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Abstract In the presence of dispersant molecules currently
used in cement industry and based on polyethylene oxide
(PEO), we found a strong discontinuous shear thickening
(DST) at high volume fraction in suspensions of calcium
carbonate particles. The transition was reversible and the
critical shear rate and shear stress for which this instability
appears are reported versus the volume fraction of particles.
A model of repulsive forces between polymers, taking into
account the thickness of the polymer layer and the density
of adsorption on the surface of the particles, can explain the
differences of critical stresses observed between these three
dispersant molecules. In particular, it explains why a small
polymer densely adsorbed can be more efficient to repel the
transition at higher stress than a larger molecule less densely
adsorbed. Above the transition, we find that the suspension
presents a special kind of stick-slip instability with even
the presence of a negative shear rate under constant applied
stress. A model is proposed which well predicts this regime
by taking into account both the inertia of the apparatus and
the viscoelasticity of the suspension.
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Introduction

Shear thickening, either continuous or discontinuous, has
long been known in the area of concentrated suspensions
of solid particles. Continuous shear thickening is usually
due to the formation of clusters of particles occurring when
the shear forces dominate the repulsive ones. Repulsive
forces can be indirect like those due to Brownian motion
which are proportional to kT/R—where R is the radius
of the particles—or can derive from a potential like, for
instance, Debye-Huckel forces. When the hydrodynamic
stress overcomes the Brownian one and/or the stress due
to the short-range repulsive forces, the viscosity begins to
increase and will tend towards the one of a suspension of
hard spheres. This behavior was well evidenced through
numerical simulations of particles with hydrodynamic inter-
actions (Melrose et al. 1996; Bossis and Brady 1989). The
observation of this general behavior can be hidden by the
existence of a yield stress. The lost of shear thickening
in relation with the increase of yield stress was evidenced
(Gopalakrishnan and Zukoski 2004) on Brownian silica
particles stabilized by polystyrene in decalin and on non
Brownian hydrophobic glass spheres in the presence of a
surfactant (Brown et al. 2010) and recently by numerical
simulations (Pednekar et al. 2017). On the other hand, a
continuous increase of viscosity can be followed by a dis-
continuous jump of viscosity. It can happen through an
order-disorder transition as observed on a monodisperse
suspension of micron-sized particles (Hoffman 1972, 1982)
where, before the transition, the particles are ordered in
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hexagonal layers which flow, passing one over the other.
This is not the case in blends of particles where there
is no preexisting ordering and, in this case, the transition
results from a sudden aggregation driven by a parameter
still expressing the balance between shear forces and stabi-
lizing forces (Chaffey and Wagstaff 1977). In suspensions
where the repulsive forces between particles are due to ionic
layers and can be controlled either by the pH or the addi-
tion of salt, the critical shear rate of the DST transition was
clearly increasing with the range of the interparticle force
(Boersma et al. 1990; Franks et al. 2000). A relevant hypoth-
esis, which was confirmed by numerical simulations (Mari
et al. 2014), is that discontinuous shear thickening occurs
when the surfaces of the particles come into contact gener-
ating a solid friction which creates a percolating network of
particles whose rigidity is produced by the contact forces.
This solid network resists to the strain and thus reduces
the shear rate even if the stress increases, giving a nega-
tive differential viscosity in an imposed stress experiment.
The breaking and reforming of this network was supposed
to be responsible for the fluctuations of velocity observed at
constant stress (Frith et al. 1996).

In this approach it is supposed that the suspension
remains spatially homogeneous and, actually, this is what
is observed in simulations where contact forces are intro-
duced (Mari et al. 2014). Also, in a recent work using a
confocal microscope and fluorescent molecules in a cone-
plate geometry (Pan et al. 2015) the suspension was found
to remain homogeneous, even in the discontinuous shear
thickening (DST) domain. Nevertheless, in the presence of
a negative differential viscosity the system is unstable and
should lead to an inhomogeneity in the local structure which
can manifest by a shear localization in a thin layer and
two immobilized solid parts. This behavior was observed
in Laponite suspensions together with stick-slip oscillation
of the stress at constant shear rate (Pignon et al. 1996) but,
in this case, it was associated with the presence of a static
yield stress and not to the DST transition. A model, with
a local order parameter depending on the stress, was intro-
duced (Nakanishi et al. 2012) to reproduce the instability;
it involves the inertia of the fluid and predicts a change
of frequency of the stick-slip oscillation with the height of
the cell. Although the structural variable introduced in this
model was not specified it could be identified to the fraction
of frictional contacts (Mari et al. 2014). Another approach
of DST (Wyart and Cates 2014), not involving inertia, was
based on a crossover between two states: one where parti-
cles are in friction and the other where they are lubricated.
The transition from one state to the other was ruled by the
balance between shear and repulsive forces. An appropriate
dependence of the jamming volume fraction relatively to the
fraction of frictional contacts allowed them to find a “phase

diagram” with a DST domain where the shear rate should
fluctuate between two values. A similar phase diagram was
also proposed (Bi et al. 2011) with the existence of a “shear
jammed domain.” Giant fluctuations between two values
of stress for a constant applied shear rate were observed
(Lootens et al. 2003) with a suspension of monodisperse
silica spheres. Recent measurements on silica spheres of dif-
ferent diameters (Guy et al. 2015) support the theoretical
approach of crossover between two states.

Most of the experimental results report that the DST tran-
sition is reversible (Maranzano and Wagner 2001; Nenno
and Wetzel 2014; Neuville et al. 2012), meaning in partic-
ular that two successive ramps of stress will give the same
rheogram. Nevertheless, in a large gap cylindrical Cou-
ette cell, it was observed (Fall et al. 2010) that DST was
associated with a large migration of the particles made of
polystyrene beads of diameter 50 μm towards the outer
cylinder and so was not reproducible. In a recent paper
based on a cornstarch suspension the analysis of the den-
sity by magnetic resonance imaging led these authors to the
conclusion that the two states picture of Wyart and Cates
(2014) associated with the S-shape of the shear stress versus
shear rate, was irrelevant (Fall et al. 2010). Another puzzling
observation (Fall et al. 2008), still with a cornstarch suspen-
sion, was that the critical shear rate for DST was depending
linearly on the thickness of the gap in a plane-plane geom-
etry whereas it was constant in the presence of a surplus of
paste around the plates. The role of the interface is important
because it generates a confining capillary pressure prevent-
ing the particles to escape from the fluid during the dilation
of the network of particles (Cates et al. 2005; Brown and
Jaeger 2012) and could partly explain the observations made
on cornstarch suspensions.

From these contradictory observations, it appears that
despite the fact that the phenomenon of DST was known
for a long time, it is still poorly understood because it is
at the interface between granular and suspension rheology.
It certainly needs more experimental results with different
systems and geometry in order to have a general picture of
the phenomenon. As already mentioned, the onset of DST
is ruled by a balance between shear and repulsive forces.
If the first ones dominate, then the surface of the particles
can come into contact and produce the DST phenomenon.
Our aim in this paper is to look for the DST phenomenon
in suspensions where the particles are covered by a polymer
layer and to relate the characteristics of the polymer layer to
the onset of DST. For this purpose, we have chosen a sus-
pension of calcium carbonate particles in the presence of
different dispersant molecules which are currently used in
cement industry. We shall see that, thanks to these molecules
and to the polydispersity of the particles we can reach a vol-
ume fraction as high as 69% with still a negligible yield
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stress. These suspensions present a strong DST transition
with an important decrease of the shear rate at a critical
stress. Knowing the main characteristic of the polymer and
the ionic content of the suspension we shall compare the
repulsive force to the one applied on the suspension by the
shear in order to evaluate the critical stress for DST. These
theoretical values will be compared with the experimental
ones for the three molecules we have used. In the last section
we shall present a model to explain the origin of a regular
stick-slip behavior observed when the stress is maintained
at a constant value just above the critical one.

Materials

The suspension we have chosen is made of commercial
calcium carbonate particles (BL200 from Omya). Calcium
carbonate particles are used industrially to coat paper; they
are also used as a filler to improve the mechanical proper-
ties of thermoplastics. In our case this mineral was chosen
as a model of more complex materials like cement where
the interactions between the calcium ions and the polyelec-
trolytes play a major role to reduce the yield stress and
facilitate the flow of cement paste and concrete. The rhe-
ology of suspensions of CaCO3 in water was previously
studied in the presence of sodium polyacrylate as dispersant
(Deng et al. 2010) and also in the context of shear thick-
ening by Egres and Wagner (2005). In this last case the
particles were acicular and dispersed in polyethylene glycol
and the emphasis was on the effect of different aspect ratios
on shear thickening and DST. The shape of our particles is
irregular but more or less rhomboidal as can be seen on the
picture (Fig. 1) obtained by electronic microscopy. In Fig. 2,

Fig. 1 MEB view of calcium carbonate particles
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Fig. 2 Size distribution obtained by counting the particles above 1 μm
from MEB pictures and from light scattering (L.S.) with Mastersizer
2000 from Malvern

the size distribution in volume obtained by light scattering
(with the Mastersizer 2000) is represented by the open tri-
angles; it shows two populations, one of them being formed
by particles of diameter below 1 μm. The second curve with
solid diamonds was obtained by classifying 350 particles
from MEB pictures. We found a proportion of about 30%
of particles smaller than 1 μm which we did not take into
account because, as we shall see later, the jamming transi-
tion is related to the formation of a percolation network of
particles pushed again each other by the shear force. The
smallest particles can occupy the spaces between large ones
and furthermore the shear forces between particle scales as
the square of their radii so they will likely not be directly
involved in the balance of forces which will allow to deduce
a critical shear stress The average size of particles above 1
μm is 5.5 μm. We did not use the size distribution obtained
by light scattering because the change to a number distri-
bution is not guaranteed at all, especially with particles of
irregular shape with two modes in the size distribution.

The density of the particles was 2525 kg/m3 and the mea-
surement of their specific surface by BET gave 0.88 m2/g.
The dispersant molecules were two comblike polymers
called PCP45 and PCP114 with a polymethacrylate back-
bone and side chains made of polyethylene oxide (PEO) and
a small molecule where the backbone was replaced by a
polyphosponate group and called PPP44. The numbers 45,
114, and 44 in the name indicate the number of units in the
PEO chain. The average number of monomers between two
side chains was n = 5 both for PCP45 and PCP114.

The three molecules are represented in Fig. 3. The molar
mass of a PEO chain with P = 45 units was 1804 g/mol and
the PCP45 has n = 10 side chains with a total molar mass
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Fig. 3 Sketch of the two family
of polymers. On the left PCP
with a PEO chain of 45 or 114
units; on the right, the PPP
molecule with a PEO chain of
44 units
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of 25,000 g/mol. The adsorption isotherms were obtained
from the measurement of the total organic carbon at a pH
of 9.3 imposed by the solvation of calcium carbonate. The
plateau of the adsorption curve is obtained from a fit by a
Langmuir law; it gives 0.14, 0.06, and 0.23 segments/nm2,
respectively, for the PCP45, PCP114, and PPP44 (Morini
2013). We call a segment a side chain together with the unit
of the skeleton to which it is attached, but for the last poly-
mer PPP44, a segment corresponds to the whole molecule.
We note that the density of adsorption is the largest for
the molecule PPP44 having a single side chain, and that,
among the two others, the longer chain corresponds to a
density which is more than two times smaller because of its
larger gyration radius. Supposing that all the side chains are
equidistant, the average distance, s, between two chains is
given by s = 1/

√
nseg with nseg as the number of segments

per square nanometer. Even if this hypothesis is quite ques-
tionable, since in PCP45 and PCP114 the PEO chains are
not free but ten of them belong to a given molecule, it gives
an idea of the organization of the PEO chains on the sur-
face of the particles. The data corresponding to these three
molecules are reported in the Table 1.

The Debye length (1/κ) was obtained from the different
ionic concentrations in the suspension of CaCO3 particles at
equilibrium corresponding to a concentration of dispersant
of 0.2 wt% relatively to the mass of the particles (Morini
et al. 2013). The zeta potential was measured on the smallest

particles after sedimentation and was found around 10 mV
(c.f. Table 1).

Experimental determination of the jamming
characteristics

The experiments were mainly done on a rheometer
MCR301 from Anton Paar. The geometry used was a plate-
plate geometry with a serrated profile to prevent slipping of
the paste; the diameter of the plate was 40 mm. In the plate-
plate geometry we used a cover and a water trap in order
to prevent evaporation during the measurement which was
realized at 20 °C. The experiments were conducted with a
pre-shear of 3 min at γ̇ = 5/s and a rest time of 30 s before
the ramp of stress with a typical rising time of 20 Pa/min
which was chosen to obtain steady state results and being
still fast enough to be able to do the experiment without dry-
ing. In Fig. 4 we present the stress versus shear rate curves
for a suspension prepared at a volume fraction � = 0.6. The
upper curve corresponds to the suspension without any dis-
persant and shows an important yield stress. The three lower
curves show the rheogram for a suspension containing each
of the three polymers at a concentration corresponding to
the beginning of the adsorption plateau. We can see that the
yield stress has almost disappeared for the PCP45 and the
PCP114 and that there is practically no difference between

Table 1 Main characteristics
of the system polymer/particles Polymer Molar Number Number of Adsorption Debye-Huckel Zeta

mass of units by plateau length (nm) potential (mV)

g/mol segments PEO chain nseg (seg/nm2)

PCP45 25,000 10 45 0.14 7.3 10.7

PCP114 53,710 10 114 0.06 7 7

PPP44 2200 1 44 0.23 7.7 12
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Fig. 4 Comparison of the rheograms—shear stress versus shear rate—
of a suspension of calcium carbonate at volume fraction � = 60%
without dispersant (upper curve) and with each of the three polymers

them; the curve for PPP44 is slightly different with a yield
stress around 1 Pa and a smaller final viscosity. Also the
suspension is slightly shear thickening. It is worth noting
that if we decrease the concentration of polymer by a factor
of two, the yield stress remains low but the shear thickening
behavior is much larger.

At higher volume fraction and keeping a high concen-
tration of polymer: c = 0.2 wt% to be sure that we are
well on the adsorption plateau, we obtained the evolution
shown in Fig. 5 for the PCP45. At � = 62% we observe
a quite strong shear thickening but the rheogram remains
smooth; at � = 63% the slope is steeper and we begin
to observe a few sudden decrease of the shear rate; this is
amplified at 64% and finally at 65% we have the onset of
a negative differential viscosity followed by a quasi-vertical
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Fig. 5 Evolution of the rheology of the suspension of calcium carbon-
ate at different volume fractions adjuvanted with PCP45 at 0.2 wt%.
The increase of volume fraction goes from the right to the left

evolution corresponding to an infinite differential viscosity.
This behavior is rather different to the one observed on other
suspensions showing DST where, after the jamming transi-
tion, the differential viscosity recovers a value close to the
one observed before the DST (Pan et al. 2015).

All the suspensions were prepared in the same way: small
quantities (typically 50 g of CaCO3) were mixed on a vortex
during 5 min with the water adjuvanted by the fluidizer, then
the suspension was placed during 15 min in an ultrasonic
bath and still placed 5 min on the vortex. The more impor-
tant cause of uncertainty was the precision of the filling
process since the suspension must match as well as possi-
ble with the rim of the upper plate which is not so easy with
serrated plates. Possible drying on the edge of the plate can
also be a source of error so it was systematically checked by
repeating the same experiment as the first one from time to
time; if the result was different, another sample was loaded.
Another possible cause of error is due to the wall slip which
manifests by different rheological curves for different gaps;
in this case it is possible to remove the slipping velocity and
obtain the right shear rate (Chryss et al. 2005; Buscall 2010).
In our case we have done the experiments with PCP45 for
three different gaps: 0.5, 1, and 1.5 mm taking 10 curves for
each gap. The maximum difference between the three aver-
age values was of 13% and without tendency. As examples
we have shown the curves in Figs 6 and 7 for three differ-
ent gaps and two different molecules: PCP45 and PPP44. In
Fig. 6, up to the jamming transition, the curves are practi-
cally superposed; it is after the transition that the behavior
becomes quite different with amplitude of the fluctuations
which is much smaller for the gap of 0.5 mm than for the
two other ones. For the PPP44 the difference between the
curves obtained with different gaps is small and not contin-
uous with the gap since the lower curve corresponds to a gap
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Fig. 6 Three ramps of stress with different gaps: 0.5, 1, and 1.5 mm
at � = 68% with fluidizer PCP45 and serrated plates. The curve with
open square symbols is obtained with smooth plates
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Fig. 7 Three ramps of stress with different gaps and serrated plates
at � = 68% with fluidizer PPP44. The middle curve with crosses
corresponds to 1.5 mm

of 0.5 mm, the middle one to 1.5 mm and the upper one to
1 mm. Above the transition the oscillations of the shear rate
are still different but there is no clear conclusion to draw
since now it is the gap of 0.5 mm which shows the higher
amplitude. We have also reported in Fig. 6 a curve obtained
with smooth plates and a gap of 1 mm; this curve is not
different from the one obtained with serrated plates except
that it does not show a jamming transition, but a monotonic
increase of the shear rate till a point where pasty granules
appear on the rim of the plates followed by an expulsion
of the paste. It then appears without any doubt that, below
the jamming point, there is no slip on the walls and that
for the manifestation of the jamming, a rough surface is
needed. Still, before jamming, there is a shear thickening
part which should be taken into account with the help of the
Mooney-Rabinovitch equation as we shall see below.

Another point which needs consideration is the
thixotropy. Since the phenomenon of shear thickening and
jamming is provoked by the building of aggregates of par-
ticles followed by the percolation of a network of particles
in frictional contacts, it is worth looking at the time scale
needed to form these aggregates at different imposed stress
and correlatively to the effect of the rising time of the stress
on the shear stress versus shear rate curve. In this aim we
have to look at the shear creep rate coefficient where we
follow the evolution with time of the viscosity after impos-
ing a constant shear stress at t = 0; this is the equivalent of
the shear stress growth coefficient for an imposed shear rate
experiment. We have plotted in Fig. 8 this time dependent
viscosity for the PCP45 and five values of the stress: σ =
10, 20, 40, 50, and 100 Pa. The first three values are below
the jamming point; the value of σ = 50 Pa is slightly above
the critical stress and σ = 100 Pa is well inside the jammed
state. We first see that, for the two lower stresses σ = 10 Pa

Time (s)
0 100 200 300

Vi
sc

os
ity

 (P
a.

s)

0

5

10

15

20

25

10Pa
20Pa
40Pa
50Pa
100Pa

Fig. 8 Creep rate curves at different imposed stresses. PCP45, � =
68%

and σ = 20 Pa, the steady state is reached quickly, whereas
it takes about 2 min for the stresses of 40 and 50 Pa. The
two viscosities at σ = 10 Pa and σ = 20 Pa are very
close from each other, showing that we are still in the lin-
ear regime. For σ = 40 Pa, which is in the shear thickening
domain, the viscosity increases significantly with time from
2.2 to 3. 8 Pa/s in about 2 min. For σ = 50 Pa the behav-
ior is quite similar except that we observe an incursion in
the jamming domain with strong oscillations of the viscos-
ity showing that σ = 50 Pa is actually just above the critical
shear stress. For the highest stress, σ = 100 Pa, the viscos-
ity has jumped to a higher average value and is fluctuating
with a large amplitude but the equilibrium time is small (less
than 10 s) and corresponds to an initial decrease of the vis-
cosity. The important point for our discussion concerning
the critical shear rate and critical stress in relation with the
type of superplasticizer molecule is to know if our ramp of
stress at a rate of 20 Pa/min corresponds to an equilibrium
state. In this aim we have plotted in Fig. 9 three curves cor-
responding to ramp of stresses realized with different rising
times, namely 200, 60 and 20 Pa/min. On the same graph
we present in black the points corresponding to the evolu-
tion of the shear rate with time at a constant applied stress
which can be deduced from Fig. 8. The last values on the
left correspond to the equilibrium values. We see that the
ramp of stress at 200 Pa/min is clearly out of equilibrium
and that the jamming point is delayed at higher stress and
shear rate because the structure did not have time to build.
The curve at 200 Pa/min is close to the first values of the
shear rate obtained after the imposition of a constant stress
at t = 0. The curves realized at 60 and 20 Pa/min begin to
diverge at higher shear rates and are on the left extremity
of the horizontal set of points corresponding to the equi-
librium sate for 10 and 20 Pa. It remains a 10% difference
at σ = 40 Pa between the equilibrium value of the shear
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Fig. 9 Ramps of stress at different rising rates, compared to the evo-
lution of shear rate at different imposed stresses presented in Fig. 8;
the time is growing from right to left

rate and the one obtained with a rate of 20 Pa/min that we
have used for all the experiments. As already stated at the
beginning of the “Experimental determination of the jam-
ming characteristics” section, the choice of 20 Pa/min is a
compromise between the drying time and the time needed
to reach the equilibrium. It is worth noting that the critical
stress obtained for the ramp at 20 Pa/min is well the equi-
librium one as attested by the behavior of the shear rate at
σ = 50 Pa in Fig. 8 and we shall see in the “Model used
to predict the DST transition” section that the stress is the
control parameter of the jamming transition. The residual
difference between the equilibrium shear rate and the one
measured with a ramp of stress at 20 Pa/min remains quite
small (<10%) and concerns only the value of the critical
shear rate which is likely overvalued of approximately 10%.
This should be kept in mind but has no practical impact,
since the aim of this work is mainly to show the difference
of behavior between the different superplasticizer molecules
for experiments realized in the same conditions which are
clearly close to the equilibrium ones.

Above the jamming transition the shear rate oscillates
between values whose average can remain constant or not.
The two cases are illustrated in Fig. 10 for a ramp of stress at
a volume fraction � = 68% and with the molecule PCP45.
During the first ramp of stress the average value of the shear
rate oscillations remains constant at a value close to 5/s. On
the contrary, for the second ramp of stress, the oscillations
begin in the same way but progressively shift towards higher
values and if we still increase the stress we observe that the
suspension is getting out of the gap. As shown previously
(Cates et al. 2005; Brown and Jaeger 2012), it happens when
the particle pressure generated by the shear at the interface
(Deboeuf et al. 2009) during the jamming state is no longer
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Fig. 10 First and second ramp of stress for a suspension at � = 68%
with PCP45

compensated by the capillary pressure P = γ /R—where R

is the radius of the particle and γ the interfacial tension. In
this case the particles begin to be ejected from the suspen-
sion with, correlatively, air entering inside the suspension.
It is also worth noting that, if the fluctuations take place
around a constant average value, there is no hysteresis when
the stress is decreased. We have also made some measure-
ments with the suspension extending outside the interface
between the two plates; the jamming transition still exist but
is quite different (Fig. 11): there is no abrupt decrease of
shear rate but a beginning of fluctuations at about the same
stress than in conventional filling, followed by much larger
fluctuations at stresses above 120 Pa. Also the hysteresis
during the descending ramp was quite large and the second
ramp of stress did not show the same big fluctuations as the
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first one. All these observations confirm that if the particles
are not confined by the capillary pressure they escape out of
the gap between the plates.

In the following, the comparison of critical shear rates
and critical stresses between the three molecules are
obtained from experiments made at 20 °C in serrated plate-
plate geometry with a gap of 1 mm and a rate of increase
of stress of 20 Pa/min in a stress controlled mode. Experi-
ments made in the shear rate controlled mode show, at the
critical shear rate, a huge jump of stress which overcomes
the capacity of the rheometer but the value of the critical
shear rate was well consistent with the one obtained in stress
controlled mode.

Comparison of the jamming point
between the three molecules

Experimental results

Our aim was to record the critical shear rate and criti-
cal stress for the three different polymers presented in the
“Materials” versus the volume fraction. In Fig. 12, we have
plotted typical results at � = 68% for the three molecules.
We see that the two comb polymers show practically the
same rheology with no yield stress, a quasi-Newtonian rhe-
ology below 20/s and an abrupt jamming, followed by a
vertical increase of stress at constant average shear rate. The
behavior of the suspension incorporating the small molecule
PPP44 is very different: the critical shear rate and criti-
cal stress are much higher and the transition is preceded
by a shear thickening state. Since we have a shear thicken-
ing part, we have used the Mooney-Rabinovitch correction
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Fig. 12 Comparison of the jamming transition for the suspension of
CaCO3 at � = 68% for the three different molecules. The solid and
dotted lines are obtained from Mooney-Rabinovitch correction

which relates the true yield stress, τ , to the stress, τN, given
by the software for a Newtonian fluid:

τ = τN

4

[
3 + γ̇

τN

dτN

γ̇

]

The resulting correction is shown by the solid lines for the
PCP114 and by the dotted line for the PPP44. The correc-
tion is about 20% for the PCP114—and this is also true
for the PCP45—but larger for the PPP44 which presents a
stronger thickening behavior before jamming. The values of
the critical stresses were all determined in this way.

For the three molecules, we note that we do not observe
an S-shape for the stress versus shear rate but rather a shear
rate which decreases abruptly and then fluctuates around a
constant value lower than the critical shear rate. The same
observation was made (Frith et al. 1996; Laun 1994) on sus-
pensions of latex particles stabilized by ionic charges. The
comparison of the critical shear rates for the three molecules
is represented in Fig. 13 for different volume fractions; the
uncertainty bar is the root mean square error over at least 10
different experiments.

We note that the two comb polymers have practically the
same critical shear rates and that the DST transition begins
at a volume fraction of 65%. With the PPP44, the DST
starts at 67% and with a much higher critical shear rate.
For the three molecules, the decrease of the critical shear
rate with the volume fraction is practically linear with the
extrapolation corresponding to a completely jammed state at
a volume fraction of 70%. The other representative quantity
for this transition is the critical shear stress which is rep-
resented in Fig. 14. We see that the critical stress is much
higher for the small polymer PPP44 than for the two oth-
ers comb polymers which have the same value 45 ± 5 Pa.
Another striking difference is that for the comb polymers,
the critical stress does not depend on the volume fraction
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Fig. 14 Evolution of the critical shear stress with the volume fraction
for the three molecules

whereas it clearly decreases with the volume fraction for the
PPP44. In the following section, we are trying to explain
these different behaviors by looking at the different forces
acting between the surfaces of the particles.

Model used to predict the DST transition

The common thinking about DST is that it results from
a change of structure which happens when the hydrody-
namic forces dominate the repulsive ones. Such approach
(Boersma et al. 1990) was used for particles stabilized by
their ionic layer. The repulsive force between two spherical
particles in the presence of an ionic double layer is given by:

FDH = 2πε0εrκRζ 2 e−κh

1 ± e−κh
(1)

where ε0 is the vacuum permittivity, εr is the relative dielec-
tric constant, ζ is the zeta potential, R is the radius of the
particles, κ is the reciprocal Debye double-layer thickness,
and h is the separation between the solid surfaces of the two
particles. The plus sign in the denominator of Eq. 1 corre-
sponds to a constant potential and is taken if the charges
have time to rearrange when the distance between the sur-
faces changes, which is the case in water. The value of the
double-layer thickness depends on the concentration of the
different counter ions and was given in Table 1, as well as
the zeta potential.

The expression of the hydrodynamic force is not so easy
to obtain. We know that, for two particles at rest in a shear
rate γ̇ with a suspending fluid of viscosity μ, the order of
magnitude of the hydrodynamic force will be:

F 0
h = 6πμγ̇R2 (2)

The lubrication force is obtained by multiplying (2) by
R/h but this force, which generates the divergence of the

viscosity at high volume fraction, should not intervene in a
balance of forces where particles are considered at rest; fur-
thermore, this force is repulsive on the compression axis.
Actually, in a dense suspension, the hydrodynamic force
exerted between two given particles is mediated by all the
surrounding ones; which can be represented by introducing
in Eq. 2 the real viscosity of the suspension rather than the
one of the suspending fluid. If the viscosity scales as μR/h,
then we recover the previous approach (Boersma et al. 1990)
which gave a correct estimation of the critical shear rate
for particles stabilized by an ionic layer. A more evident
approximation of the hydrodynamic force is obtained by
considering the applied stress instead of the shear rate; then,
we have simply:

Fh ≈ (2R)2σ (3)

where σ is the applied stress and (2R)2 is the typical sur-
face associated with the force between two given particles.
A prefactor different from unity would not change the com-
parison of the critical stresses (10) obtained in the presence
of different molecules

At a very short distance, we consider the hydration force
resulting from the interaction between two layers of water
molecules which are usually adsorbed on the surface of
mineral particles (Manciu and Ruckenstein 2001)]:

FH2o
= πRBe−h/λ with B = AheN

12πλ2
(4)

Ah is the Hamaker constant, eN is the Neper number, and λ

is the decay length that can be taken equal to 0.3 nm. This
force represents the short-range repulsive barrier.

The attractive Van der Waals force is also proportional to
the radius of the particles:

FVDW = −AhR

12h2
(5)

The value of the Hamaker constant for the interaction
between two calcium carbonate particles in water was:
Ah = 2.23 ×10−20J (Hough and White 1980).

The repulsive force between the two layers of polymers
respectively adsorbed on each particle is more awkward to
calculate. The first difficulty is to estimate the thickness of
the polymer layer. From the adsorption isotherm, we know
that for the three molecules we have studied, the saturation
corresponds to a monolayer, but the thickness of this mono-
layer depends on the model used to describe the interactions
between the monomers. For the PPP44 which is essentially
a polyethylene oxide chain, the water is a good solvent with
a Flory parameter: χ ≈ 0.36 at room temperature (Pedersen
and Sommer 2005) and the end to end distance is given by
δe = bP 3/5 where b is the Kuhn length and P is the number
of monomer. Both experiments and theoretical evaluation
of the chain conformation (Mark and Flory 1965) agree to
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give <δ2
e >= 12.3 P l2 = Pb2 with l = 0.15 nm the aver-

age length of a bond; it gives b = 0.526 nm. This value
corresponds also to the one: b = 0.37

√
2 found by numeri-

cal simulation (Lee et al. 2008); then in a good solvent and
with P = 44, we get δe = 4.96 nm for an isolated chain of
PPP44. Actually, the thickness of the layer should be larger
since in the case of a brush organization, which applies
for the PPP44 where each chain is individually attached on
the surface by its phosphonate group, the entropic repul-
sion between the monomers of different chains will lead to
an extension of the polymers. Following the self-consistent
field theory (SCF) (Milner et al. 1988), we should have:

δ =
[

12

π2
(1 − 2χ)

]1/3

Pb

[
b2

s2

]1/3

(6)

where s = 1/
√

nseg is the average distance between grafted
chains. Except for the prefactor 12/π2 and the fact that χ

was taken equal to zero, this expression is the same as the
one previously derived by De Gennes (1987).

Applying (6) with the values of s reported in Table 1,
we obtain, respectively, δPPP44 = 6.1 nm, δPCP45 = 5.4 nm,
and δPCP114 = 10.1 nm. It should be noted that the theory
is more appropriate for a single chain polymer like PPP44
than for a comb polymer where the conformation of the
skeleton on the particle surface and the resulting geometric
constraints on the side chains may result in a different exten-
sion. The size of PCP comb polymers of similar molecular
masses as ours was characterized (Borget et al. 2005) by dif-
ferent techniques. These authors have found all of them in
the flexible backbone wormlike regime (Gay and Raphael
2001), in which these polymers are considered to be made
of blobs of size δ containing nc = √

P/N side chains with
N the number of monomers along the backbone between
two chains (N = 5 for the PCP45 and PCP114). This blob
size, was well represented by: δ’ = bP 7/10N−1/10. If we
consider the diameter of the blobs as the thickness of the
adsorbed layer, we find δ’PCP45 = 6.2 nm instead of 5.4
nm and δ’PCP114 = 11.9nm instead of 10.1 nm. The differ-
ence is less than 15% and, as we shall see later, it is not the
absolute value of the layer thickness which is important but
rather its relative compression; so, for the sake of coherence
with the expression of the energy of a compressed layer, we
shall keep (6) for the estimation of the layer thickness.

In the SCF model (Milner et al. 1988), the energy of two
compressed brushes per unit surface between two planes
separated by a distance h is given by:

W(h, δ) = 2
kT

s2
P

(
b

s

)2/3

(1− 2χ)2/3
[

1

2u
+ u2

2
− u5

10

]

with u = h

2δ
(7)

In the De Gennes model, the density profile is step-like
instead of parabolic and the energy is different:

WDG(h, δ) = 8kT
δ

s3
(1 − 2χ)2/3

[
1

5u5/4
+ u7/4

7
− 12

35

]

with u = h

2δ
(8)

The resulting polymeric force between two spherical parti-
cles is obtained from the Derjaguin approximation (White
1983):

Fp(h, δ) = πR[W(h, δ) − W(2δ, δ)] (9)

It is worth noting that in these models, the polymers are
not interpenetrating and that these predictions are quite
well confirmed by surface force apparatus measurements
(Tadmor et al. 2003; Taunton et al. 1988). Taking s given in
Table 1 and δ given by Eq. 6, we can now compare the repul-
sive force to the Van der Waals one and also to the Debye
Huckel force.

As can be seen in Fig. 15, both models predict quite sim-
ilar repulsive force which largely dominate the attractive
Van Der Waals force and is then very efficient to suppress
the yield stress. The Debye Huckel force is also completely
negligible compared to the force induced by the polymer
layer and this is verified for the three molecules. In Fig. 16,
we have plotted the point of equilibrium separation between
the surfaces obtained by equating to zero the total force,
including the shear force (3). This separation is normalized
by the thickness of the polymer layer and is represented
versus the applied stress. We see that the separation dis-
tance drops more quickly for the two PCP polymers than
for the PPP44 molecule. The pressure exerted on the poly-
mer heads by the compression of the layer is Pp = Fp/Sp

with Sp � 2πR(δ −h/2) the surface of the polymer brushes
which are in contact. The repulsive force Fp is proportional
to R times δ (9) and (8) or equivalently to R times P (9)
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Fig. 15 Comparison of the different forces between two particles
coated by PPP44. Van der Waals: Eqs. 4 and 5; De Gennes model:
Eqs. 4, 5, 8, and 9; Milner model: Eqs. 4, 5, 7, and 9



Rheol Acta (2017) 56:415–430 425

σ(Pa)
0 20 40 60 80 100 120 140

h/
δ

0.0

0.5

1.0

1.5

2.0

PPP44 
PCP45 
PCP114 
Sigma (Pa) vs Col 5 

1.19

Fig. 16 Equilibrium distance between the particle surfaces versus
applied stress; the distance is normalized by the thickness of each
respective layer; the repulsive force is taken from Eq. 7

and (7); so, finally, this pressure does not depend on the
radius of the particles neither on the thickness of the poly-
mer layer but rather of its relative compression. We shall
suppose that, above a given compression, of the polymer
layer we have a sudden desorption of the polymer which
will allow to the particles to come in frictional contact thus
generating the DST transition. This hypothesis of dynamic
desorption under compression was made (Klein et al. 1994)
to support the observation that, above a given compression
of the polymer brushes, the shear force between two mica
plates measured by surface force apparatus was raising by
several orders of magnitude. It was confirmed later in other
experiments (Raviv et al. 2001), for a review, see also (Klein
2013)). If we take as a reference the PPP44 molecule, since
its unique chain makes the force model more reliable, the
average experimental value of the critical stress σc = 155
Pa for � = 68% would correspond to a value of h/δ =
1.19 in the Milner model (cf. Fig. 16). If we conclude that
this compression ratio of the PEO chain corresponds to a
threshold for the layer stability, then we can tentatively use
the same criteria for the two comb polymers. For this same
value of h/δ, we obtain σc = 42 Pa for the PCP114 and
σc = 76 for the PCP45 compared to the experimental value
of 45 ± 5 Pa for both molecules. The larger value for the
PCP45 could come from the fact that we have overestimated
the Flory parameter when taking χ = 0.36 for the three
molecules: the presence of the PMMA skeleton which is
more hydrophobic than the PEO chain will likely increase
χ , especially for the PCP45 where the ratio of the molar
mass of the skeleton over the side chains is the larger one.
For instance, taking χ = 0.44 for the PCP45 would give the
same critical stress for both PCP45 and PCP114. It is also
worth noting that using the De Gennes model, we obtain
similar predictions; for instance, with χ = 0.36 for the three

molecules, the ratio of compression giving σc = 155 Pa for
the PPP44 is h/δ = 1.28 and we obtain σc = 70 Pa for the
PCP45 and σc = 34 Pa for the PCP114.

If we neglect the Debye Huckel contribution to the force,
the condition relating the percentage of compression to the
critical stress, σc, is readily obtained from the condition of a
zero total force. In the case of the De Gennes model which
gives the simplest expression, using Eqs. 3, 5, and 8, we
obtain:

σc = 1

R

1

δ2

(
2πkT (1 − 2χ)1/3

(
δ

s

)3

f (u) − Ah

192u2

)

(10)

With f (u) =
(

u5/4

5 + 1
7u7/4 − 12

35

)
and u = h

2δ

The critical value of u is a parameter which is the ratio
of compression of the polymer above which we expect its
desorption; it is an unknown to be determined from the mea-
surement of σc. This value is likely related to the adsorption
energy of the polymer head, which is, in our case, of elec-
trostatic origin. From Eq. 10, we see that, if we want a
high critical stress, we need to have a high ratio (δ/s) of
the thickness of the polymer layer to the average distance
between two terminal heads of polymer. Also, for a given
ratio, δ/s, it is better to have a small polymer chain than a
long one. This last assertion should be moderated by the fact
that the force model is based on the notion of blobs which
becomes less and less realistic for small polymer chains. In
the derivation of the equilibrium separation on the compres-
sion axis, it is the average stress, representing the collective
effect of all other particles pushing on a given pair of parti-
cles,which gives the hydrodynamic force. Then, as the other
interparticle forces do not depend on the volume fraction,
the critical stress should not depend on the volume frac-
tion. It is actually what we observe for the PCP114 and the
PCP45 (cf. Fig. 16) but not for the PPP44 where the crit-
ical stress decreases when the volume fraction increases.
Another difference of behavior is that, as already noted
in the discussion of Fig. 12, before jamming the viscosity
is almost constant for the two comb polymers, whereas it
is clearly shear thickening for the PPP44. An explanation
could be that the transition in the case of PPP44 is first pre-
ceded by a growth of transient hydro-clusters or quasi solid
clusters made of particles in frictional contacts which do
not spend the cell but contribute to increase the viscosity
and above all the local stress acting to compress the par-
ticles at the center of the cluster. Actually. we consider in
Eq. 3 that it is the average stress imposed on the suspension
which gives the hydrodynamic force on a given pair of par-
ticles but it is rather the local stress, higher than the average
one, which will trigger the transition. At higher volume frac-
tion, the hydro-clusters or clusters of particles in frictional
contacts are formed more easily and so at smaller stresses
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which could explain the lowering of the critical stress with
the volume fraction. It should be possible to relate the shear
thickening behavior to the typical size of the clusters, but
the concentration of stress which will trigger the jamming
transition also strongly depends on the connectivity of the
particles inside the clusters (Bossis et al. 1991). For the
comb polymers, the transition is more abrupt because of the
softness of the repulsive barrier and so of the large change
of separation distance for a small increase of stress. A last
point to note is that the ratio of critical stresses (10) for
different polymers does not depend on the size of the par-
ticles since, whatever the polymer, the size of the particle
intervenes in the prefactor. This is also the case for a poly-
disperse suspension because the repulsive force between
two particles of radius Ri and Rj , in the Derjaguin approx-
imation (White 1983), as well as the Van Der Waals force,
are proportional to 2RiRj /(Ri + Rj ) instead of R in Eq. 9,
and the section for the stress on two particles will be simply
(Ri + Rj )

2 instead of 4 R2. So only the prefactor in Eq. 10
will contain the radii of the particles. It will be different for
a polydisperse suspension but remains as a prefactor which
will disappear if we are dealing with the ratio of critical
stresses between different fluidizer molecules. Of course, it
is not the case for the absolute value of the critical stress
which varies as 1/R for monodisperse suspensions or in a
more complicated way for polydisperse suspensions, but not
difficult to express if the size distribution is known. The
question of the influence of the irregular shape is of the same
nature as the polydispersity since these will be the local cur-
vature radii around the contact zones instead of the radii of
the particles which will come into account and here too it
will affect the absolute value of the critical stress but not the
comparison of the critical stress between different polymers.

Oscillation regime above the critical stress

Above the jamming transition, strong oscillations of the
stress are observed if the shear rate is imposed (Lootens
et al. 2003) or of the shear rate if it is the stress which
is imposed. This is also the case in yield stress fluids at
low shear rate after yielding (Nagahiro et al. 2013) In yield
stress fluids different models can predict these oscillations
by introducing a “structure variable” whose time evolution
is coupled to the shear rate (Nagahiro et al. 2013; Lopez-
Lopez et al. 2013; Head et al. 2002). These oscillations are
usually interpreted as resulting from an instability related to
the negative differential viscosity which appears in the form
of an S shape in the stress versus shear rate curve. In our
suspension we observe strong oscillations of the shear rate
above the jamming point as can be seen in Figs. 6 and 7 for
a ramp of stress. If we impose a constant stress above the
critical one, then we obtain a series of regular oscillations

as the one presented in Fig. 17 for an imposed stress of 50
Pa just above the jamming transition. These oscillations are
very regular and characteristics of a kind of stick-slip behav-
ior with an asymmetric shape made of a progressive increase
of shear rate followed by an abrupt decrease during the jam-
ming phase. This kind of regular oscillation with an abrupt
decrease of the shear rate was already reported (Larsen et al.
2014) on suspensions in water of polystyrene particle coated
with Pluronic F-68 surfactant. Note that in our case it even
presents a negative part meaning that the upper plate is rotat-
ing back a short moment after the jamming. The red dots in
Fig. 17 represent the evolution of the normal stress, which is
constant and close to zero except during a short time of 0.01
to 0.02 s where we have a positive peak of normal force.

As previously described (Larsen et al. 2014) the inertia
can strongly modify the real stress applied on the suspen-
sion since, when the percolated network suddenly blocks the
rotation, the inertia term Id2θ /dt2 gives an additional torque
which can be much higher than the applied one. Including
the inertia we have the following equations of motion:

I

C
γ̈ (t) = σa(t) − η(f (t))γ̇ (t) or σs(t) = σa(t)

− I

C
γ̈ (t) = η(f (σs))γ̇ (t) (11)

C = πR4/2h is a constant relative to the plate-plate geom-
etry with a gap h and a radius R. and σs is the real stress
applied on the sample which includes the contribution of the
inertial one. The total inertia of the tool and motor was I =
9.36 ×10−5 kg m2 and the constant C = 2.51 ×10−4. We
have introduced a dependence of the viscosity in a structure
variable f (t) instead of the shear rate, since, as we have seen
before, the onset of jamming is not related to a critical shear
rate but rather to a critical stress itself related to a critical
fraction of frictional contacts. As shown by the simulations
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Fig. 17 Oscillations of the shear rate (left axis) and normal stress
(right axis) versus time for an applied shear stress of 50 Pa. Volume
fraction � = 68% with PCP45 dispersant
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(Mari et al. 2014) the fraction of particles in frictional con-
tact depends on the stress and presents a sigmoidal shape
that we can approximate by:

fe(σ ) = fc
(σ/σc)

n

1 + (σ/σc)
n (12)

where σc is the critical stress and fc = 2fe(σc) is a param-
eter; (we took fc = 0.8) and the exponent n another param-
eter. The dependence of the viscosity in f is unknown; it
should diverge at some fraction of frictional contacts that
we have chosen at fM = 0.7, with for instance a power law
dependence:

η(f ) = η0

(fM − f )2
(13)

The viscosity η0 = 0.49 Pa/s and the value of the expo-
nent n = 0.75 in Eq. 12 were chosen such that the point of
the equilibrium curve where dγ̇

dσ
= 0 was the experimental

one: σc = 40 Pa, γ̇c = 15/s for the PCP45 at ϕ = 68%
corresponding to Fig. (17). With these parameters we have
verified that the equilibrium curve σ(γ̇ ) had the expected
shape with a strong decrease of the shear rate above the
critical stress.

The kinetics of relaxation of the frictional contacts is sup-
posed to follow an exponential behavior with a relaxation
time:
∂f

∂t
= −1

τ
(f − fe(σs)) (14)

It is important to note that the equilibrium function fe

depends on the true stress on the sample: σs and not on the
applied stress σa . Equations 11 and 14 are solved together
in order to obtain the shear rate versus time for a con-
stant applied stress corresponding to the one of Fig. (17):
σa = 50 Pa. In Fig. (18) we have plotted in black the shear
rate obtained when in Eqs. 11 and 14; we consider that the
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Fig. 18 Shear rate calculated from Eqs. 11–14 for a constant applied
stress: σa = 50 Pa; in black using f (σa) for the fraction of frictional
contacts and in red f (σs) where σs is the total stress including the
inertial one (cf. Eq. 11). The blue curve represents the total tangential
force. The force of 1.26 N corresponds to a shear stress σs = 1000 Pa

fraction of frictional contacts is a function of the constant
applied stress: f (σa). We see that it is a constant value;
there is no oscillation at all. On the contrary if we let the
function f depend on the real stress applied on the sam-
ple, f (σs), then we get oscillations (red curve) which looks
like the experimental ones except that the shape of the max-
imum is more rounded and also that the shear rate remains
positive. In blue is represented the total tangential force on
the sample; as expected it presents a strong peak when the
shear rate is decreasing and the amplitude of the peak has
the same order of magnitude as the normal force measured
on the upper plate (Fig. (17)). The mechanism of the oscil-
lation is the following: if we start in the situation where the
shear rate is increasing, the total stress σs is increasing also
but is still lower than the applied one, σa , because a part of
the applied stress is used to accelerate the tool. The func-
tion f (σs) increases as well as the viscosity—which is a
non-linear function of f (σs)—until the shear rate begins to
decrease for a value of σs larger than σc. At this moment
the role of inertia is inverted since it gives a positive con-
tribution to σs and then contributes to increase f (σs) at
values where the viscosity η(f ) begins to diverge imposing
a strong and fast decrease of the shear rate. At the minimum
of the shear rate the inertia stress is equal to zero (σs = σa)

and the viscosity has already began to decrease but, as it
continues to decrease because of the time delay between f

and fe(σs), the shear rate begins to increase and this acceler-
ation absorbs a part of the applied stress so that σs becomes
close to zero. Finally, as the shear rate continues to increase,
σs will also start to increase and the cycle restarts. It should
be noted that the relaxation time τ of the function f has
a major role because, if it is too long, the decrease of the
shear rate when σs >σc is delayed and the positive feedback
related to the inertia stress will be too low to maintain the
oscillation. For instance a relaxation time τ = 0.02 s instead
of 0.005 s will produce damped oscillations.

The most important difference with the experimental
oscillations presented in Fig. (17) is the absence of a nega-
tive part for the shear rate. The extremum of the shear rate
will be obtained when its derivative will be equal to zero;
that is to say, if we look at the right hand side of Eq. 11 for
γ̇ = σa/η(f ) which is always positive whatever the value of
f . It is only the elasticity of the suspension which can give
a negative value of the shear rate. Actually strong elastic
effects were found under flow in highly concentrated sus-
pensions of polystyrene particles (Larsen et al. 2010). The
usual model for a viscoelastic liquid is made of a dashpot of
viscosity η1 in series with a Kelvin-Voigt cell formed by a
spring of stiffness G2 in parallel with a second dashpot of
viscosity η2. The dashpot η1 represents the dissipation in the
steady state, so we shall take η1 = η(f ) (13). For the sake
of simplicity, the viscosity η2 is taken to be proportional to
the first one: η2 = α η(f ) where α is a parameter and we
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have replaced the notation η1 by η. We expect that the shear
modulus will also increase strongly when we pass the jam-
ming point and, still in order not to add new parameters, we
shall take the same dependence as for the viscosity:

G(f ) = G0

(fM − f )2
(15)

G0 was deduced from the fit of the decrease of the strain
after turning off the stress in the domain below 40 Pa and
was found to be G0 = 3 ± 1 Pa.

Now Eq. 11 is replaced by two equations with the addi-
tional variable γ1 which is the strain associated with the
deformation of the first dashpot:

γ̇1 = G(f )

(1 + α)η(f )
(γ − γ1) + α

1 + α
γ̇ and σs = σa

− I

C
γ̈ = G(f )

1 + α
(γ − γ1) + α

1 + α
η(f )γ̇ (16)

Solving (16) and (14) with the values of G(f ) and η(f )

given respectively by Eqs 15 and 13 give the shear rate rep-
resented in Fig. (19) where we have used the value α = 2
for the viscosity η2

We see that including a viscoelastic behavior modifies
the shape of the oscillating regime with a steeper decrease
of the shear rate and that we, indeed, get negative values of
the shear rate. We note also that the total tangential force is
much larger because of the steeper arrest of the shear rate.
A qualitative explanation of these oscillations was proposed
(Larsen et al. 2014), based on the existence of a depleted
zone close to the upper wall and on a periodic dilatancy with
the particles invading this zone during the jamming period.
What we can say is that the shape and the frequency of the
oscillations is quite well reproduced by this model without
the need to introduce this mechanism. The relaxation time,
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Fig. 19 In red the shear rate calculated for a viscoelastic liquid
through Eqs. 16–14 for a constant applied stress: σa = 50 Pa; the shear
modulus is given by Eq. 15 with G0 = 3 Pa and the parameter for the
viscosity η2 was α = 2. In blue the total tangential force corresponds
to the right axis

τ , of the frictional contacts is the most important parame-
ter which is related to the time needed for the particles to
separate when the stress has decreased. It can depend on the
dynamics of migration of the polymer on the surface of the
particles which is an intrinsic parameter but also on a mini-
mum value of the strain which will drive the particles from
a compression side to the extensional one where they can
separate. A more systematic study of this regime of oscil-
lation at different applied stresses and also with different
superplasticizer should help to get a better understanding of
the role of this relaxation time and of its relation with the
characteristics of the polymer coating.

Conclusion

The use of dispersant molecules has allowed us to obtain
suspensions with practically no yield stress at volume
fraction as high as 69% which begin to flow in a quasi-
Newtonian regime and then presents a DST transition at
a critical stress. When the stress is raised above the criti-
cal one, the shear rate strongly oscillates around an average
value which remains constant and smaller than the criti-
cal one without presenting the “S shape.” This transition is
reversible meaning that there is no permanent aggregation
of the particles since a second experiment gives the same
result as the first one. The critical stress was much higher for
the small polymer PPP44 than for the two comb polymers of
higher molar mass. A tentative description of the forces act-
ing between the surfaces of the particles has confirmed that
the repulsive force induced by the PPP44 was much stiffer
than the two other ones, resulting in a higher critical stress.
The comparison between the repulsive forces induced by
polymer-polymer interactions was facilitated by the fact that
the three molecules had the same PEO hydrophilic chains,
although of different lengths. Based on the hypothesis that,
above a certain compression ratio, the polymer is swept out
of the surface, giving rise to a network of frictional con-
tacts, the critical stress was represented by Eq. 10 showing
the importance to have a high ratio δ/s where δ is the thick-
ness of the polymer layer and s is the average distance
between two chains; we conclude that it is more important
to have a dense layer than to have a long polymer in order
to repel the jamming transition. Of course, the reasoning
on the equilibrium of static radial forces between polymer
layers is an oversimplified view which should be improved
by considering the effect of the lubrication flow on the sta-
bility of the polymer layer and the energy of adsorption of
the polymer. Measurements of forces between polymer lay-
ers with the help of an AFM could greatly contribute to the
modeling of these forces. Above the critical stress, we have
observed a regime of strong oscillations. A model intro-
ducing the dependence of the viscosity on the fraction of
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frictional contacts, which itself depends on the true stress
acting on the sample, well reproduces the frequency and
the large amplitude of the oscillations of shear rate at con-
stant imposed stress. The negative value of the shear rate
observed during these oscillations was shown to be due to
the combination of the inertia of the mobile part and of the
elasticity of the network of particles. At last, on the basis
of the comparison between this model and the experiment,
the relaxation time associated with the rupture of frictional
contacts was found to be close to 5 ms. A systematic inves-
tigation of this oscillating regime should bring some better
understanding in the relation between this relaxation time
and the characteristics of the polymer layer and will be the
subject of a forthcoming study.
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