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Abstract Nanosized filler particles enhance the mechanical
properties of polymer composites in a size-dependent fashion.
This is puzzling, because classical elasticity is inherently
scale-free, and models for the elasticity of composite systems
never predict a filler-size dependence. Here, we study the
industrially important system of silica-filled rubbers, together
with a well-characterized model-filled crosslinked gel and
show that at high filler content both the linear and nonlinear
elastic properties of these systems exhibit a unique scaling
proportional to the cube of the volume fraction divided by
the particle size. This remarkable behavior makes it possible
to predict the full mechanical response of particle-filled rub-
bers for small but finite deformations based solely on the
rheology of the matrix and the size and modulus of the filler
particles.
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Introduction

Adding particulate fillers to a polymer matrix dramatically
changes the mechanical behavior (Fröhlich, et al. 2005,

Mermet-Guyennet, et al. 2015, Mermet-Guyennet, et al.
2016, Payne 1962, Rattanasom, et al. 2007). The physical
properties of synthetic rubbers that are important for tire per-
formance, for example, depend on the addition of fillers, typ-
ically silica or carbon black. It is known that composite prop-
erties may improve substantially at a constant volume fraction
of filler as the filler size is decreased, yet classical elasticity is
inherently scale-free, and continuum models for the elasticity
of composite systems never predict a filler-size dependence
(Chen, et al. 2015, Guth 1945, Raos 2003, Sadd 2009,
Smallwood 1944, Treloar 1975). We show here a remarkable
scaling incorporating particle size and volume fraction that
applies to the rheological properties of two rubbers with silica
fillers, as well as to a filled crosslinked gel that serves as a
good model material.

We have recently (Mermet-Guyennet et al. 2016) shown
that the linear viscoelastic reinforcement for two filled rubbers
and the model crosslinked gel, defined as the ratio of the
storage modulus of the filled material to that of the matrix less
1 and denoted RLVE, can be fit by the following equation:

RLVE≡
G

0
φð Þ

G
0
φ ¼ 0ð Þ −1 ¼ 2:5φþ δ

G
0
f

G
0
m

φ3

r
ð1Þ

The subscripts f and m refer to the filler and matrix mate-
rial, respectively, and r is the effective radius of the fillers. δ is
a dimensional coefficient that is close to 25 nm for both filled
rubbers and the model system. The full data set is shown in
Appendix A. We also show data on silica-filled rubbers from
Baeza, et al. (2012) and Mujtaba, et al. (2014) in Appendix A;
the modulus of the fillers is not given for these data, but if we
assume that it is the same as that of the fillers used byMermet-
Guyennet et al. (2016), namely 109 Pa, then these data follow
the same correlation with the same value of δ. The 2.5φ term
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in Eq. (1) is the usual “hydrodynamic” contribution. The sec-
ond size-dependent term dominates outside a small linear re-
gime, and additional terms that depend only on φ but not on
particle size do not contribute.

We examine here the nonlinear shear properties of the filled
crosslinked systems up to strains of 0.6, and for one filled
rubber, we examine the extensional stress up to a Hencky
strain of 0.47. We find that the reinforcement given by Eq. 1
applies to the nonlinear properties as well, meaning that a
good estimate of the full rheological response at modest but
finite strains can be obtained solely from knowledge of the
matrix properties and the size and modulus of the filler.

Materials and methods

Filled rubbers

We use three different types of filled rubbers. Each polymer
matrix is made of styrene-butadiene rubber (SBR afterwards)
provided by Michelin® (ρ = 1.4 × 105 g/mol vulcanized). The
first (oiled) contains 30 phr (parts per hundred rubber) of oil
added to the SBR; the molecular weight of the oil is about
1000 times smaller than that of the SBR polymer. The addition
of oil is a common practice in the rubber industry to improve
the dispersion of the fillers. The second (non-functionalized)
contains only SBR, and in the last (functionalized) 98% of the
polymer chains carry a silanol-end group. The addition of the
silanol-end group is to improve the compatibility of the polar
silica fillers with the nonpolar rubber matrix. Each of these
rubbers is filled with nanoparticles of precipitated silica
(Zeosil 1165 MP, Rhodia®). More information about the
compounding and processing of the filled rubbers can be
found (Baeza et al. 2012). Several examples of the importance
of the storage modulus over the loss modulus can be found in
(Mermet-Guyennet et al. 2015), with a ratio G″/G′ about 0.1.
The modulus of the matrix and fillers can be found in Table 1.

Model system: filled polymer gel

As a model system, a polymer gel is made by crosslinking
polyvinyl alcohol (PVA) provided as a powder by Acros
Organics (hydrolyzed at 99–100% and a molecular weight
of 86,000 g/mol). The powder is dissolved (4% wt.) in

distilled water by mixing with a stirring bar at a temperature
of 95°C for 3 h. The crosslinker, borate, is obtained by dis-
solving sodium tetraborate (provided by Sigma Aldrich) in
distilled water with a mass fraction of 8% wt. using the same
mixing procedure as with PVA. The gel is finally formed by
mixing 2 g of borate solution with 8 g of PVA solution. This
model system is filled with non-surface treated polystyrene
beads (Microbeads, Dynoseed ®) ranging from 20 to
250 μm in radius and with a small polydispersity. It is impor-
tant to notice that the particle size is much higher that the
network formed by the gel. The modulus of the matrix and
fillers can be found in Table 1.

Shear measurements

Finite amplitude oscillatory measurements were per-
formed using an Anton Paar Physica MCR 300 rheometer
mounted with a plate/plate geometry at a frequency of
1 Hz, which is within the range where the linear visco-
elastic properties of the rubber and gel are insensitive to
frequency (Mermet-Guyennet et al. 2015). For filled rub-
bers the diameter of the plates was 5 mm and the samples
were disks with a thickness about 2.5 mm, attached to the
plates with a Loctite glue to avoid wall slip (Montes et al.
2003). The geometry was the same for experiments with
the PVA gel, but we used a diameter of 25 mm and both
surfaces were roughened to avoid wall slip. The shear
stress is recorded at the maximum strain. The normal
stress difference N1−N2 is obtained from the average nor-

mal force FN over the cycle, which is the value reported
by the rheometer software. All normal stresses are found
to be quadratic over the entire strain range, in which case
it readily follows that N1 − N2 evaluated at the maximum
strain is given by

N1−N2 ¼ 8FN

πr2
: ð2Þ

Tensile measurements

Tensile measurements on the filled oiled rubber were per-
formed using a Zwick Roell BZ2.5/TS1S tensile test

Table 1 Summary of the shear
modulus of the polymer matrix
and the fillers used in this article

System Shear modulus of the matrix Shear modulus of the fillers

(approximation)

Oiled 5.105 Pa 1010 Pa

Non-functionalized 1.106 Pa 1010 Pa

Functionnalized 8.105 Pa 1010 Pa

Filled polymer gel 103Pa 1010 Pa
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machine. The samples were strips with a thickness of
2.5 mm and a width of 1 cm, clamped on both sides to
be stretched. During these experiments the elongation rate
was kept constant at 10−4/min and the samples were
stretched from ε = 1 until ε = 1.6, where ε is the engi-
neering strain (the corresponding Hencky strain range is 0
to 0.47). We were unable to perform tensile experiments
on the gel.

Aggregate size measurements

The silica particles exist as aggregates. Aggregate sizes were
determined using SAXS experiments on the Dutch/ Belgian
beam line (ID 26) at the ESRF (Grenoble, France), using a
wave length of 1 Å (12.4 keV) and a sample-to-detector dis-
tance of 7 m. Additional information may be found in
Appendix B.

Filled rubbers: shear and normal stresses

The shear stress of the oiled rubber at selected filler
volume fractions of 0, 0.11, and 0.21 is shown as a
function of strain in Fig. 1a. The stress is linear at small
strains, after which there is strain softening for the filled
rubbers (the Payne effect). The shear modulus is obtained
from the fit to the small strain data, as shown in the
insert. The same behavior is seen for the other two filled
rubbers. Shear moduli obtained by fitting the linear re-
gimes for the three filled rubbers are shown as functions

of filler volume fraction in Fig. 1b. The normal stress
difference N1−N2 of the oiled rubber at filler volume
fractions of 0, 0.11, and 0.21 is shown as a function of
strain squared in Fig. 1c; the normal stress remains qua-
dratic over the entire strain range studied and, unlike the
shear stress, shows little or no strain softening. The co-
efficient of the quadratic, denoted BN, is shown in as a
function of volume fraction in Fig. 1d for the three filled
rubbers.

Filled rubbers: tensile stresses

The engineering tensile stress σzz = F/A0 of the oiled rub-
ber at filler volume fractions of 0, 0.11, and 0.21 is
shown as a function of the engineering strain in Fig. 2.
F is the force exerted by the tensile test machine and A0

the initial cross-section. The engineering strain ε is de-
fined as the change in length divided by the initial length
and is related to the Hencky strain εH through the rela-
tion εH = ln(1 + ε). The magnitude of the tensile stress
increases with volume fraction at every strain, as
expected.

Model system: shear and normal stresses

We now turn to the crosslinked polyvinyl alcohol gel
reinforced with micron-scale spherical polystyrene beads of
different sizes. The model system, despite its very simple
chemical composition and microstructure, qualitatively
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Fig. 1 a Stress versus strain for
oiled-filled rubber at zero,
intermediate, and high volume
fractions φ. The inset shows a
zoom on the linear regime (i.e.,
low strains) and the fit to obtain
the shear modulus versus volume
fraction shown in (b) for each
filled rubber at each volume
fraction. c N1-N2 versus the
square of the strain for the same
samples as in (a). The lines are fits
from which we obtain the
prefactors BN plotted in (d)
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exhibits the same mechanical behavior as the filled rubbers.
The dilute regime in this system is wider (observable) than for
filled rubbers and allows us to understand step by step the
normal stresses in our composite material.

Figure 3a, c shows the shear and normal stress at different
particle volume fractions for the model system. As with the
unfilled rubber, the PVA gel exhibits a linear stress-strain re-
lation and a positive normal stress that varies quadratically
with strain. With the addition of fillers the shear and normal
stresses increase with volume fraction at fixed strain; the mod-
ulus becomes nonlinear but the normal stress difference re-
mains quadratic, as with the rubbers.

A universal rescaling

The storage moduli of the rubbers and the model gel are much
larger than the loss moduli, with G′/G″ typically of order 10
(Mermet-Guyennet et al. 2015), so the low frequency value of
G′ is expected to equal the shear modulus G at small strains,
and this is indeed the case for all systems studied here. Hence,
the reinforcement R is identical to the linear viscoelastic rein-
forcement RLVE given by Eq. (1), as shown in Fig. 4a, b, and
we have

R ¼ RLVE ¼ G ϕð Þ
.
G ϕ ¼ 0ð Þ–1 ¼ 2:5φþ δ

G f

Gm

φ3

r
ð3Þ

with δ = 25 nm for both systems.
We now turn to the normal stresses. We introduce by anal-

ogy the normal reinforcement RN,

RN ¼ BN ϕð Þ
.
BN ϕ ¼ 0ð Þ–1 ð4Þ

As is evident from the insert in Fig. 3d, the normal rein-
forcement follows the classical result RN = 2.5ϕ for the model
system in the dilute region, followed by a nonlinear depen-
dence at higher volume fractions where multiple particle ef-
fects become important. We show the normal reinforcement
plotted as a function the reinforcement in Fig. 5 for all systems
studied, both the rubbers and the model gel, and it is clear that
RN = R = RLVE. The normal reinforcement in fact follows the
universal scaling law over the entire strain range studied, even

Fig. 2 Engineering stress obtained from tensile testing for the oiled-filled
rubber at zero, intermediate, and high volume fraction. The dashed lines
are Eq. (7)

Fig. 3 a Stress versus strain for
the model system with an average
particle radius of 125 μm at zero,
intermediate, and high volume
fraction. The inset shows a zoom
on the linear regime (i.e., low
strains), and the fit to obtain the
shear modulus versus volume
fraction shown in (b) for each
particle radius. c N1−N2 versus
the square of the strain for the
same samples as in (a). The lines
are fits from which we obtain the
prefactors BN plotted in (d)
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in the regime where the shear modulus exhibits the Payne
effect and is strain softening.

Mooney-RIVLIN model

The deformation of rubbers up to strains of order unity is
frequently characterized by the Mooney-Rivlin model (Gent
and Thomas 1958, Mooney 1940, Rivlin 1948). The total
strain energy density for incompressible Mooney-Rivlin ma-
terials is given by
W ¼ C1 I1−3ð Þ þ C2 I2−3ð Þ ð5Þ

with C1 and C2 as the two Mooney-Rivlin material con-
stants, and I1 and I2 as the first and second invariants, respec-
tively, of the left Cauchy-Green tensor. The shear modulus G
and normal stress coefficient BN measured in torsional shear
are related to the two Mooney-Rivlin coefficients by

G ¼ 2 C1 þ C2ð Þ ð6aÞ

and

BN ¼ 2C1 þ 4C2: ð6bÞ

Since G and BN follow the scaling in Eq. (3), it is obvious
from the linearity of Eq. (6) that theMoney-Rivlin coefficients
must follow the same scaling. TheMooney-Rivlin coefficients
of the oiled-rubber samples in Fig. 1a, c are recorded in
Table 2.

The engineering tensile stress for a Mooney-Rivlin
material as a function of the engineering strain is given
by

σzz ¼ 2 ε‐ε−2
� �

C1 þ C2ε
−1� �

: ð7Þ

The prediction of Eq. (7) for the oiled-rubber samples
using the Mooney-Rivlin coefficients in Table 1 is plotted
in Fig. 2, together with the experimental data. The agree-
ment with the Mooney-Rivlin prediction for the unfilled
oiled rubber is good over the entire range of engineering
strain. Agreement for the filled rubber is good at low
strains, but the theoretical curves for the filled polymers
based on the shear data capture the extensional stresses of
the filled rubber only up to engineering strains of about 1.1
and 1.2 for the 0.11 and 0.21 volume fractions, respective-
ly (i.e., Hencky strains of about 0.1 and 0.18, respectively),
after which they overpredict the tensile stresses and do not
capture the inflection and subsequent extensional strain
hardening. The fact that the Mooney-Rivlin coefficients
follow the ϕ3/r scaling means that the stress response to
any small but finite deformation for a filled system can be
determined simply from knowledge of the rheological
properties of the matrix and the modulus of the filler.

Fig. 4 Relative increase of the
modulus due to the addition of
filler particles versus the
interaction term of the previously
introduced rescaling for the silica-
filled rubbers (a) and for the
model system of the PVA gel
filled with polystyrene particles
(b). The “hydrodynamic”
contribution has been subtracted
from R to isolate the interaction
term. The value of delta is the
same for both graphs
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Fig. 5 Normal reinforcement plotted versus reinforcement for the filled
rubbers andmodel systems. The line has unit slope and passes through the
origin

Table 2 Calculation of the Mooney Rivlin coefficients C1 and C2 from
the experimental values of G and BN for oiled rubber at three volume
fractions φ

G (Pa) BN (Pa) C1 (Pa) C2 (Pa)

φ = 0 5.5 × 105 0.7 × 106 2 × 105 0.75 × 105

φ = 0.11 8.9 × 105 1.1 × 106 3.4 × 105 1.05 × 105

φ = 0.21 16 × 105 1.9 × 106 6.5 × 105 1.5 × 105
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Discussion

This powerful ϕ3/r scaling for the rheology of filled
systems at small but finite deformations is not predicted
by conventional homogenization analyses, which are
scale-free. A modulus scaling of roughly ϕ3 has been
observed for percolated networks (Forsman, et al. 1987),
but the systems considered here are below the usual
percolation threshold, and percolation of the particulates
is not observed in micrographs (Mermet-Guyennet et al.
2016). ϕ/r is the surface area/unit volume, and its pres-
ence multiplied by the modulus ratio indicates a force
that scales with the number of polymer chains in the
neighborhood of the particle. ϕ2 is expected as the low-
est order contribution for multiple particle interactions,
hence the ϕ3/r dependence is reasonable as the first
correction to the “hydrodynamic” 2.5ϕ term. This pic-
ture is conceptually similar to the mechanism for rein-
forcement proposed by Akcora and coworkers (Akcora,
et al. 2009, Moll, et al. 2011, Zhao et al. 2015) for
grafted nanoparticles in uncrosslinked polymer melts.
Notably, Zhao and coworkers (Zhao, Ge, Senses,
Akcora, Jestin, and Kumar 2015) have observed a ϕ3

scaling for the storage modulus of silica nanoparticles
in poly(2-vinylpyridine), together with a surprisingly
small percolation threshold. Davris et al. (Davris, et al.
2016) have shown through molecular simulations on
thin films and particulate systems that at high enough
volume fraction the mechanism leading to a strong re-
inforcement is the formation of a filler network rather
than a confinement of the polymer chains between two
surfaces, but it is not apparent that the simulations are
directly relevant to the observations reported here. A
true mechanistic explanation of this remarkable behavior
that is derived from first principles is still needed. In
particular, it is not obvious why the characteristic length
scale should be of order 25 nm for such different
crosslinked polymer systems and particle sizes. It is
clear that Eq. (3) cannot apply as ϕ approaches maxi-
mum packing, but that limit is not relevant in filled
rubber applications.
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Appendix A

Appendix B

The SAXS experiments were carried out in the
Dutch/ Belgian beam line (ID 26) at the ESRF
(Grenoble, France). They were performed using a wave
length of 1 A (12.4 keV) and a sample-to-detector dis-
tance of 7 m. Samples were cut into 8-mm-diameter
disks with a thickness about 2 mm. The shape of the
scattering patterns for filled rubbers is quite complicat-
ed, but if we assume that the aggregates and the prima-
ry particles are spherical and monodisperses at high q a
first break in slope corresponds to the size of the pri-
mary particle (qSi = π/rSi with rSi the primary particle
radius) and at medium q a second break in slope corre-
sponds to the size of the aggregates (qagg = π/ragg with
ragg the aggregate radius). A more complete description
of the rich microstructure of the aggregates in filled
rubbers and the way to interpret the SAXS spectra from
th i s sys t em can be found in (Baeza , Gen ix ,
Degrandcourt, Petitjean, Gummel, Couty and Oberdisse
2012).

Fig. 6 Reinforcement data from Mermet-Guyennet et al. 2015. Two of
the filled rubbers are considered in this article, while the three filled
rubbers with different particle radii (Rp) are nitrile-butadiene rubber
with silica particles. The model system includes the same filled PVA
formulation that considered in the present paper. In addition, we
compare our previous data to those from Baeza et al. 2012 and Mujtaba
et al. 2014. The red line shows the fit to determine δ, which has a value of
25 nm
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