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Abstract The linear viscoelasticity of a dilute suspen-
sion of active (self-propelled) rigid spheroidal particles
is calculated under a small-amplitude oscillatory shear
(SAOS) deformation. The imposed shear acts to drive the
microstructure of the suspension, as parameterized by the
orientational probability distribution function, out of equi-
librium. The microstructure relaxes via two independent
mechanisms: rotational Brownian motion and correlated
tumbling; the combination of which results in an increased
rate of stress relaxation, relative to a suspension that relaxes
solely by either mechanism. We explicitly calculate the non-
equilibrium orientational microstructure due to the SAOS
deformation, rotational diffusion, and tumbling. From this,
we determine the linear viscoelasticity of the suspension
from the orientationally averaged stresslet, which arises
from the imposed flow, rotational diffusion, and parti-
cle activity (self-propulsion). Next, we demonstrate that a
modified Cox-Merz rule is applicable to a dilute, active sus-
pension via a comparison of our linear viscoelasticity results
to a theoretical prediction of the steady shear viscosity of
active, slender rods (Saintillan, Exp Mech 50(9) 1275–1281,
2010). Finally, through a comparison of our results to exper-
iments on Escherichia coli (López et al., Phys Rev Lett
115(2) 028, 301, 2015), we show that the linear viscoelas-
ticity of an active suspension can be utilized to determine
the mechanism of self-propulsion (i.e., pusher or puller),
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and estimate the strength of self-propulsion and correlation
between tumbling events.

Keywords Active suspension · Microstructure · Linear
viscoelasticity · Cox-Merz rule

Introduction

Recently, there has been an intense interest in the dynam-
ics of active, self-propelled particles, such as biological
micro-organisms and synthetic colloidal motors (Ebbens
and Howse 2010; Hong et al. 2010; Patra et al. 2013; Dey
et al. 2016; Schwarz-Linek et al. 2016; Teo and Pumera
2016). Self-propelled particles have potential biomedical
applications, including targeted drug delivery (Kline et al.
2005; Dhar et al. 2007; Sundararajan et al. 2008), where
a drug is transported in or on an active particle through
the bloodstream directly to a predetermined location, e.g.,
a cancerous tumor or region of inflammation. Furthermore,
suspensions of self-propelled microscale particles serve as
a paradigmatic model for active matter, which is inherently
out of thermal equilibrium due to the activity of the parti-
cles (Tjhung et al. 2011; Stenhammar et al. 2014; Takatori
et al. 2014; Spagnolie 2015). A natural question that arises
is as follows: How does the activity of the particles impact
the rheology, or state of the stress, in a flowing suspension?
For example, how would the addition of active particles,
for use in drug delivery, impact the rheology and subse-
quent blood flow in a patient? Conversely, what can the
stress of an active suspension tell us about the activity (e.g.,
mechanism or strength of self-propulsion) of the particles in
suspension?
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In general, microscale self-propelled particles, at low
Reynolds number, can be divided into two categories:
pullers and pushers. Pullers, such as Chlamydymonus rein-
hardtii (CR), generate thrust from the front of their body;
whereas, pushers, such as Escherichia coli (E. coli) or
Bacillus subtilis (B. subtillis), generate thrust from their
rear (Lauga and Powers 2009). Steady shear experiments
on a dilute suspension of CR have shown that the effec-
tive viscosity of the suspension is increased, relative to both
the viscosity of the suspending medium and the viscosity
of a suspension of the same immotile (i.e., dead) bacteria
(Rafaı̈ et al. 2010; Mussler et al. 2013). Experiments con-
ducted on dilute suspensions of pushers, E. coli (Gachelin
et al. 2013; López et al. 2015) and B. subtilis (Sokolov and
Aranson 2009), reported a steady shear viscosity less than
that of a suspension of the same immotile bacteria and,
more surprisingly, also less than the steady shear viscosity
of the suspending medium. This indicates a negative particle
contribution to the overall suspension viscosity.

From these experimental results, it is evident that the
activity of the particles affects the stress in the suspen-
sion. The activity of the particles has an indirect effect on
the stress by altering the microstructure, or spatio-temporal
arrangement, of the suspension through tumbling, which
acts to randomize the particle orientation, as observed in
E. coli (Turner et al. 2000). The activity of the particles
also has a direct effect on the stress via the force dipole
(stresslet) generated from self-propulsion (Saintillan 2010;
Takatori et al. 2014; Spagnolie 2015). One methodology
to predict the stress of an active suspension is to calculate
the disturbance flow created by the active particles. Then,
from the energy dissipation associated with this, the effec-
tive viscosity can be inferred. Haines et al. (2008) utilized
a two-dimensional hydrodynamics simulation to calculate
the disturbance flow, and hence rheology, of a dilute, active
suspension of disks. Hatwalne et al. (2004) utilized a coarse-
grained model based on the field theory of nematic liquid
crystals to predict the linear viscoelasticity of a dilute sus-
pension of active disks or rods. Alternatively, one can
explicitly determine how the activity of the particles affects
the microstructure of the suspension and from there predict
the microstructurally averaged stress. In this vein, Saintillan
(2010) utilized a kinetic theory model to calculate the
change in the orientational microstructure of a dilute sus-
pension of active, slender rods, resulting from an imposed
steady shear flow, rotational Brownian motion, and uncor-
related tumbling events (i.e., 90◦ changes in orientation due
to tumbling). Bozorgi and Underhill (2014) calculated the
stress in a dilute suspension of slender, active rods subject
to a large-amplitude oscillatory shear (LAOS) deformation.
They assumed that the tumbling events did not affect the
microstructure of the suspension, but did include the direct
stress contribution arising from the particle activity.

In this work, we calculate the linear viscoelasticity of a
dilute suspension of active, spheroidal particles, of arbitrary
aspect ratio, subject to a small-amplitude oscillatory shear
(SAOS) deformation. We explicitly account for microstruc-
tural relaxation due to both rotational Brownian motion and
correlated tumbling, as this is relevant for many biolog-
ical systems. For instance, E. coli are Brownian, prolate
bodies with an average change in orientation due to tum-
bling of 58 ± 40° (Turner et al. 2000). Oscillatory shear
experiments are useful in that they allow for one to aver-
age the measured signal over multiple oscillation cycles and
avoid step changes that occur during the start-up and cessa-
tion of a steady flow. SAOS experiments effectively allow
one to take a spectral fingerprint of the linear response of
a material. The frequency-dependent results obtained from
a SAOS deformation can be used to predict steady shear
behavior via the empirical Cox-Merz rule, which states that
the magnitude of the frequency-dependent complex viscos-
ity is equivalent to steady shear viscosity (Cox and Merz
1958). Thus, information from a SAOS deformation can be
utilized to predict the steady shear viscosity of a material,
which is advantageous as it is typically simpler to experi-
mentally perform a frequency-sweep as opposed to a shear
rate sweep (Macosko 1994). This could be especially true
for active suspensions of biological organisms, where large
shear rates could be detrimental to the organisms and inhibit
activity. Gachelin et al. (2013) observed that the effective
steady shear viscosity of both a motile and immotile dilute
suspension of E. coli were equivalent at high shear rates,
indicating that the active contribution to the steady shear
viscosity is negligible compared to the passive contribu-
tion in this regime. There are cases where the Cox-Merz
rule breaks down, namely colloidal dispersions at high shear
rate and frequency (Al-Hadithi et al. 1992), and thus, it
should be viewed as a “rule-of-thumb” rather than a strict
rule.

For a homogeneous, oscillatory shear deformation, the
strain-rate is given by γ̇ = γ̇0 cos(ωt), where γ̇0 is the
strain-rate amplitude and ω is the oscillation frequency.
Two timescales arise: (1) the oscillation timescale, 1/ω and
(2) the flow timescale, 1/γ̇0. The active suspension is also
characterized by two independent relaxation mechanisms:
Brownian rotation and tumbling. Therefore, we can form
two ratios of the flow to relaxation timescales, or Weis-
senberg numbers: WiD = γ̇0/Dr and Wi = γ̇0/τ

−1, where
Dr is the rotary diffusion coefficient and τ−1 is frequency
of tumbling. Furthermore, a relative rate of relaxation can
be defined as λ = Wi/WiD = Dr/τ

−1. For a dilute sus-
pension of E. coli, λ ∼ 0.1 (using Dr ∼ 0.1 s−1 and
τ−1 ∼ 1 s−1 (Leal and Hinch 1971; Gachelin et al. 2013))
and tumbling is therefore the dominant mode of microstruc-
tural relaxation. SAOS requires that the rate of relaxation is
much greater than the rate of deformation, Wi � 1. Thus,
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the linear viscoelasticity of a dilute suspension of active
spheroids is examined in this regime.

In the “Governing equations” section, we detail the gov-
erning equations required to calculate the microstructure
and linear viscoelasticity of the active suspension. In the
“Asymptotic expansion for linear viscoelasticity” section, a
solution for the microstructure is obtained via an asymptotic
analysis for Wi � 1. In the “Linear viscoelasticity” section,
the deviatoric particle contribution to the suspension stress
is calculated, and the combined effects of the imposed flow,
Brownian rotation, and tumbling are discussed. Finally, in
the “Comparison to previous work” section, we demonstrate
that a Cox-Merz rule can be applied to an active particle
suspension by comparing our linear viscoelastic results to
(1) a theoretical prediction of the steady shear viscosity of
active, slender rods (Saintillan 2010) and (2) experimental
data for the steady shear viscosity of a dilute suspension of
E. coli (López et al. 2015). We also demonstrate that from
the linear viscoelasticity one can determine the method of
self-propulsion (pusher or puller) and estimate the strength
of self-propulsion and correlation between tumbling events.

Governing equations

A suspension of active particles is modeled as an ensemble
of Brownian, rigid spheroids in a Newtonian fluid of viscos-
ity μs and density ρ. The particles are assumed to be free of
any externally applied force or torque and are characterized
by an aspect ratio, r , defined as the ratio of the major (�) to
minor (a) axes, r = �/a. The hydrodynamic sphericity of
the particles is given by the Bretherton constant,

B = r2 − 1

r2 + 1
, (1)

which is negative for oblate spheroids, positive for pro-
late spheroids, and zero for spheres. The suspension is
assumed to be dilute, such that interparticle interactions can
be neglected. Thus, c = 4πn�a2/3 � 1, where c is the par-
ticle volume fraction and n is the number density. We will
consider an oscillatory shear flow with velocity field v =
γ̇0y cos(αt̃ )ex , and velocity gradient ∇v = γ̇0 cos(αt̃ )eyex ,
where ex , ey , ez are Cartesian unit vectors in the flow,
flow-gradient, and vorticity directions, respectively, α is the
dimensionless oscillation frequency , and t̃ is dimensionless
time (α = ωτ , t̃ = t/τ ).

The microstructure of the suspension is characterized
by the orientation distribution function, ψ(p, t), where
ψ(p, t) sin θdθdφ represents the probability of finding a
particle ensemble in a differential region about (θ, φ)
(Hinch and Leal 1972; Kim and Karrila 2005). Here, p is a

unit vector along the particle axis of symmetry, in spherical
coordinates, and θ and φ are the polar and azimuthal angles,
respectively. The orientation distribution function satisfies a
conservation, or Fokker-Planck, equation (Subramanian and
Koch 2009),

∂ψ

∂t
+ ∇p · (ṗψ) = Dr∇2

pψ − τ−1
(

ψ −
∫

K(p|p′)ψ(p′, t̃ )dS′
)

,

(2)

where ∇p is the surface gradient operator, and ṗ is the
deterministic evolution of the particle orientation due to the
ambient shear (Jeffery 1922; Brenner and Condiff 1974;
Kim and Karrila 2005),

ṗ = B(I − pp) · H · p, (3)

where I is the identity tensor and H = B−1� + E. Here,
� is the vorticity tensor and E is the rate of strain tensor,
such that ∇v = E+�. For an oscillatory shear deformation,
H = γ̇0 cos(αt̃ )Ȟ, where,

Ȟ = 1

2

[
(1 − B−1)exey + (1 + B−1)eyex

]
. (4)

The first term on the right-hand-side (RHS) of Eq. 2
accounts for the randomization of particle orientation due to
rotational Brownian diffusion. The last terms on the RHS,
in parentheses, of Eq. 2 model the randomization of particle
orientation due to tumbling events. Specifically, tumbling
events are treated as a Poisson process (Subramanian and
Koch 2009). Here, K(p|p′) is a conditional probability den-
sity function characterizing a tumble from orientation p′ to
orientation p, where the apostrophe indicates the pre-tumble
orientation, and dS′ = sin θ ′dθ ′dφ′ is the pre-tumble differ-
ential solid angle. Conservation of probability requires that,

∫
K(p|p′)dS =

∫
K(p|p′)dS′ = 1 . (5)

Following Subramanian and Koch (2009), we choose

K(p|p′) = β

4π sinh β
exp

(
β p · p′) , (6)

where β is parameter that gauges the correlation between
pre- and post-tumble configurations. In the limit of β → 0,
K = 1/4π , corresponding to uncorrelated tumbles (90◦
changes in orientation), and the term in parentheses on
the RHS of Eq. 2 reduces to the relaxation-time approxi-
mation used in the kinetic theory of gases (Chapman and
Cowling 1991; McQuarrie 2000). This limit was previously
investigated by Saintillan (2010) for slender, active rods in
steady shear. In the limit of β → ∞, each tumbling event
results in an infinitesimal change in orientation, and thus,
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microstructural relaxation is dominated by rotational diffu-
sion. This regime was investigated by Bozorgi and Underhill
(2014). The inclusion of finite, non-zero values of β allows
one to account for correlated tumbles. For instance, the aver-
age change in orientation due to tumbling (< θ >) for an E.
coli cell is 58 ± 40◦ (Turner et al. 2000), which corresponds
to β ∼ 1.5, where (Subramanian and Koch 2009),

< θ > = β

2 sinh β

∫ π

0
eβ cos θ θ sin θdθ. (7)

A dimensionless conservation equation can be obtained
by normalizing H by the strain-rate amplitude (H = γ̇0H̃).
Substitution of Eq. 3 into Eq. 2 yields,

∂ψ

∂t̃
+BWi∇p ·

[
(I−pp) ·H̃ ·pψ

]
= λ∇2

pψ −
(

ψ −
∫

K(p|p′)ψ(p′, t̃ )dS′
)

,

(8)

The orientation distribution function is also subject to a
normalization condition,

∫
ψ(p, t)dS = 1.

Asymptotic expansion for linear viscoelasticity

The conservation (8) is to be addressed in the limit of weak
deformation rate, Wi � 1. In this regime, the microstruc-
ture remains in a near-equilibrium state, and the orientation
distribution function can be expressed as a regular perturba-
tion expansion,

ψ(p, t) = 1

4π

(
1 + Wiψ1(p, t) + O(Wi2)

)
, (9)

where Wiψ1 represents the leading order departure from
equilibrium. Substitution of Eq. 9 into Eq. 8 yields,

∂ψ1

∂t̃
= 3B cos(αt̃ )pp : Ě

+λ

[
(I − pp) : ∂2ψ1

∂p∂p
− 2p · ∂ψ1

∂p

]

−
(

ψ1 −
∫

Kψ1(p′, t̃ )dS′
)

, (10)

subject to
∫

ψ1dS = 0. Here, E = γ̇0 cos(αt̃ )Ě and Ě =
1
2

(
exey + eyex

)
. The solution to Eq. 10 should oscillate at

the input frequency, α, and linearly depend on the imposed
flow through the quadrupolar forcing 3B cos(αt̃ )pp : Ě,
which acts to align the microstructure along the principle
axes of strain. Hence, we pose,

ψ1(p, t̃ ) =
(
h1eiαt̃ + ĥ1e−iαt̃

)
pp : Ě, (11)

where hatted quantities indicate complex conjugates. Sub-
stitution of Eq. 11 into Eq. 10 yields an algebraic equation
for h1, with solution,

h1 = 3B

2

[
1 − J (β) + 6λ − iα

α2 + (
1 − J (β) + 6λ

)2

]
, (12)

where i = √−1 and

J (β) = (3 + β2) sinh β − 3β cosh β

β2 sinh β
. (13)

To determine (12) and (13), we have used the result:∫
Kp′p′ : Ě dS′ = J (β)pp : Ě. A derivation of this rela-

tion can be found in Appendix B of Subramanian and Koch
(2009); in their equation (B8), the coefficient of sinh β is
incorrect and should read −(3β2 + 6). The expression in
Eq. 13 is even and is bounded by J (β) = [0, 1), corre-
sponding to β = [0, ±∞). Next, we utilize our asymptotic
solution to the orientation distribution function to calculate
the linear viscoelasticity of the suspension.

Linear viscoelasticity

The particle contribution to the deviatoric stress of the sus-
pension (τp) is obtained from an ensemble average of the
stresslet, which can be decomposed into three contributions
arising from: the imposed flow (τF ), rotational Brownian
motion (τB ), and the active nature (self-propulsion) of the
particles (τA),

τp = τF + τB + τA. (14)

The contribution from the imposed flow is given by Hinch
and Leal (1976) and Kim and Karrila (2005),

τF = 2μsc

[
2AH

(
< pppp > − 1

3
< pp >

)
: E

+2BH

(
E· < pp > + < pp > ·E

+2 I
3

E :< pp >
)

+ CHE
]
, (15)

where the angled brackets are orientational averages,

< pp > =
∫

ppψ(p, t̃ )dS, (16)

and similarly for < pppp >. The torque generated from
rotational Brownian motion leads to the following stress
contribution (Hinch and Leal 1976; Kim and Karrila 2005),

τB = 2μscFH Dr

(
< pp > − I

3

)
. (17)
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Here, AH , BH , CH , and FH are known scalar functions of
the particle aspect ratio, r , Hinch and Leal (1972) and Kim
and Karrila (2005). Finally, the self-propulsion of the par-
ticles exerts a force dipole onto the fluid, resulting in the
active stress contribution (Saintillan and Shelley 2008),

τA = nσ0

(
< pp > − I

3

)
, (18)

where σ0 is a scalar dipole strength, in units of energy. The
sign of σ0 indicates the mechanism of self-propulsion (i.e.,
σ0 < 0 for pushers and σ0 > 0 for pullers) and the mag-
nitude of σ0 scales with the swimming speed of the particle
(Saintillan and Shelley 2008)

Substitution of Eqs. 11 and 12 into Eqs. 15, 17 and 18
yields for the shear component of the stress, τyx ,

τF
yx

γ̇0μsc
=

(
4AH

15
+ 2BH

3
+ CH

)
cos(αt̃ ) + O(Wi), (19)

τB
yx

γ̇0μsc
= 2FH Bλ

5

[
1 − J (β) + 6λ

α2 + (
1 − J (β) + 6λ

)2
cos(αt̃ )

+ α

α2 + (
1 − J (β) + 6λ

)2
sin(αt̃ )

]
+ O(Wi),

(20)

and

τA
yx

γ̇0μsc
= zB

5

[
1 − J (β) + 6λ

α2 + (
1 − J (β) + 6λ

)2
cos(αt̃ )

+ α

α2 + (
1 − J (β) + 6λ

)2
sin(αt̃ )

]
+ O(Wi).

(21)

Note that the shear component of the stress is all that is
obtained from linear viscoelasticity; normal stress differ-
ences can be obtained at O(Wi2), requiring knowledge of
ψ2. Here, z = σ0τ/μsVp is a dimensionless dipole moment
and Vp is the volume of a single particle. For λ < 1
(λ > 1), the frequency of tumbling is greater (less) than
the frequency of rotational Brownian motion; the domi-
nant relaxation mechanism is tumbling (rotational Brownian
motion). The overall particle contribution to the deviatoric
stress can be expressed as the sum of a viscous and elastic
response,

τ
p
yx

γ̇0

= η′(α) cos(αt̃ ) + η′′(α) sin(αt̃ ) + O(Wi), (22)

where η′ and η′′ are the viscous and elastic components of
the complex viscosity (η∗ = η′ + iη′′), respectively, which
are given by,

η′

μsc
= 4AH

15
+ 2BH

3
+ CH

+B

5
(2FH λ + z)

1 − J (β) + 6λ

α2 + (
1 − J (β) + 6λ

)2
, (23)

and

η′′

μsc
= B

5
(2FH λ + z)

α

α2 + (
1 − J (β) + 6λ

)2
. (24)

Figure 1 shows the effect of correlated tumbling (β �= 0)
on the magnitude of the viscous and elastic components of
the complex viscosity. Correlated tumbling events increase
the magnitude of the Brownian and active stress response,

a

b

Fig. 1 Effect of correlated tumbling (β �= 0) on a the viscous and b
elastic components of the complex viscosity for λ = 0.5. Here, η′

∞ =
4AH /15 + 2BH /3 + CH is the viscous complex viscosity in the limit
of α → ∞. Correlated tumbling events increase the magnitude of the
Brownian and active stress contribution at small to moderate frequency
values (α � 10), resulting in an increased magnitude of the viscous
and elastic components
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compared to uncorrelated tumbling events, at small and
moderate frequency values (α ≤ O(10)).

Since z can be positive or negative, depending on the
mechanism of self-propulsion, we can define a critical
dipole strength, z∗, at which the particle contribution to the
zero-frequency viscous complex viscosity is zero (η′(0) =
0),

z∗ = 5

B
(
1 − J (β) + 6λ

)
(

4AH

15
+ 2BH

3
+ CH

)

+ 2FH λ, (25)

which is positive for prolate spheroids and negative for
oblate spheroids, the latter since B, FH < 0 for r < 1.
Thus, a dispersion of prolate pushers with dipole strength
z < −z∗ can have a negative contribution to the over-
all viscosity of the suspension, as previously predicted
(Hatwalne et al. 2004; Haines et al. 2008; Saintillan 2010)

and observed (Sokolov and Aranson 2009; Gachelin et al.
2013; López et al. 2015). However, we are not aware of prior
experimental work indicating a negative contribution to the
overall viscosity for oblate pullers, as is predicted here.

Figure 2 shows a schematic representation of the stresslet
(force dipole exerted by the particle onto the fluid) for a
prolate spheroid subject to a shear flow. The passive con-
tribution to the stresslet, resulting from the imposed flow
and Brownian rotation, always results in a compressional
stresslet and therefore a positive contribution to the sus-
pension viscosity. However, the active contribution, arising
from the thrust force and compensating drag force generated
from self-propulsion, can result in either a compressional
or extensional stresslet, depending on the mechanism of
self-propulsion. Prolate pullers, which generate thrust from
the front, always have a compressional active stresslet, and
therefore a compressional overall stresslet (Fig. 2a) and
positive contribution to the suspension viscosity. Weak pro-
late pushers, which generate thrust from behind and are

a

b

c

Fig. 2 Schematic of the stresslet for a prolate spheroid in steady shear
flow for different self-propulsion mechanisms: a puller (0 < z), b
weak pusher (−z∗ < z < 0), and c strong pusher (z < −z∗ < 0).
The solid black lines represent the straining component of the flow
and the dashed black lines the principle axes of strain. In the limit of
Wi � 1, the flow, to leading order, acts to align the microstructure
along the principle axes of strain. The passive contribution (left, red) to
the stresslet, from the imposed flow and rotational Brownian motion,

always results in a compressional force dipole from the particle onto
the fluid. However, the active contribution (middle, green, and blue)
to the stresslet can be either compressional or extensional, depending
on the mechanism of self-propulsion. Thus, for pullers and weak push-
ers, the overall stresslet (right, magenta) is compressional. Whereas,
for strong pushers, the overall stresslet is extensional, resulting in a
negative viscosity contribution. Here, us indicates the self-propelled
swimming speed of particle
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characterized by the dipole strength −z∗ < z < 0, will
have an extensional active stresslet, but a compressional
overall stresslet (Fig. 2b). This results in a positive contri-
bution to the suspension viscosity, but the magnitude of the
viscosity increase is less than that of a passive suspension.
Strong prolate pushers, characterized by z < −z∗ < 0, will
have an extensional active stresslet of greater magnitude
than the passive stresslet contribution, resulting in an exten-
sional overall stresslet (Fig. 2c) and a negative contribution
to the suspension viscosity. Note that the overall viscosity
of the suspension (η), which includes the contribution of the
suspending medium (μs), will remain positive for a dilute
suspension of prolate pullers or pushers, regardless of the
magnitude of the dipole, as η = μs + c ηp, where ηp is the
particle contribution to the overall viscosity and c (� 1) is
the particle volume fraction

The linear relaxation modulus, GI (s), is defined as
Macosko (1994),

GI (s) = 2

π

∫ ∞

0
η′(α) cos(αs)ds, (26)

and can be determined from Eq. 23 to be,

GI (t̃ ) =
(8AH

15
+ 4BH

3
+ 2CH

)
δ(t̃ )

+ B

5

(
2FH λ + z

)
e−

(
1−J (β)+6λ

)
t̃
. (27)

The linear relaxation modulus has the functional form of the
Jeffrey’s model: an instantaneous response combined with
stress relaxation via an exponentially fading memory, sim-
ilar to that of passive spheroids (Abdel-Khalik et al. 1974;
Bird et al. 1977; Bechtel and Khair 2017). In contrast to a
suspension of passive spheroids, the rate of stress relaxation,
1/tr , which is defined from the argument of the exponential
in Eq. 27, is

1

tr
= 1

tT
+ 1

tB
, (28)

where tT = τ/
[
1−J (β)

]
is the timescale of tumbling events

and tB = 1/6Dr is the timescale of rotational Brownian
motion. This combination of two stress relaxation mecha-
nisms is analogous to a pair of resistors in parallel in an
electrical circuit, where the overall resistance of the sys-
tem (Rtotal) is the reciprocal of the sum of the reciprocal
resistance of each resistor (Ri), 1/Rtotal = ∑

i 1/Ri . Here,
the overall rate of stress relaxation is the sum of the recip-
rocal of the timescale of each relaxation mechanism. The
combination of stress relaxation from tumbling events and
rotational Brownian motion increases the overall rate of stress
relaxation, relative to a suspension of non-Brownian, active
particles or a suspension of Brownian, inactive particles.

Figures 3 and 4 depict the complex viscosity of a dilute
suspension of prolate (r = 3) and oblate (r = 0.25)
spheroids, respectively, as a function of self-propulsion

Fig. 3 Viscous (η′, top) and
elastic (η′′, bottom) components
of the complex viscosity for a
dilute suspension of active
prolate spheroids (r = 3) for (1)
a puller: z = 50, (2) a weak
pusher: z = −50, and (3) a
strong pusher: z = −200. Here,
the ratio of tumbling frequency
to rotational Brownian motion is
varied: a λ = 0, b λ = 0.1, and
c λ = 1 and z∗ = −150.4, using
λ = 1 and β = 1

a b c
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Fig. 4 Viscous (η′, top) and
elastic (η′′, bottom) components
of the complex viscosity for a
dilute suspension of active
oblate spheroids (r = 0.25 ) for
(1) a pusher: z = −50, (2) a
weak puller: z = 50, and (3) a
strong puller: z = 200. Here, the
ratio of tumbling frequency to
rotational Brownian motion is
varied: a λ = 0, b λ = 0.1, and
c λ = 1 and z∗ = 198.5, using
λ = 1 and β = 1

a b c

mechanism, z, and relative importance of tumbling to
rotational Brownian motion, λ. For both prolate and oblate
spheroids, the plateau frequency, which is defined as the
frequency at which the material response no longer changes,
increases as the strength of rotational Brownian motion
increases (i.e., as λ increases). Furthermore, we also observe
that prolate pullers and oblate pushers will always have a
positive viscous and elastic response, independent of fre-
quency. Whereas, prolate pushers and oblate pullers with
a dipole strength greater than the critical dipole strength,
defined in Eq. 25, can have a negative viscous and elastic
response at low frequency.

Comparison to previous work

Steady shear of active, slender rods (r → ∞)

The particle contribution to the steady shear viscosity of
a dilute suspension of active, slender rods (r → ∞) was
previously calculated by Saintillan (2010) for uncorrelated
tumbling events (β = 0). We can compare these steady
shear results to our linear viscoelastic response, via the
Cox-Merz rule,

η(Wi) = |η∗|(α), (29)

which states that, for Wi = α, the steady shear viscos-
ity is equal to the magnitude of the frequency-dependent

complex viscosity. Figure 5 shows a comparison of the lin-
ear viscoelasticity and the steady shear viscosity for a puller
and a pusher at λ = 0.5. In Fig. 5a, we observe that the
Cox-Merz rule holds fairly well for prolate pullers, with
a qualitative agreement overall all frequencies. For prolate
pushers, which have a negative contribution to the over-
all viscosity of the suspension, the Cox-Merz rule does not
hold, as the magnitude of the complex viscosity is always a
positive quantity (Fig. 5b). However, we observe agreement
between the steady shear viscosity and the viscous compo-
nent of the complex viscosity up to O(10) in the shear rate
(Wi) or frequency (α). This indicates that the particle con-
tribution to the steady shear viscosity is akin to the linear
viscous response for an active suspension, up to moderate
shear rate. That is, η(γ̇0) = η′(ω) is applicable beyond the
zero-shear and zero-frequency limit and can be viewed as a
modified Cox-Merz rule for active suspensions with a neg-
ative viscosity increment. The deviation between the steady
shear and both the viscous complex viscosity and magni-
tude of the complex viscosity, at larger Wi and frequency, is
consistent with passive colloidal systems (Al-Hadithi et al.
1992).

Experimental results for suspensions of E. coli

Now that we have demonstrated that a modified Cox-
Merz rule is applicable to a dilute, active suspension, at
least to moderate frequency and shear rate, we can extend
our comparison to an experimental system. In Fig. 6, we
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a

b

Fig. 5 Cox-Merz rule for active suspensions. Here, we compare our
theoretical prediction to that of Saintillan (2010) (see his Fig. 5a) for
r → ∞, β = 0, λ = 0.5 (corresponding to τ̃ = 5 and d̃r = 0.1 in the
notation of Saintillan (2010)) for a puller (z = 4AH ) and b pusher (z =
−4AH ). The circles and squares are the digitized numerical results
for the steady shear viscosity from Saintillan 2010. The solid line is
the magnitude of the complex viscosity, from Eqs. 23–24, and the dot-
dashed line is the viscous component of the complex viscosity, from
Eq. 23

show the digitized steady shear viscosity measurements
of López et al. (2015) for E. coli suspensions (symbols),
which includes the contribution of the suspending medium,
compared to the viscous component of the complex vis-
cosity (23), at varied volume fractions (solid lines). The
experimental parameters reported by López et al. (2015) uti-
lized in Eq. 23 are τ−1 = 10 Hz, T = 298 K, and μs =
1.4 mPa. To determine the relative frequency of Brownian
rotation to tumbling (λ), we first calculated the rotational
diffusion coefficient for a single particle (Leal and Hinch
1971),

Dr = kBT

4μsVp

(
r2K3(r) + K1(r)

r2 + 1

)
, (30)

where,

K1(r) ≡
∫ ∞

0

r ds(
r2 + s

)1/2
(1 + s)2

, (31)

K3(r) ≡
∫ ∞

0

r ds

(r2 + s)3/2(1 + s)
, (32)

and kB is the Boltzmann constant. Substitution of the given
values for temperature and suspending medium viscosity,
along with an estimate of aspect ratio of an E. coli cell, r =
20 (� ∼ 5 μm and a ∼ 0.25 μm (Trueba and Woldringh
1980; Gachelin et al. 2013; López et al. 2015)), into Eq. 30
yields Dr = 0.009 s−1. Thus, λ = Dr/τ

−1 = 9 × 10−4

and tumbling is the dominant mode of microstructural relax-
ation. Here, the estimate of the aspect ratio of an E. coli
cell includes the length of the flagella tail that is responsi-
ble for self-propulsion and tumbling. Next, we utilized the
steady shear viscosity measurements at Wi = 0.002 and
Wi = 0.007 and the modified Cox-Merz rule via (23) to
obtain a system of two equations and two unknowns (β and
z); solving this system of equations simultaneously obtains
β and z, which are listed for each volume fraction in Table 1.
The dotted line in Fig. 6 is the viscous complex viscosity
given in Eq. 23 for β = 1.64, corresponding to < θ >= 58◦
(Turner et al. 2000), and z = −155.5, corresponding to a
thrust force, Fthrust = σ0/� = 0.57 pN (Chattopadhyay et al.
2006).

From Fig. 6, we see a qualitative agreement between the
steady shear viscosity measurements of López et al. (2015)
and our prediction of the linear viscoelasticity, using the
values of β and z in Table 1 at all values of Wi and α. How-
ever, the use of β obtained from fluorescence microscopy
(Turner et al. 2000) and z from optical trapping of a single
cell (Chattopadhyay et al. 2006) does not provide a rea-
sonable agreement to the experimental data. This suggests
that the measured self-propulsion characteristics of an active
suspension are sensitive to the volume fraction of particles.
Furthermore, the cell volume fractions utilized by López
et al. (2015) are arguably beyond the dilute regime, where
hydrodynamic interactions between cells is negligible; col-
lective motion has been observed in suspensions of E. coli
for n = O(108) cells/mL (Wu et al. 2006), which corre-
sponds to c ∼ 0.01%. Despite the fact that the data reported
by López et al. (2015) is at volume fractions above this
threshold, we surprisingly observe good agreement between
their experimental results and our dilute theory. Thus, the
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Fig. 6 Comparison of the linear
viscoelasticity of a suspension
of pushers to experimental
measurements of the steady
shear viscosity of E. coli, which
include the contribution of the
suspending medium, for cell
volume fractions, c, of a 0.11%,
b 0.21%, c 0.44%, and d 0.67%.
The symbols are experimental
data from López et al. (2015)
(see their Fig. 1b) for μs = 1.4
mPa, and T = 298. The solid
line is the viscous complex
viscosity in Eq. 23 using r = 20,
τ = 0.1 s, λ = 9×10−4, and the
appropriate β and z values from
Table 1. The volume fraction-
dependent values of β and z

were obtained from the steady
shear viscosity measurements at
Wi = 0.002 and Wi = 0.007.
The dotted line is the viscous
complex viscosity from Eq. 23,
now using β = 1.64, which was
obtained from fluorescence
microscopy (Turner et al. 2000),
and z = −155.5, which was
obtained from optical trapping
measurements (Chattopadhyay
et al. 2006)

a b

c d

results from the SAOS of a dilute, active suspension are
able to provide the self-propulsion characteristics of active
particles; namely, the self-propulsion mechanism (pusher
or puller), dipole strength (|σ0|), and correlation between
tumbling events (β).

Table 1 Volume fraction-dependent self-propulsion parameters of E.
coli

c β < θ > z Fthrust (pN)

0.11% ∞ 0◦ −4.2 0.015

0.21% 223 4.8◦ −16.9 0.062

0.44% 233 4.7◦ −14.5 0.053

0.67% 96 7.3◦ −22.9 0.084

The values of β and z were obtained by applying the modified Cox-
Merz rule discussed in the “Steady shear of active, slender rods (r →
∞)” section and equating the steady shear viscosity measurements of
López et al. (2015) at Wi = 0.002 and 0.007 to the viscous component
of the complex viscosity, given in Eq. 23, for r = 20, τ−1 = 10 Hz,
λ = 9 × 10−4, μs = 1.4 mPa, and T = 298 K

Summary

We calculated the linear viscoelasticity of a dilute suspen-
sion of active spheroids of arbitrary aspect ratio subject to a
SAOS deformation. The active suspension is characterized
by two relaxation mechanisms: rotational Brownian motion
and correlated tumbling. For weak deformation (Wi � 1),
the particle contribution to the stress was determined from
ensemble averages of the stresslets due to the imposed flow,
rotational Brownian motion, and tumbling. From a compari-
son to the steady shear result of Saintillan (2010) for slender
rods, we show that a modified Cox-Merz rule is applica-
ble to a dilute active suspension. Furthermore, through a
comparison with the experimental results of López et al.
(2015) for E. coli, we demonstrated that from the SAOS
of an active suspension, one can determine the mecha-
nism of self-propulsion (pusher or puller) and estimate
the strength of the dipole moment (|σ0|) and correlation
between tumbling events (β) of the particles. A natural
extension to the present work would be to quantify how cor-
related tumbling affects the nonlinear rheology of an active
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suspension, e.g., shear-thinning (or thickening) and normal
stress coefficients.
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Note added in proof After the present paper was accepted, a paper
by S. Nambiar, P. R. Nott, and G. Subramanian (“Stress relaxation in
a dilute bacterial suspension,” J. Fluid Mech. vol. 812, pp. 41-64) was
published online on 22 December 2016. Their paper provides expres-
sions for the storage (G′) and loss (G′′) moduli of a suspension of
slender bacteria under weak oscillatory shear (see below equation (3.1)
in their work). Those expressions can be recovered from the complex
viscosity reported in (23) and (24) of the present work by: (i) using
the definitions G′ = ωη′′ and G′′ = ωη′; (ii) taking the limit of large
aspect ratio, r → ∞; (iii) neglecting Brownian stress; and (iv) assum-
ing a dipole strength σ0 ∼ μsusl

2, where us is the swimming speed of
a bacterium.
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