experimental conditions (Kuroiwa et al. 1967;
Abdelrahim and Ramaswamy 1995; Werner-Michael et al.
1996; Broniarz-Press et al. 2003; Lopez et al. 2017), but the
concentration of CMC has been limited to the dilute or semi-
dilute region (Wu et al. 2009), where the entanglement cou-
pling is of no importance. Accordingly, to our knowledge, the
entanglement coupling of CMC has hardly been examined at
the present stage. Regarding aqueous solutions of CMC, con-
centration dependence of viscosity has been studied and a
dynamic crossover has been related to entanglement (Lopez
et al. 2017). Furthermore, the fact that CMC in the molten
state is not available due to thermal degradation before melt-
ing, as is often the case with polysaccharides, makes estima-
tion of Me,melt for CMC difficult. Regarding the chemical
structure of CMC, the repeating units of glucopyranose are
remarkably bulky compared to those of conventional flexible
polymers (Eliezer and Hayman 1957; Brown et al. 1963).
Taking this specificity in the chemical structure into

consideration, it seems interesting to examine interrelations
among the chain variables for CMC, that is, interrelations
differing from those about the flexible polymers can be
expected.

It has been demonstrated in our previous studies thatMe,melt

for polysaccharides can be estimated from the rheological be-
havior of their concentrated solutions prepared by using ionic
liquids as the solvents (Horinaka et al. 2009, 2011, 2012a, b,
2013, 2015). In this study, it is shown that the same method
holds good in the case of CMC: Rheological measurements
have been carried out for ionic liquid solutions of CMC in the
concentrated region to characterize the entanglement coupling
byMe, and then,Me,melt for CMC has been obtained from the
concentration dependence of Me. One reason for choosing
CMC is that there are enough reported values of the chain
variables available (Eliezer and Hayman 1957; Brown et al.
1963). The relations betweenMe,melt and other chain variables
are examined for CMC as well as for other polysaccharides.

Experimental

Materials

A commercial grade of CMC sodium salt (Wako, Japan) was
used as received. The sodium ion (Na+) content was reported
as 0.065–0.085 in weight by the manufacturer, and therefore,
the degree of substitution by carboxymethyl groups of this
sample was estimated to be around 0.7 assuming every
carboxymethyl group has the counter ion of Na+. The solvent
1-butyl-3-methylimidazolium acetate (BmimAc) (BASF,
Germany) was used without further purification. The melting
point and density of this solvent were assumed identical to
those of BmimAc in our earlier study (Horinaka et al. 2013),
namely – 20 °C and 1.055 × 103 kg−3, respectively, although
the manufacturer’s data sheet was not available at the time of
this study. Concentrated solutions of CMC were prepared in
the following manner. Powdery sample of CMC sodium salt
was added into BmimAc in a dry glass vessel, and the mixture
was stirred with a stainless spatula on a hot plate at 70 °C until
obvious inhomogeneity was disappeared. Then, the mixture
was left on a hot plate at 70 °C for about 8 h to dissolve the
powdery sample completely. The concentration of CMC (c)
was ranged from 9.8 × 101 to 2.9 × 102 kg−3, i.e., from 10 to
30 wt%. In the calculation of c, the density of CMC sodium
salt was assumed to be 1.0 × 103 kg−3 and the weight fraction
of Na+ was eliminated. The samples were immediately used
for rheological measurements after preparation.

Measurements

Rheological measurements were carried out with an ARES
rheometer (now TA Instruments, USA) under a nitrogen
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atmosphere. A cone-plate geometry with a diameter of 25 mm
and a cone angle of 0.1 rad. was used. Dynamic viscoelastic-
ity, or the frequency (ω) dependence of the storage modulus
(G’) and the loss modulus (G”), for the CMC solutions was
examined with a strain amplitude (γ) of 0.1. The value of γ
was determined so that the measurement could be performed
in the linear viscoelasticity region. The measurement temper-
ature (T) ranged from 0 to 80 °C.

Results and discussion

Figure 1 shows the master curves of G' and G'' for all the
CMC solutions examined in this study. Here, the refer-
ence temperature (Tr) has been chosen to be 80 °C, and
aT stands for the horizontal shift factor. The master
curves indicate that the time-temperature superposition
principle holds very well for all the CMC solutions. In
each pair of the master curves, two characteristic domains
are seen: the flow zone and the rubbery plateau region.
The flow zone in the low ω region is typical of polymer
solutions and at c ≤ 1.9 × 102 kg−3 even the terminal
flow behavior characterized by the relation G'' ∝ ω ap-
pears in the curves. The rubbery plateau, the higher ω
region where G’ > G'', implies the existence of the en-
tanglement coupling between CMC chains in the solu-
tions; the plateau region becomes wider as c increases,

as expected (Onogi et al. 1970; Masuda et al. 1972). It is
also seen that the plateau of G’ is actually tilted to some
extent, which is probably due to the polydispersity of the
CMC employed (Horinaka et al. 2011).

Figure 2 shows aT determined for obtaining the master
curves in Fig. 1 plotted against 1/T; there are no data points at
the lowest temperature for the solutions of c ≥ 2.4 × 102 kg−3.
Although aT at a given T are almost independent of c, weak
dependence on c could be observed at low temperatures; that is,
aT at a given T becomes larger with c. It is impossible for us to
explain why such a c-dependence appears, but similar trend has
been obtained in our previous studies on polysaccharide solu-
tions. Assuming all data points fall on a single line, as drawn in
the figure, the best fit line gives the activation energy of flow of
86 kJ mol−1.

Concerning the CMC solutions at c ≤ 1.9 × 102 kg−3, the
zero-shear viscosity (η0) can be determined from the terminal
flow behavior appearing in the master curves shown in Fig. 1.
The estimated values of η0 are plotted double-logarithmically
as a function of c in Fig. 3. Scaling of the viscosity has been
obtained to be η0 ∝ c3.3; interestingly, the exponent is close to
those (3.4–3.8) reported for the viscosity of aqueous solution
of CMC at high concentrations (Kastner et al. 1997;
Truzzolillo et al. 2009; Wu et al. 2009; Lopez et al. 2015).

Using the master curves of G' and G'' with a tilted rubbery
plateau, the plateaumodulus (G0

N ) can be determined as theG'
value at ωaT where the loss tangent (tanδ = G''/G') curve at-

tains a minimum. For example, G0
N for the CMC solution of

c = 2.4 × 102 kg−3 has been determined to be 4.2 × 104 Pa,
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Fig. 1 Master curves of G' and G'' for the CMC solutions. The reference
temperature is 80 °C
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which gives Me (in gmol−1) of 1.7 × 104 for CMC at this
concentration according to the following equation (Onogi
et al. 1970; Ferry 1980; Doi and Edwards 1986):

M e ¼ 103cRT
G0

N

ð3Þ

where R is the gas constant. The values ofMe for other CMC
solutions were determined in the similar way. Figure 4 shows
the double-logarithmic plot of the obtained Me against c. A
straight line with a slope of − 1 is also drawn in the figure to fit
the plot best taking the well-known relationMe ∝ c−1 for poly-
mer solutions into consideration (Bhattacharjee et al. 2002;
Huang et al. 2013); it can be confirmed that the c dependence
ofMe also holds well for the CMC solutions. Small deviations
from the straight line are probably due to the uncertainty in the
determination ofMe. Another scalingMe ∝ c−4/3, which is also
known for polymer solutions (Struglinski and Graessley 1985;
Lee et al. 2006), has been tested against the data points in
Fig. 4. It is obvious that the scaling with − 1 is better than that
with − 4/3 for the data points. If the density of the amorphous
CMC is assumed to be 1.0 × 103 kg−3,Me,melt for CMC can be
estimated as a value of Me at c = 1.0 × 103 kg−3 in Fig. 4,
namely 3.9 × 103. The extrapolation to the molten state has
been validated for several synthetic polymers (Struglinski and
Graessley 1985; Bhattacharjee et al. 2002; Lee et al. 2006;
Huang et al. 2013).

As described in the introduction part, Me,melt is a material
constant characterizing the polymer chain, and there might be
interesting interrelations between Me,melt and other chain var-
iables. For flexible polymers, it has been concluded that Pe
apparently becomes constant regardless of the polymer spe-
cies with the average value of 20.6 (Fetters et al. 2007). Now,
similar analysis is possible for CMC; usingMe,melt = 3.9 × 103

obtained in this study and C∞ = 11.7 provided in the literature

(Brown et al. 1963), Pe is evaluated to be 72. It should be
noted thatPe for CMC is significantly larger than the universal
value for flexible polymers. Although it is impossible at the
present stage to mention exactly which factors bring about this
difference, we suppose that the bulkiness of the repeating units
of CMC is attributable; actually, a glucopyranose ring of CMC
has the length of ca. 5Å (Brown et al. 1963), while most
flexible polymers have the main-chain bond length of less
than 2Å (Fetters et al. 2007). In an earlier study on the solution
properties of CMC in cadoxen, it has been reported that the
chains of CMC have displayed hydrodynamics of random-
coil polymers (Brown et al. 1963). Hence, we think that chains
of CMC in BmimAc, which has a great ionic strength, are also
in the random-coil conformation in spite of the difference in
the solvent, suggesting that the anomalous Pe for CMC does
not correlate with the chain conformation. To support the
anomaly of Pe for CMC, values of Pe for other polysaccha-
rides have been estimated based on our previous results on
Me,melt as well as reported C∞ in the literature. It is noted that
all the C∞ values quoted here are experimental data although
the measurement conditions are not necessarily the same and
thatC∞ given bymodel calculations are not employed because
of the large researcher-dependence. Table 1 shows the obtain-
ed chain variables for the polysaccharides including their
Kuhn length (b; = C∞l0; l0 being the average main-chain bond
length) in ascending order of Me,melt. In the lower part of the
same table, the corresponding values for several flexible poly-
mers have been extracted from the literature for comparison
taking the variation inMe,melt into account (Fetters et al. 2007).
It is noteworthy that all the values of Pe for polysaccharides
are surely larger than the universal value for flexible polymers,
although the values depend on the polysaccharide species
without any obvious trends.
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Since the universal value of Pe is originally supposed to hold
for flexible polymers, i.e., for chains where a >> b, Pe has been
plotted against a/b in Fig. 5 using the values given in Table 1.
The dotted line in Fig. 5 indicates the average value of
Pe = 20.6, and four data points for the flexible polymers in
Table 1 are almost on this line. Compared to the coincidence
for the flexible polymer, Pe values for polysaccharides are sig-
nificantly larger than the universal value. Here, the value of a/b
for the flexible polymers ranges from 1.9 to 8.3, and those for

three polysaccharides pullulan, curdlan, and amylose are within
this range. This fact implies that the anomaly of Pe for polysac-
charides cannot be attributed to merely the chain inflexibility of
polysaccharides—at least for the three polysaccharides. The
figure also shows that Pe values for polysaccharides with
a/b < 1, namely cellulose and xanthan, are extremely high,
which might be due to the inflexibility of the chain. Although
the limit of applicability of the universal Pe in terms of a/b
cannot be determined quantitatively, the anomalous values of
Pe for CMC and guar gum with the intermediate a/b could be
explained by their semi-flexible chain characteristics.

Conclusions

The dynamic viscoelasticity for the concentrated solutions of
CMCwas examined to characterize the entanglement network
of CMC in terms ofMe.Me,melt = 3.9 × 10

3 together withC∞ in
the literature gave Pe = 72 for CMC which is significantly
larger than the universal value for flexible polymers. Taking
a flexibility parameter a/b into consideration, this anomalous
value of Pe might be due to the semi-flexible chain character.
On the other hand, it was found that other polysaccharides
pullulan, curdlan, and amylose, whose values of a/b are com-
parable with flexible polymers of Pe ≈ 20, also have signifi-
cantly large Pe, as shown in Fig. 5. The anomaly of Pe might
be the specific characteristics of polysaccharide chains.
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