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Abstract We develop a free energy model that describes two
key thermodynamic properties, the osmotic pressureΠ and the
linear elastic shear modulusG′p (i.e. plateau storage modulus),
of concentratedmonodisperse emulsionswhichhave isotropic,
disordered, droplet structures, and are stabilized using ionic
surfactants. This model effectively incorporates the concept of
random close packing or jamming of repulsive spheres into a
free energy F that depends on droplet volume fraction ϕ and
shear strainγbothbelowandabove the a critical jammingpoint
ϕc≈0.646. This free energy has three terms: entropic, electro-
static, and interfacial (EEI). ByminimizingFwith respect to an
averagedropletdeformationparameter that linksall three terms,
we show that the entropic term is dominant forϕwell belowϕc,
the electrostatic term is dominant for ϕ near but below ϕc, and
the interfacial term dominates for larger ϕ. This EEI model
describes measurements of G′p(ϕ) for charge-stabilized uni-
form emulsions having a wide range of droplet sizes, ranging
from nanoscale to microscale, and it also is consistent with
measurements ofΠ(ϕ). Moreover, it describesG′p(ϕ) for simi-
lar nanoemulsions after adding non-amphiphilic salt, when
changes in the interfacial tension and the Debye screening
length are properly taken into account. By unifying existing
approaches, the EEI model predicts constitutive properties of
concentrated ionic emulsions that have disordered, out-of-

equilibrium structures through near-equilibrium free energy
minimization, consistent with random driving Brownian
excitations.
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Introduction

Emulsions are one of the most important classes of soft mate-
rials. A first liquid is dispersed as droplets in a second immis-
cible liquid phase; the first liquid and second liquid are known
as the dispersed phase (DP) as the continuous phase (CP),
respectively. Typically, a surface-active agent, or surfactant,
which is soluble in the CP but not in the DP, is added to inhibit
coalescence of the droplets after they have been formed.
Amphiphilic surfactants preferentially adsorb at the interfaces
of the droplets, thereby providing repulsive forces that reduce
or eliminate droplet recombination. Provided that the DP is
highly insoluble in the CP, slow coarsening of the droplet size
distribution via Ostwald ripening is negligible over practical
measurement time scales ranging up to years (Taylor 1998), so
such surfactant-stabilized emulsions can have droplet size dis-
tributions that are effectively time-independent. Many emul-
sions are stabilized using ionic surfactants, such as anionic
sodium dodecyl sulfate (SDS), which are highly soluble in
an aqueous or polar CP but not significantly soluble in a
non-aqueous or non-polar DP. For such ionic emulsions,
short-range screened-charge repulsions between droplet inter-
faces, imparted by adsorbed amphiphilic ions, inhibit droplet
coalescence, even when the droplets are concentrated through
the application of an osmotic pressure Π to high droplet vol-
ume fractions ϕ approaching and beyond the point at which
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droplets begin to deform as they interact with neighboring
droplets.

For colloidal ionic emulsions, during the process of osmot-
ic compression from a dilute gas-like dispersion of droplets,
work is done against entropy, which is the origin of the os-
motic pressure of Brownian droplets at low ϕ. As ϕ is in-
creased further, work is done against electrostatic screened-
charge repulsions and also against the interfacial tension σ of
droplet interfaces populated with adsorbed ionic amphiphilic
molecules. This interfacial tension sets the scale of the ener-
getic cost of deforming droplets and creating additional inter-
facial area in the emulsion. Thus, there are three essential
contributions to the free energy that are required to describe
colloidal ionic emulsions: entropic, electrostatic, and interfa-
cial. For emulsions having droplet radii larger than a few mi-
crons, the entropic term is typically negligible, and even the
electrostatic term can often be neglected, if the Debye screen-
ing length λD is much smaller than the average droplet radius
<a>. However, for colloidal emulsions, which have droplet
radii ranging from several nanometers to several microns, ac-
counting for all three terms is necessary when predicting their
equilibrium properties, such as Π and the linear elastic shear
modulus G′p (i.e. plateau storage modulus).

For uniform emulsions that have highly peaked
monomodal size distributions, the positional structure of
the droplets in the emulsion also plays an important role.
When rapidly concentrated by applying a substantial os-
motic pressure, for instance through ultracentrifugation,
droplets in these monodisperse emulsions remain disor-
dered even as the emulsion solidifies (Mason et al.
1995). Thus, the colloidal disorder-order transition
(Russel et al. 1989) is bypassed, and the droplets remain
in a disordered structure as a consequence of quenching ϕ
in the presence of Brownian excitations, which leads to a
glassy ergodic-nonergodic transition (Pusey and van
Megen 1987) and then to jamming and isotropic visco-
elastic emulsions that have statistically reproducible mac-
roscopic physical properties. The maximally probable
jamming point (Torquato et al. 2000; O’Hern et al.
2003), a more precisely defined notion related to random
close packing (Bernal and Mason 1960; Finnery and
Woodcock 2014), for monodisperse spheres occurs at a
critical volume fraction of ϕc≈ 0.646. Going beyond ear-
lier work of Princen (Princen and Kiss 1986), Mason
(Mason et al. 1995, 1997) measured G′p(ϕ) of disordered
microscale monodisperse emulsions stabilized by an ionic
surfactant and previously established that this ϕc effec-
tively set the beginning of the rise in measurements of
G′p(ϕ) after accounting for electrostatic repulsions be-
tween droplets in an ad hoc manner. Later rheological
measurements by Wilking and Mason (Wilking and Mason
2007) on uniform repulsive ionic nanoemulsions showed
that jamming can be seen at ϕ well below ϕc, thereby

revealing the increasing importance of electrostatic repul-
sions for nanoemulsion systems as the droplet radius gets
closer to the Debye screening length.

Although analytical models (Morse and Witten 1993;
Buzza et al. 1995; Mason 1995; Mason and Scheffold 2014)
and numerical studies (Lacasse et al. 1996; Mason et al. 1997;
O’Hern et al. 2003; Ikeda et al. 2012, 2013; Scheffold et al.
2013, 2014) have had some success in describing certain lim-
ited regimes of emulsion rheology, none have treated ionic
colloidal emulsions by combining all three energetic contribu-
tions (i.e., entropic, electrostatic, and interfacial) into a total
free energy that is minimized in a near-equilibrium approach
to provide thermodynamicΠ andG′p. For uncharged colloidal
emulsions, an energy minimization approach using a micro-
scopic parameter describing average droplet deformation has
been introduced by Mason (Mason 1995; Mason and
Scheffold 2014); this model involved only entropic and inter-
facial terms. Exploring smaller colloidal emulsions, Wilking
and Mason (Wilking and Mason 2007) measured G′p(ϕ) of
uniform disordered nanoemulsions and interpreted this data
using a model based on two energetic contributions from re-
pulsive electrostatic interactions and interfacial droplet defor-
mation, linked by droplet jamming at ϕc. Through this inter-
pretation, they deduced the electrostatic interaction potential
as a function of average separation between droplet interfaces,
essentially creating a macroscopic rheological form of a
surface-forces measurement (Israelachvili 1992). By keeping
these same two energetic contributions in an electrostatic-
interfacial model that involved energy minimization,
Scheffold et al. (2014) took this idea further and predicted
G′p(ϕ) for disordered, ionic emulsions while neglecting entro-
py, which was assumed to be a constant value of several kBT,
where T is the temperature. Following on initial simulations
(Lacasse et al. 1996), recent numerical work on the jamming
transition of soft spheres has been carried out in the zero-
temperature limit neglecting entropic contributions (Jorjadze
et al. 2013; Liu and Nagel 2010; O’Hern et al. 2003; Seth et al.
2006; van Hecke 2010). In this jamming work, where entropic
excitations are absent, important scaling relations have been
discovered, and these can be employed to derive measurable
quantities such as the shear modulus or pressure based on the
excess number of soft particle contacts and the pair interaction
potential. However, none of these prior models of disordered
uniform droplets, whether analytical or numerical, have com-
bined all three relevant energetic terms in a near-equilibrium
energy minimization approach.

Here, to overcome these limitations, we present a near-
equilibrium free energy model for disordered colloidal ionic
emulsions that includes all three terms and connects them
using a model of nearest-neighboring droplet interactions that
includes the disordered structure of jammed monodisperse
droplets. This connection is made geometrically by introduc-
ing an average droplet deformation parameter, ϕd, as has been
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done previously in a two-term entropic-interfacial model for
non-ionic emulsions (Mason 1995; Mason and Scheffold
2014). The three-term free energy is minimized with respect
to ϕd for different droplet volume fractions ϕ relative to ϕc,
yielding predictions of the emulsion’s osmotic equation of
state Π(ϕ). By further introducing a shear strain γ into this
model, performing energy minimization, and then taking ap-
propriate thermodynamic second derivative with respect to γ,
we predict G′p as a function of ϕ. We show that these predic-
tions closely match measurements of Π and G′p of model
disordered colloidal ionic emulsions of silicone oil in water
taken at a fixed aqueous concentration of amphiphilic electro-
lyte (sodium dodecyl sulfate (SDS)). Moreover, we show that
this model also explains measurements of G′p(ϕ) of
nanoemulsions in which a non-amphiphilic salt (sodium chlo-
ride (NaCl)) has also been added. From this, we reveal that the
surface potential on the droplets increases when the concen-
tration of added NaCl begins to exceed that of the SDS. While
distributions of microscopic properties, such as coordination
number, are not taken into account explicitly, this entropic-
electrostatic-interfacial (EEI) model, through a near-
equilibrium energy minimization approach, reasonably predicts
the shear modulus and osmotic pressure of Brownian, ionic,
screened-charge, uniform, disordered, colloidal emulsions.

Methods and materials

Nanoemulsion preparation, fractionation,
and characterization

We first create a polydisperse microscale oil-in-water premix
emulsion by emulsifying trimethyl-terminated polydimethyl-
siloxane (PDMS) silicone oil (viscosity 10 cSt, mass density
0.935 g/cm3, Gelest) at ϕ=0.3 into a 20 mM aqueous SDS
solution (MP Biomedicals, Ultrapure) (Meleson et al. 2004).
We process this premix emulsion at a liquid pressure of
10,000 psi through a 75-μm Y-type diamond interaction
chamber using a Microfluidics M-110P homogenizer,
recirculating for three passes using a cooling coil immersed
in an ice-water bath. The resulting submicroscale emulsion is
fractionated via ultracentrifugation to reduce the polydispersi-
ty in the droplet size distribution. To size-fractionate the
resulting polydisperse nanoemulsion, we dilute it to ϕ=0.15
using a 10 mM SDS solution and ultracentrifuge at
15,000 rpm for 9 h (L8-55 Beckman, SW 28 TI Rotor). We
recover cylindrical elastic plugs at the top of the ultracentrifuge
tubes and divide these into three disk-like sections (i.e. top,mid-
dle, and bottom sections) having equal lengths using a stainless
steel blade. Similar sections of the plugs from different centri-
fuge tubes are combined to create three concentrated emulsions,
yielding a first size-fractionation step.We then separately dilute
each of these three concentrated emulsions with 10 mM

SDS solution to set ϕ=0.15, and we perform two additional
ultracentrifugal size-fractionation steps (15,000 rpm for 6 h,
and12,000 rpmfor8h).Repeateddilutionof these concentrated
emulsions with 10 mM SDS during size-fractionation ensures
that the final SDS concentration in the CP is fixed to 10 mM,
irrespective of the SDS concentration used to make the initial
polydisperse emulsion. By taking the top sections of the first
step, the middle sections of the second step, and the middle
sections of the third step, we obtain a fractionated emulsion that
has an averagedroplet radius that lies between larger submicron
andmicron-scaledroplets (Masonetal. 1997) and smallernano-
scale emulsions (Wilking and Mason 2007) at [SDS]=10 mM
as in prior published results. This concentration is only slightly
higher than thecriticalmicelle concentrationofSDSnear8mM,
soenergiesassociatedwithmicellar-drivendepletionattractions
between droplets are all much less than thermal energy and can
be neglected for microscale and nanoscale droplet radii (Russel
et al. 1989).

We measure the average hydrodynamic radius of this new
fractionated emulsion using dynamic light scattering (DLS)
(90 deg, laser wavelength 633 nm, temperature 295 K, diluted
using a 10 mM SDS solution to ϕ ≈10−4–10−5), yielding an
average hydrodynamic radius of <a>= a=104±2 nm. The
polydispersity in thesizedistributionof these fractionateddrop-
lets is ≈20 %, as inferred from small angle neutron scattering
experiments onother emulsions that havebeen fractionated in a
similar manner (Scheffold andMason 2009).We alsomeasure
ϕ of the fractionated concentrated emulsion by evaporating the
water from about 150 mg of emulsion at room temperature,
since the oil and SDS are non-volatile (Zhu et al. 2012). To
obtain smaller volumes of concentrated emulsion at desired ϕ,
we dilute this stock fractionated concentrated emulsion with
10 mM aqueous SDS solutions and stir gently to avoid intro-
ducing air bubbles.

Linear shear rheometry

We load approximately 150 μL of the fractionated emulsion
into a cone-and-plate shear rheometer (Rheometrics RFS II,
controlled strain, 25 mm diameter, 0.1° cone angle, titanium).
We perform a frequency sweep from 1.0×102 rad/s down to
1.0 × 10−2 rad/s at a peak shear strain amplitude of
γ = 1.0 × 10−2 and then a strain sweep at a frequency of
ω=1.0 rad/s from γ=2.0×10−3 to γ=2.0. The shear strain
amplitude used in the frequency sweep is below the yield
shear strain of all emulsion samples. We determine the plateau
elastic shear moduli using the inflection point of the G′ curve
in the frequency sweep (Mason 1995; Mason et al. 1997). If
no inflection point can be identified on the G′(ω) curve, then
G′ at ω=1.0 rad/s is reported. We use an enclosing vapor trap
filled with water to prevent water evaporation from the emul-
sion during the measurements. Residual torques arising from
the vapor trap are much less than the torques due to the loaded
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emulsions for all measurements. We have tested for the pos-
sibility of wall slip, and it is not present for these fractionated
nanoemulsions in the small shear strain limit.

Interfacial tension measurements

We measure the interfacial tension between the aqueous
10 mM SDS solution, into which different concentrations of
NaCl have been added, and the PDMS oil using a du Nouy
ring (Hanson et al. 2008; Zuidema and Waters 1941). Before
each measurement, we clean the du Nouy ring (CSC
Scientific, platinum-iridium, circumference = 5.996 cm;
R/r=55.6, where R is the radius of the ring and r is the radius
of the platinum wire) by rinsing it with deionized water and
flaming it with a methanol flame. We pour the aqueous solu-
tion, which has a higher mass density, into a small crystalliza-
tion dish (80-mm diameter) and then slowly pipette the PDMS
oil on top of the aqueous layer. The duNouy ring is attached to
a custom bottom-hole surface tensiometer and submerged
through the PDMS oil into the aqueous phase. This tensiom-
eter has been previously calibrated by measuring the air-liquid
surface tension of deionized water, obtaining the reported val-
ue to within ±5 %. After waiting 5 min while the ring is fully
submerged, we command the tensiometer to lower the crys-
tallizing dish using a LabVIEW-controlled motor, and we dig-
itally record the force on the ring by the bottom hook of the
balance as the ring is slowly pulled through the interface at a
rate of 0.10 mm/s until the interface detaches from the ring.
We use the peak force and the mass densities to calculate the
interfacial tension (Zuidema and Waters 1941). All surface
tension measurements have been performed at room temper-
ature, T=298 K, the same as has been used for the rheometry
measurements.

Model

We consider a disordered colloidal emulsion system of soft,
deformable, uniform droplets composed of a first viscous liq-
uid, the dispersed phase, that effectively form a Brownian
suspension in a second immiscible liquid, the continuous
phase, at a temperature T. Each droplet has a fixed volume,
Vdrop=4πa

3/3, where a is its undeformed radius. The number
of droplets in the system is N, the system’s total volume is V,
and the droplet volume fraction is ϕ=NVdrop/V. Droplet sta-
bility is assured by adding an adequate concentration of an
ionic amphiphilic surfactant, presumed to be present in only
the continuous phase, some of which has adsorbed onto drop-
let interfaces. Thus, screened-charge electrostatic repulsions
exist between the interfaces of droplets, and ions only reside
in the continuous phase and at the surfaces of the droplets
where the charged head groups of adsorbed ionic surfactant
molecules are located. Droplet interfaces can deform near re-
gions of closest approach (ROCAs) with nearest neighboring

droplets. Such volume-preserving deformation of a droplet
necessarily implies that work has been done against interfacial
tension σ to increase its surface area. A characteristic Laplace
pressure scale of an undeformed droplet is therefore σ/a, and
an applied osmotic pressure Π must approach this Laplace
pressure scale to cause any significant droplet deformation.

In a dilute system of droplets at low ϕ, entropy dominates
the free energy because the average separation h between
neighboring droplets’ interfaces at ROCAs, on average, is
significantly larger than the characteristic thickness of the
Debye layers, λD, of the screened-charge repulsion, represent-
ed schematically by blue boundaries around droplets as shown
in Fig. 1a. At higher ϕ in the near-glass regime where ϕ is still
below the ergodic-nonergodic glass transition, the droplets
form cages around each other but the cages are transient due
to entropic fluctuations; the system remains ergodic,
exhibiting a low-frequency relaxation. As the system is further
concentrated (Fig. 1b), neighboring droplets no longer form
transient cages, and the system becomes a non-ergodic glass;
the low-frequency relaxation disappears, yet the droplets are
not strictly jammed and Brownian fluctuations of droplets can
still be significant. As ϕ is further increased, the separation
between the droplets’ interfaces becomes small enough that
adjacent Debye layers of neighboring droplets begin to over-
lap, and the droplets begin to repulsively jam through
screened-charge repulsions as shown by the electrostatic re-
gime in Fig. 1c. This electrostatic repulsion also leads to tiny
interfacial deformations near ROCAs of neighboring droplets
in order to increase the separation between the charged droplet
interfaces. Droplets experience greater electrostatic repulsion
upon further concentration, so this leads to greater deforma-
tion of the droplets’ surfaces to create facet-like areas of re-
duced curvature at ROCAs. At even largerΠ, work is primar-
ily done against interfacial tension and droplet deformation,
and droplet deformation can become significant, as shown by
the interfacial regime in Fig. 1d.

As a fluid-like, dilute, Brownian dispersion of disordered
droplets is concentrated by an applied Π, we assume that ϕ
passes rapidly through the colloidal disorder-order transition
(Snook and van Megen 1976; van Megen and Snook 1975),
corresponding to 0.495≤ϕ≤0.545 for hard spheres, thereby
suppressing crystallization, and into the near-glass regime,
just below the glass transition volume fraction, corresponding
to ϕg≈0.56–0.58 for hard spheres, associated with an ergodic-
nonergodic transition and the disappearance of a low-
frequency relaxation. As ϕ is further raised through and be-
yond ϕg into the glass regime, and beyond that into the jam-
ming regime, the system remains disordered (Mason and
Scheffold 2014). Thus, in a colloidal ionic emulsion system,
as ϕ is raised, work is done against a combination of entropy,
screened-charge electrostatic interfacial repulsions, and drop-
let interfacial tension via deformation. Consequently, we con-
struct a model of the system’s total free energy, which includes
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these three contributions, and we calculate the osmotic pres-
sure Π and the linear shear elastic plateau storage modulus
G′p, of this system by minimizing its total free energy in the
limits of small droplet deformation and infinitesimal shear
strains. As ϕ is raised, we assume that the most probable out
of equilibrium states of disordered droplet configurations in
the highly jammed system are effectively sampled by a near-
equilibrium approach to the jammed regime through the
glassy regime (Mason and Scheffold 2014). Inherent in this
near-equilibrium approach is the implicit assumption that the
particular disordered state of the colloidal emulsion at a given
ϕ, even if only one manifestation of a large ensemble of mi-
croscopic droplet positional and interfacial structures that
could arise from one trial to the next in preparing the emul-
sion, still gives rise to highly reproducible averagemacroscop-
ic properties, including G′p and Π. Thus, the dominant contri-
bution to the free energy progresses from an entropic regime
to an electrostatic regime, and then to an interfacial regime, in
which more substantial droplet deformation can occur.

As a first step in building a suitable model for the free energy
of a dense ionic emulsion, we consider a simpler disordered
system of N uniform spheres having volume Vsphere=4πa

3/3 in
which the only contributions are entropic and all interactions
between the spheres are purely hard. When ϕ is raised rapidly
enough to avoid crystallization that could otherwise be caused by
the entropic colloidal disorder-order transition, these disordered
spheres can pass through the glass regime, characterized by a
glass transition volume fraction ϕg≈0.56–0.58 (Bengtzelius
et al. 1984; Pusey and van Megen 1987; Woodcock 1981), and
jam in a disordered configuration at a critical volume fraction ϕc,
where Π diverges. Randomly jammed or packed hard spheres
are known to have ϕc=ϕMRJ=ϕRCP≈0.646 (Bernal and Mason
1960; Torquato et al. 2000). For ϕ just below ϕc, the time- and
ensemble-average free volume Vf corresponding to accessible

translational microstates of the center of mass of a sphere has
been found to be proportional to the product of the volume per
sphere with the cube of the volume fraction difference away from
jamming (Woodcock 1981). This implies that the number of
translational microstates in the three-dimensional (3D) system
is Ω∼ (ϕc−ϕ)3N. Thus, according to Boltzmann’s law, the 3D
translational entropy of the hard-sphere system for ϕ near but
below ϕc can be estimated as: SHS = kB ln Ω ≈ kB
ln(ϕc−ϕ)3N=3NkB ln(ϕc−ϕ). Thus, for a disordered system of
hard spheres, it can be inferred that the entropic translational free
energy is Fent,HS=−TSHS=−3NkBT ln(ϕc−ϕ).

We next consider the entropic free energy of a system of
disordered uniform colloidal particles that have hard interac-
tions, yet are not completely spherical in a special manner that
we describe as follows. Starting with spherical particles in a
dense jammed system, we imagine slightly deforming all par-
ticles while conserving their internal volumes, in a manner
that creates tiny facet-like areas, which locally have smaller
curvature, near all ROCAs of all particles. The result of such
selective tiny deformations causes the particles in the jammed
system to lose contact with each other, and thus, unjam. Thus,
this procedure of deformation at ROCAs increases the free
volume available for translational motion of the particles.
For irreversible deformations, the system of deformed parti-
cles, if further compressed, would jam at a slightly higher
critical volume fraction ϕc′ compared to ϕc of perfect spheres.
The difference between ϕc′ and ϕc can be connected to an
effective deformation volume fraction ϕd related to transla-
tional motion: ϕd=ϕc′−ϕc, where ϕd>0, but ϕd is still small,
far from the limit of strong droplet deformation. Since the
spherical particles have only been slightly deformed, the
entropic contribution to the free energy of a disordered
system scales in a similar manner as for spheres, but
diverges at a higher ϕc′ instead of ϕc: Fent/N ≈ −3kBT

Fig. 1 Rapidly increasing the volume fraction ϕ of uniform colloidal
droplets in ionic oil-in-water emulsions leads to a disordered structure
and a shear elasticity that arises from a combination of entropic,
electrostatic, and interfacial forces. Dispersed-phase oil droplets (green)
and surfaces populated with ionic surfactant molecules, which cause
screened-charge repulsions between droplet interfaces. The aqueous
continuous phase (white) contains ions, leading to a Debye screening
length λD (blue coronas). A central droplet (red outline) is surrounded
by its nearest neighbors (black outline), and these are surrounded by
second nearest neighbors (dashed outline). Osmotic compression raises

ϕ from the dilute limit into the following regimes: a the entropic near-
glass regime, which is ergodic, so cages of nearest neighbors are transient,
as a result of entropic fluctuations; b the entropic glass regime, which is
non-ergodic; c the electrostatic jammed regime, in which Debye layers of
the droplet begin to overlap significantly and screened electrostatic
repulsive forces dominate as the droplets are jammed together; and d
the interfacial jammed regime, in which droplets become increasingly
deformed, but still weakly deformed, and work is predominantly done
against interfacial tension (color figure online)
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ln(ϕc′−ϕ)≈−3kBT ln(ϕc +ϕd−ϕ). In the dense system,
the slightly deformed particles cannot easily re-orient
because of their neighbors, so we ignore rotational con-
tributions to the entropic term in the free energy.

Next, we construct the interfacial free energy of deformable
spheres based on a simplified model of droplet compression by
its nearest neighbors above the jamming point for a certain ap-
plied osmotic pressure Π. We assume that the emulsion is an
isotropic effective medium and therefore that there is an average
near-equilibrium separation between centers of neighboring
droplets as well as average local geometrical features at all
ROCAs. For simplicity of representation in the schematic, we
show a middle cross section of a single cubic box (see Fig. 2),
implying six nearest neighboring droplets in 3D; the scaling form
resulting from the following argument can also be generalized to
a disordered configurational structure for the real emulsion sys-
tem even if numerical prefactors differ. We define Δr to be an
average deformation length along the centerline between adja-
cent droplets normal to a small circular facet; each facet has an

area of πrd
2, where rd is the average radius of the facet (Fig. 2).

We assume weak deformation near and above the jamming
point, implying Δr<<a. As a consequence, there is a gain in
accessible translational microstates resulting from these deforma-
tions at ROCAs, which is directly related to ϕd (Mason and
Scheffold 2014). For ϕ near the jamming point, each droplet in
a disordered system of spheres also has ≈6 nearest neighboring
droplets on average; we assume that changes in coordination
number around the jamming point play only a minor role in the
free energy near the jamming point. In going from an uncom-
pressed to a weakly compressed state, the osmotic pressure ef-
fectively causes a small change in volume of an imaginary box
around a droplet of 6(2a)2Δr. Dividing this change in volume by
the box’s original volume gives the deformation volume fraction
ϕd=24a

2Δr/(2a)3=3Δr/a, so ϕd is linearly proportional to Δr.
Using the Pythagorean theorem, a2= rd

2+ (a−Δr)2, so the area
of a deformed facet is πrd

2≈πa2[1− (1−Δr/a)2] ≈πa2(2Δr/
a)≈2πaΔr to leading order in Δr in the weak compression
limit. The linear dependence of the facet area onΔr and there-
fore ϕd is a key geometrical result, but six times this facet area
does not represent the excess surface area of a droplet as a
result of the osmotic compression, since volume conservation
of the droplet must be respected.

To obtain the connection between the interfacial free ener-
gy and ϕd, we use force balance to obtainΠ in terms of ϕd and
then we integrate. By Newton’s law, the force given by the
weakly deformed droplet’s Laplace pressure exerted over the
area of one of its facets, on average, must be equal to the force
given by the applied osmotic pressure over a face of the cube
where that facet is located: (2σ/a)(πrd

2)≈Π(2a)2. Thus, the
osmotic pressure is linearly proportional to the deformation
volume fraction ϕd: Π≈ (πσ/a2)Δr≈ (π/3)(σ/a)ϕd. We define
the interfacial free energy fint associated with deformation of a
single droplet to be a function of ϕd. We obtain fint from Π
using the differential equation Π(ϕ) = [ϕ2/(4πa3/3)]∂fint/∂ϕ
(Mason et al. 1997), which, when converted into a function
of ϕd, is approximately Π(ϕd)≈ [ϕc

2/(4πa3/3)]∂fint/∂ϕd, as-
suming that ϕd is significantly smaller than ϕc for weak drop-
let deformation. Using the force balance resultΠ(ϕd)∼ϕd and
integrating, we obtain fint∼σa2ϕd

2 , which is quadratic to
leading order in ϕd, where ϕd≥0. Thus, the change in a drop-
let’s surface area resulting from a uniform osmotic compres-
sional deformation is ∼a2ϕd2 to leading order. Here, as a con-
venient convention, we omit a constant term related to the area
of an undeformed droplet in fint; this convention does not
influence calculated values of Π and G'p, which depend on
derivatives of fint. In addition, for simplicity, we ignore small
variations in the local coordination number that can occur
around the jamming point, recognizing that this could be in-
corporated later into a more complex model.

In a real disordered material, the prefactor associated with
fint could be different than the one we have calculated from the
cubic model, so we simply generalize the interfacial free

Fig. 2 Schematic two-dimensional cross-section of a single oil droplet
(green) in an aqueous surfactant solution (white) that is deformed by
applying a uniform osmotic compression through a small reduction in
the volume of an enclosing, rigid, semi-permeable cube (dashed lines).
a Prior to deformation, the droplet is spherical and has radius a; the cube’s
edge length is 2a. b After deformation, the enclosed droplet is
isotropically compressed by a length 2Δr from the original cube. Small
circular facets having radii rd form at regions where the droplet interface
is deformed. The droplet volume is conserved (color figure online)
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energy per droplet to be: fint =Fint/N≅4πξσa2ϕd2. We have
introduced a dimensionless numerical parameter ξ to bridge
between the cubic model and a real isotropic disordered emul-
sion system; ξ is related to the distribution of facet sizes and
local neighbor configurations of the real emulsion system
(Mason and Scheffold 2014), and it could even depend on real
polydispersity in the droplet size distribution. This simple
model of energy associated with droplet deformation in a dis-
ordered concentration emulsion captures the most relevant
main feature. We recognize that other refinements, such as
the known logarithmic correction to the harmonic dependence
of the free energy (Morse and Witten 1993), changes in local
coordination number near and above ϕc (Lacasse et al. 1996),
and changes in the effective values of ϕc for disordered sys-
tems of spheres having differing polydispersities (Desmond
and Weeks 2014), could be incorporated into more complex
models in the future. Such adjustments would refine the main
result of the simple deformation model for Fint/N near and just
above the jamming point.

Next, we consider the contribution to the free energy per
droplet associated with electrostatic interactions, Felec/N, via
screened-charge electrostatic repulsions between the
surfactant-coated interfaces of the deformed droplets. In the
limit of weakly deformed droplets that have pairs of opposing
deformed facets near all ROCAs, we assume that the dominant
contribution to the electrostatic interactions arises primary from
screened repulsions between these proximate facets, which are
separated by an average distance of closest approach h. The
high density of droplets having charged surface regions and
counterion screening layers precludes the use of simple formu-
lae developed for pair interactions of isolated spheres that have
charged surfaces. The screened electrostatic potential between
two disks (i.e., proximate deformed facets of neighboring drop-
lets) separated by a distance h in a dilute solution having an
ionic strength I is Felec/N≈2πa2εrε0ψ0

2 exp(−h/λD)/h, where
the surface charge density is ψ0, the Debye screening length is
λD= (εrε0kBT/(2e

2I))1/2, ε0 is the permittivity of vacuum, εr is
the relative dielectric constant of the continuous phase, and e is
the elementary charge (Larson 1999; Russel et al. 1989). Here,
ψ0 is negative for anionic surfactants; for simplicity, we report
and plot only the magnitude of ψ0. For common concentrations
of ionic surfactants used to stabilize emulsions, λD is typically
on the scale of few nanometers. This form for the free energy is
identical to that used in a model that has successfully scaled
nanodroplet elasticity (Wilking and Mason 2007), and it differs
only slightly from a form used to model screened electrostatic
interactions between isolated charged droplets that does not
include the factor of 1/h (Scheffold et al. 2014). Inherent in
the expression for Felec/N is the use of a linearized Poisson-
Boltzmann model in the Debye-Hückel limit (Russel, et al.
1989), so the surface potential on the droplets is fixed and the
ionic strength is assumed to be relatively small. In the limit of
small droplet deformation, changes in the total droplet surface

area, which could influence the equilibrium adsorbed density
and therefore the surface potential, are small and so we assume
that ψ0 does not depend on ϕ. Thus, the assumed electrostatic
free energy contribution does not attempt to treat complex ef-
fects, including surfactant adsorption equilibria, high ionic
strengths, and local variations in surfactant density on droplet
interfaces near and in between ROCAs. These more complex
effects related to electrostatic interactions could be potentially
relevant for a subset of ionic emulsions; treatment of such ef-
fects lie beyond the scope of this simplified model.

To connect the electrostatic free energy with the rest of
the EEI model, we must determine the dependence of h on
the deformation volume fraction ϕd. We define the average
center-to-center distance L between neighboring droplets to
be L= h+ 2(a−Δr)≈ h+ 2a since the droplets are weakly
deformable (Fig. 3). At the shifted jamming point ϕc′, we
envision a slightly deformed droplet as being effectively
enclosed by a larger spherical shell having volume
Veff = 4π(L/2)

3/3. Our definition of the shifted volume frac-
tion at the critical jamming volume fraction implies that
Vϕc′=NVeff =N[4π(L/2)

3/3]. At the shifted jamming point,
the true “bare” droplet volume fraction must still satisfy
Vϕ=NVdrop =N(4πa

3/3). Since N and V are fixed, dividing
these two equations implies that ϕc′/ϕ = L/(2a)3, where
ϕc′=ϕc +ϕd. Solving for h in terms of ϕ, ϕd, and the uni-
versal jamming point ϕc, we find h = 2a [(ϕc′/ϕ)

1/3 − 1],
leading to the following:

h ¼ 2a ϕc þ ϕdð Þ1=3 ϕ−1=3– ϕc þ ϕdð Þ−1=3
h i

: ð1Þ

For weak deformations around and near the jamming point,
ϕd <<ϕc so ϕd will make only a minor modification to the
(ϕc +ϕd)

1/3 factor in Eq. 1, but ϕd can still make a significant
impact on the difference in brackets. Consequently, we further
simplify the expression for h to

h ≈ 2aϕc
1=3 ϕ−1=3– ϕc þ ϕdð Þ−1=3

h i
: ð2Þ

We modify this model of the near-equilibrium free energy
of an ionic colloidal emulsion so that it can also be used to
calculate the linear plateau elastic shear modulus G′p, a rheo-
logical property based on an applied perturbative shear strain
γ. The shear deformation changes the positional configura-
tions of the droplets such that the shifted jamming point of
the sheared system is lowered by a quadratic term proportional
to γ2, since the free energy cannot depend on the sign of γ,
from the shifted jamming point of the unsheared system, ϕc′.
Consequently, we substitute ϕc′−αγ 2=ϕc +ϕd−αγ 2 into the
above expressions for Fent/N and Felec/N (i.e., into h in Eq. 2)
wherever ϕc′ occurs. Here, we have introduced α as a dimen-
sionless parameter that describes the average shear effects to
the configurations of the droplets and effectively incorporates
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non-affine local displacements that can occur in such systems
during osmotic compression and shear (Lacasse et al. 1996;
O’Hern et al. 2003). Thus, the complete set of equations
for the free energy per droplet contributions to the sheared
emulsion system are the following:

F int=N ¼ 4πξσa2ϕd
2 ð3Þ

Fent=N ¼ −3kBT ln ϕc þ ϕd− ϕ − αγ2
� � ð4Þ

Felec=N ¼ 2πa2εrε0ψ0
2exp −h=λDð Þ=h ð5Þ

where the separation at closest approach is

h ¼ 2ϕc
1=3a ϕ−1=3− ϕc þ ϕd − αγ2

� �−1=3h i
: ð6Þ

The total free energy per droplet is simply Ftot/N= (Fint +
Fent +Felec)/N, and ϕd is a parameter that must be minimized
in order to satisfy the near-equilibrium condition of free ener-
gy minimization, consistent with the second law of
thermodynamics.

To obtain Π in the absence of shear and G′p for an applied
perturbative shear, we first minimize the total free energy:

∂F tot

∂ϕd

����
ϕd¼ϕ*

d

¼ 0 ð7Þ

from which we determine ϕd*, the deformation volume frac-
tion satisfying the minimization condition, in terms of other
parameters, including γ in the case when a shear has been
applied. A transcendental equation arises from the minimiza-
tion condition, soMathematica’s FindRoot function (Wolfram

Research Inc.) is used to solve numerically for the one positive
real root of ϕd* that corresponds to a meaningful physical
value. Once we have obtained this ϕd*, we substitute it back
into the expression for the total free energy wherever ϕd oc-
curs to obtain the minimized total free energy Ftot*. We then
take appropriate thermodynamic derivatives of Ftot* to deter-
mine Π and G′p (Mason and Scheffold 2014):

Π ¼ ϕ2= NV drop

� �� �
∂F tot=∂ϕ½ �ϕd¼ϕ*

d;γ¼0 ð8Þ

G
0
p ¼ ϕ= NV drop

� �� �
∂2F tot=∂γ2
� �

ϕd¼ϕ*
d;γ¼0: ð9Þ

To obtain the osmotic pressure Π, solutions of ϕd* are found
for a range of ϕ values at γ=0, such that the local slope of
Ftot* with respect to ϕ can be calculated and used in Eq. 8. The
plateau elastic shear modulus G′p is found numerically as fol-
lows. For a particular ϕ value, solutions of ϕd* are found over
a small range of γ values from 0 to about 0.01, below the
measured yield strain of concentrated disordered emulsions,
corresponding to the linear rheological regime. At each ϕ, the
curvature ∂2Ftot*/∂γ 2 is obtained by finding the least-squares
fit of parabolic Ftot*(γ) centered around γ=0 for small γ. The
parabolic coefficient from the fit is then used to determineG′p.
This process is repeated for different ϕ, yielding G′p as a
function of ϕ. We have verified this approach using a high
density of ϕ and γ values (i.e., Δϕ=0.009 and Δγ=0.0005
intervals), and we find excellent agreement with a prior ana-
lytical solution (Mason and Scheffold 2014) when electrostat-
ic forces have been eliminated (i.e., when ψ0 =0 V). By first
solving the transcendental equation for ϕd* to determine the
minimized Ftot* and then finding slopes and curvatures of
these Ftot* numerically, we obtain the thermodynamic proper-
tiesΠ and G′p for a system of uniform deformable ionic drop-
lets as a function of ϕ below, through, and above the jamming
point. However, the EEI model is not expected to be appro-
priate in limits as ϕ→1, away from the weak deformation
limit where ϕd* would become large, and as ϕ→0, where
the scaling form used for the entropic term for ϕ near ϕc is
inappropriate.

Results and discussion

We compare the predictions of the EEI free energy minimiza-
tion model with five sets of G′p(ϕ) measured for uniform,
disordered, ionic, oil-in-water emulsions having microscale,
sub-microscale, and nanoscale droplet radii, as shown in
Fig. 4. We fix T=298 K, since measurements have been made
at room temperature, and we also fix ϕc =0.646, based on the
known ideal limit of maximal random jamming of perfectly
monodisperse spheres, recognizing that residual polydispersi-
ty in a real emulsion could shift this value somewhat
(Desmond and Weeks 2014; Zhang et al. 2015). We use a

Fig. 3 Schematic showing deformation of charged interfaces of two
ionically stabilized droplets (green: oil) in a concentrated oil-in-water
emulsion at a region of closest approach (ROCA) for osmotic
compressions approaching the Laplace pressure scale σ/a, where a is
the radius of an undeformed droplet and σ is its interfacial tension.
Debye layers that have a screening length λD (blue) overlap
significantly near the ROCA. The distance between the centers of the
droplets is L, the length along the centerline of droplet deformation is
Δr, and the separation between the oil-water interfaces at the ROCA is h.
Ions (not shown) are present in the continuous aqueous phase, and
charged amphiphiles (not shown) populate droplet surfaces (color figure
online)
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Debye screening length of λD ≈ 3.4 nm, predicted from
λD= [εrε0kBT/(2e

2I)]1/2, (Russel et al. 1989) where the ionic
strength I of the SDS solution is I≈8.2 mM, corresponding to
the known critical micelle concentration (CMC) of SDS
(Scheffold et al. 2014; Umlong and Ismail 2007). This value
of λD is only about 10 % larger than the calculated Debye
length using I=10 mM, disregarding micelle formation and
the CMC. Because the diameter of SDS micelles (i.e.,
≈4 nm) is larger than the Debye length and the SDS concen-
tration is very close to its CMC, any small residual concentra-
tion of SDS micelles would not be expected to contribute sig-
nificantly to the screening length. We fix the surface tension to
be σ=9.8 dyne/cm based on a prior measured value for PDMS
oil and 10 mM SDS solution (Mason 1995).

We determine the remaining parameters by optimizing the
global fit of the EEI model to all sets of measurements in
Fig. 4, yielding ξ=0.15, α=0.85, and |ψ0| =270 mV. These
values lie within uncertainty limits of separate entropic-
interfacial and electrostatic-interfacial models (Mason and
Scheffold 2014; Scheffold et al. 2014), where we have made
minor modifications to measured droplet hydrodynamic radii
within the range of polydispersity (i.e., approximately ±15 %)
to improve the global agreement. The value of ψ0 obtained
from the global fit is reasonably close to an estimate of
|ψ0| = 210 mV using Grahame’s equation, ψ0 = [2kBT/(ze)]

sinh−1[σe/(8c0εrεoRT)
1/2], which is based on Gouy-Chapman

theory (Russel et al. 1989), where c0 is the bulk molar con-
centration of the counterions in the CP, and z=1 is appropriate
for monovalent ions arising from dissociated SDS. In this
calculation, we have used a measured and reported value of
σe≈2 e/nm2 for the adsorbed surface density of dodecyl sul-
fate anions (DS−) at the interface of decane and water at
c0 = [SDS]=10 mM (Cockbain 1954). Differences in the dis-
persed phase compositions and differences in the experimen-
tal system from the assumed boundary conditions inherent in
Grahame’s equation could account for at least some of the
difference between the estimated and fitted values of ψ0.
Overall, the EEI model matches the measurements over a
wide range of radii from nanoscale to microscale emulsions.
It captures features including the interfacial contributions toG′

p at high ϕ as well as electrostatic and entropic contributions at
lower ϕ. Variations in residual droplet polydispersity, which
for the measured emulsions is typically about 10 - 20%, could
account for at least some part of small deviations of the data
from the model. At the lowest ϕ shown, the reported G′p
values do not necessarily correspond to a zero-frequency G′,
so the frequency dependence of the storage modulus could
play a role in any departures of the EEI model from the data
there.

The same parameters can be used with the EEI model to
describe the measured osmotic equation of state Π(ϕ) of a
uniform disordered microscale oil-in-water PDMS emulsion
having a=480 nm and stabilized using 10mMSDS, as shown
in Fig. 5 (Mason 1995; Mason et al. 1997; Mason and

Fig. 4 Plateau elastic shear moduliG′p, in units of Laplace pressure scale
σ/a, as a function of droplet volume fraction ϕ for uniformmicroscale and
nanoscale 10 cSt trimethyl terminated PDMS oil-in-water emulsions
stabilized by 10 mM SDS (points: measurements by mechanical shear
rheometry; solid lines: calculation using Eq. 9). Droplet radii are (from left
to right) a (nm): 28 (33) [red circles], 47 (47) [orange squares], 73 (67)
[green diamonds], 104 (108) [blue up-triangles], and 530 (530) [black
down-triangles] at T= 298 K. Values for a listed in parenthesis are used in
the calculation. Data for a< 100 nm are fromWilking andMason (2007),
for a= 530 nm are from Mason (1995) and Mason et al. (1995), and for
a= 104 nm are from the herein work. We fix the jamming point to be
ϕc = 0.646 and temperature T = 298 K. We also fix σ = 9.8 dyn/cm
(Mason 1995). Calculation parameters (see text) that yield the best
overall fits to all data are as follows: ξ = 0.15, α= 0.85, λD = 3.4 nm,
and kψ0k = 270 mV (color figure online)

Fig. 5 Osmotic pressure Π in units of Laplace pressure scale σ/a, for
SDS-stabilized PDMS oil-in-water emulsions having average radius
a = 480 nm (points: measurements by centrifugation (Mason 1995;
Mason et al. 1995); solid lines: calculation using Eq. 8 and same
parameter values as for G′p in Fig. 4). The calculated deformation
volume fraction, ϕd

*, as a function of volume fraction ϕ for
<a>=480 nm is shown in the inset (color figure online)
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Scheffold 2014). Given the large scatter in the data for Π at
lower ϕ, and the higher difficulty in measuring precise values
of Π using an ultracentrifugation technique (Mason et al.
1997), the comparison of measured and calculatedΠ(ϕ) using
parameters that had been optimized only using G′p(ϕ) data
represents good agreement. If the five sets of G′p(ϕ) are
disregarded, even better agreementwith themeasuredΠ(ϕ) could
be obtained using a slightly higher value of ξ=0.22 in themodel.
Becauseϕc=0.646 is used in our current calculations, rather than
an effective jammingvolume fractionofϕc,eff≈0.62 in priorwork
(Mason and Scheffold 2014), in which electrostatic effects had
only been accounted for in an ad hoc manner, the EEI model
represents an improvement over prior analyses and is consistent
with existing data describing the osmotic equation of state of dis-
ordereduniformemulsions. Furthermore, the largest values ofϕd

*

(see Fig. 5b, inset) shows the relative change in surface area per
droplet in any of our calculations, ξϕd*

2, is at most few percent;
thus, the droplets are onlyweakly deformed over the intermediate
range ofϕwherewe compare theEEImodelwithmeasurements.

Adding a solution of a non-amphiphilic salt, such as NaCl,
to the aqueous continuous phase can be used to effectively
melt and liquify elastic ionic nanoemulsions over a certain
range of ϕ (Scheffold et al. 2014). The measured G′p(ϕ) of
monodisperse emulsions having a=47 nm at [SDS]=10 mM
SDS concentration for several different added [NaCl] are
shown in Fig. 6. At larger [NaCl], the onset of elasticity, cor-
responding to the rise inG′p, occurs at larger ϕ. To explain the
origin of this effect, we consider the influence of [NaCl] on
several parameters in the EEI model, as follows.

The interfacial tension between an oil and an aqueous sur-
factant solution is typically reduced when soluble salts are
added to the aqueous solution (Kanellopoulos and Owen
1971). We have measured the interfacial tension σ between
the oil and an aqueous solution containing fixed
[SDS]=10 mM while varying [NaCl] added. The results are
plotted relative to σ0 between PDMS oil and a 10 mM SDS
aqueous solution in Fig. 7a (squares). The measured reduction
in σ/σ0 can be fit using a semi-empirical function, σ/σ0=1+
A(exp(−[NaCl]/[NaCl]*)−1), yielding A=0.338±0.007 and
[NaCl]* = 28 ± 2 mM with a correlation coefficient of
R2=0.998. This reduction in interfacial tension by the added
non-amphiphilic electrolyte indicates that DS− anions have
been driven from the continuous phase onto the interfaces of
the oil droplets.

The increased ionic strength in the aqueous phase also af-
fects the electrostatic interactions between the droplets by re-
ducing λD= [εrε0kBT/(2e

2I)]1/2, where this formula is valid
only in the limit of dilute electrolyte concentrations (Russel
et al. 1989; Scheffold et al. 2014). Values of λD for added
[NaCl] =0, 10, 40, and 90 mM used in the model are 3.4,
2.3, 1.5, and 1.1 nm, respectively (see Fig. 7b). These values

Fig. 6 Plateau elastic shear moduli G′p as a function of droplet volume
fraction ϕ for a = 47 (46) nm, 10 cSt PDMS oil-in-water emulsions
stabilized by 10 mM SDS with varying NaCl concentrations at
T = 298 K (points: measurements by mechanical shear rheometry
(Wilking and Mason 2007); solid lines: calculation using Eq. 9). The
concentrations of added NaCl (mM) (from left to right) are as follows: 0
(red circles), 10 (green squares), 40 (blue diamonds), and 90 (black
triangles). Surface tension and electrostatic parameters used to calculate
the corresponding lines are shown in Fig. 7; all others are the same as in
Fig. 4 (color figure online)

Fig. 7 Parameter values used to fitG′p(ϕ) data of emulsions to which salt
NaCl has been added in Fig. 6, for uniform, concentrated, disordered
PDMS emulsions in aqueous 10 mM SDS solution. a Experimental
measurements of interfacial tension, measured using a du Nouy ring
method, are plotted as relative surface tension σ/σ0, referenced to the
interfacial tension of σ0 = 9.8 dyn/cm, between 10 mM SDS and PDMS
oil are shown as blue squares. An empirical exponential model (black
line) for the relative interfacial tension is shown (see text). Red points on
the fitted line are used for the calculations. b Debye lengths, λD, used in
the fits (red points) follow the prediction: λD= (εrε0kBT/(2e

2I))1/2 (black
line). cMagnitude of the surface potential |ψ0| ≈ 270 mV in the absence of
added NaCl and ψ0 increases with [NaCl] once [NaCl] approaches and
exceeds the fixed [SDS]≈ 10 mM. Reported uncertainties in ψ0 (error
bars correspond to one standard deviation) have been determined using
minimization of chi-square values of the fits to G′p(ϕ) (color figure
online)
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of λD yield good agreement with the measured G′p(ϕ) and
deviate only slightly from the Debye screening equation at
higher [NaCl]. Because the activities of ionic species can de-
viate from the ideal dilute Debye limit, slight departures of λD
from the ideal prediction at higher [NaCl] could be
anticipated.

Using the measured reduction in σ/σ0 and the pre-
dicted reduction in λD with [NaCl], we adjust ψ0 to
obtain the best overall agreement for each G′p(ϕ) curve
in Fig. 6; the results for ψ0([NaCl]) are shown in
Fig. 7c. For [NaCl]≤ 10 mM, which is comparable to
or smaller than [SDS], ψ0 does not change much within
the uncertainties obtained from the fits. However, for
[NaCl] ≥ 40 mM, there is a marked increase in ψ0, indi-
cating a greater surface charge. At least some of this
increase in ψ0([NaCl]) is likely to arise from additional
adsorbed DS− on the surfaces of droplets, caused by the
higher concentration of additional non-amphiphilic an-
ions in the continuous phase. This increased adsorption
is qualitatively consistent with the reduction in surface
tension related additional DS− on the droplet surfaces, a
consequence of a shift in the DS− adsorption equilibri-
um caused by the addition of NaCl to the continuous
phase. However, considering the mass balance of free
and adsorbed surfactant, we find that increased adsorp-
tion of DS− from the CP onto the surfaces of the drop-
lets cannot be solely responsible for the increase in the
value of ψ0. This suggests that non-ideal ionic effects,
such as the development of a secondary attractive min-
imum in the droplet pair potential at high added non-
amphiphilic salt concentrations is likely to also be hap-
pening (Bibette et al. 1993; Mason 1995). Such second-
ary minima are not captured by the electrostatic term in
our model, so a more complex model is most likely
needed to describe the regime of high concentrations
of added non-amphiphilic salts. Overall, the calculated
values of G′p(ϕ) agree well with the measured data
using the parameters shown in Fig. 7. Thus, we have
used the EEI model in combination with the existing
macroscopic measurements for G′p(ϕ,[NaCl]) to estimate
the microscopic ψ0([NaCl]).

Having determined appropriate parameters for the EEI
model, which yield good agreement with a large number of
measurements ofG′p(ϕ) over a wide range of droplet radii and
added [NaCl], we vary certain parameters while fixing others
in order to predict the linear rheological behavior of disor-
dered ionic emulsion systems over a wide range of conditions.
Figure 8 shows the systematic variation of predictedG′p(ϕ) for
various radii, fixing other parameters to match with PDMS
oil-in-water emulsions stabilized at [SDS] = 10 mM. The
smaller the droplet radii are, the more likely the crossover
behavior occurs towards lower ϕ, below the maximally ran-
dom jamming point ϕc = 0.646, as a consequence of the

screened-charge electrostatic repulsion. As the characteristic
droplet radius becomes closer to λD, the droplets effectively
jam at much lower volume fractions. The EEI model appro-
priately captures this jamming effect as well as the entropic
modulus scale for ϕ below the effective jamming point.

In Fig. 9, we show how G′p is influenced by different
values for electrostatic parameters λD and ψ0. For nano- and
micro-scale emulsions (a=30, 270, and 2430 nm), at a given
droplet size and fixed surface potential, the rapid rise in G′p
associated with disordered jamming shifts toward lower ϕ as
λD is increased, as shown in Fig. 9a–c). The limit λD→0
effectively turns off the electrostatic term in the free energy,
so G′p(ϕ) in that limit reflects only entropic and interfacial
contributions. Increasing the surface potential while fixing
λD for the same set of ionic emulsions causes this rapid rise
to shift towards lower ϕ, as shown in Fig. 9d–f. Droplets
having ψ0 =0 mV corresponds to an absence of electrostatic
effects, so interactions between neighboring surfaces of de-
formable droplets are effectively hard.

We next calculate the relative contributions of entropic,
electrostatic, and interfacial terms to Ftot, G′p, and Π using
the EEI model. Figures 10, 11, and 12 show the absolute
and relative contributions for PDMS emulsions having
a=270 nm at [SDS]=10 mM over a range of ϕ. The relative
percent graphs, shown in Figs. 10b, 11b, and 12b, obtained
from free energy minimization, are consistent with the quali-
tative regimes depicted in Fig. 1. Furthermore, Fig. 10a shows
that the entropic free energy per droplet remains about ≈5 kBT
above the crossover to the electrostatic regime. This value
resulting from free energy minimization of the EEI model is
close to an assumed value in the electrostatic-interfacial ener-
gy model (Scheffold et al. 2014).

Fig. 8 Calculated plateau elastic shear moduli G′p, in units of Laplace
pressure scale σ/a, as a function of droplet volume fraction ϕ, based on
the EEI model describing colloidal ionic emulsions for various droplet
radii a in a 10 mM aqueous SDS solution (model parameters: see Fig. 4
caption) (color figure online)
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Using parameter values that correspond to PDMS droplets
in 10 mM aqueous SDS solutions, we determine the two
values of ϕ corresponding to crossover in G′p between the
entropic and electrostatic regimes and between the electrostat-
ic and interfacial regime for a given droplet radius. We repeat
this process for a wide range of droplet radii and show the
results as lines separating the dominant contributions toG′p in
Fig. 13. The labeled areas in the plots indicate which of the
three terms contribute the most toG′p. The two lines in Fig. 13

converge to the critical jamming point ϕc in the limit of very
large, macroscopic droplets, and the electrostatic regime ef-
fectively disappears.

The dependence of G′p on temperature has also been ex-
plored. Temperature mostly affects the magnitude of the en-
tropic term, although temperature also affects λD in the elec-
trostatic term. In the entropic regime, the calculated G′p from
the numerical minimization procedure is found to increase
linearly with respect to increasing temperature, consistent with

Fig. 9 Calculated dependence of
plateau elastic shear modulus G′p
as function of droplet volume
fraction ϕ on electrostatic
parameters for oil-in-water
emulsions in aqueous 10 mM
SDS solution for droplet radii a
(nm): 30 (a, d), 270 (b, e), and
2430 (c, f). For a–c, Debye length
is varied, λD (nm): 5, 4, 3, 2, and 1
(lines from left to right) at a fixed
surface potential ψ0 = 270 mV.
For d–f, surface potential is varied
ψ0 (mV) = 810, 270, 90, 30, and
0 mV (lines from left to right) at
fixed λD= 3.4 nm. All other
parameters are fixed and the same
as those in Fig. 4 (color figure
online)

Fig. 10 Calculated free energies per droplet F as function of droplet
volume fraction ϕ for uniform disordered emulsions having a= 270 nm
oil droplets in 10 mM aqueous SDS solution (parameters from Fig. 4): a
entropic (Fent, dashed line), electrostatic (Felec, dashed-dotted line),
interfacial (Fint; dotted line), and total F=Fent +Felec +Fint (solid black
line). b Percent relative contributions of Fent, Felec, and Fint to the total F
(color figure online)

Fig. 11 Calculated plateau elastic shear moduli G′p for a = 270 nm oil
droplets in 10 mM aqueous SDS solution as a function of droplet volume
fraction ϕ using parameters from Fig. 4: a entropic (G′p,ent, dashed line);
electrostatic (G′p,elec, dashed-dotted line); and interfacial (G′p,int, dotted
line); total (G′p =G′p,ent +G′p,elec +G′p,int, solid black line). b Percent
relative contributions of G′p,ent, G′p,elec, and G′p,int to the total G′p (color
figure online)
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G′p∼ kBT/Vf (Russel et al. 1989; Woodcock 1981). In princi-
ple, if the temperature T could be tuned to approach 0 K while
preserving the CP in a liquid state, then the entropic contribu-
tion to the free energy would be effectively turned off, and the
two-term electrostatic-interfacial free energy would lead to the
jamming result (Wilking and Mason 2007; Scheffold et al.
2014). Given the narrow range of temperatures over which
the aqueous phase exists in a liquid state (e.g., from about
273 to 373 K at atmospheric pressure), varying temperature
over this range only makes a minor change in the osmotic
equation of state and in the linear viscoelastic modulus.
Thus, for oil-in-water emulsions, the most practical and effec-
tive means of investigating the entropic regime is not by vary-
ing temperature, but rather by reducing the droplet radius
while also reducing the Debye screening length.

Conclusion

We have shown that minimizing a total free energy with re-
spect to an average microscopic droplet deformation parame-
ter accounts well for the shear elasticity and osmotic pressure
of concentrated disordered ionic emuls ions and
nanoemulsions for droplet volume fractions below, near, and
above ϕc. The EEI model connects three principal energetic
terms, entropic, electrostatic, and interfacial, of this total free
energy using a near-equilibrium approach that assumes disor-
dered jamming of monodisperse deformable droplets while
conserving droplet volume. Simultaneous fitting of measured
G′p(ϕ) curves for a wide range of droplet radii establishes the
values of two universal parameters, ξ and α, that essentially
set the relative strengths of the terms and are based fundamen-
tally on complicated geometrical aspects of the disordered
system. It is remarkable that such a simple free energy, when
minimized, can properly capture such a wide range of mea-
surements without resorting to a highly detailed microscopic
description. Rapidly quenching uniform deformable objects to
jam them in the presence of Brownian fluctuations creates a
reproducibly statistically similar disordered structural state, so
the emulsion system is technically out-of-equilibrium.
Nevertheless, we have shown that near-equilibrium free ener-
gy minimization of the relatively simple EEI model, based on
disordered jamming at ϕc, can serve surprisingly well in de-
scribing the collective behavior of ionic colloidal emulsions.

This EEI model, in combination with the two universal fit
parameters that we have determined, can be used to predict
rheological regimes of a wide variety of ionic emulsions.
These entropic, electrostatic, and interfacial regimes reflect
the dominance of a particular term in the free energy, and we
have mapped boundaries of these regimes as a function of
droplet radius and volume fraction for different Debye screen-
ing lengths. Moreover, we have explicitly shown the relative
contributions to the free energy, osmotic pressure, and shear

Fig. 12 Calculated contributions to the osmotic pressure Π for
a= 270 nm oil droplets in 10 mM aqueous SDS solution as a function
of droplet volume fraction ϕ using parameters from Fig. 4. a Entropic
(Πent, dashed line); electrostatic (Πelec, dashed-dotted line); and
interfacial (Πint, dotted line); total (Π =Πent +Πelec +Πint, solid black
line). b Percent relative contributions of Πent, Πelec, and Πint to the total
Π (color figure online)

Fig. 13 Calculated regimes of dominant contributions by entropic,
electrostatic, or interfacial terms to the plateau elastic shear moduli G′p
for 10 cSt PDMS oil droplets stabilized by 10mMSDS for varying radii a
and droplet volume fraction ϕ at a Debye screening length of λD= 3.4 nm
(green lines); other parameter values are the same as in Fig. 4. The dashed
line represents equal relative contributions of entropic and electrostatic
terms; the solid line represents equal relative contributions of the
electrostatic and interfacial terms. Inset: lowering λD to 1.8 nm (red
lines) reduces the electrostatic and interfacial zones, whereas raising λD
to 5.0 nm (blue lines) expands the electrostatic and interfacial zones (all
other parameters are fixed) (color figure online)
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modulus that each of these terms makes. Although this EEI
model provides a powerful predictive platform for emulsion
rheology, it nevertheless must be used with discretion; as we
have shown, introduction of non-amphiphilic salt can alter
important parameters, such as the interfacial tension and the
surface potential, in addition to the Debye screening length.

In future work, it would be interesting to test the utility of the
model’s predictions for monodisperse disordered microscale and
nanoscale emulsions that have a wider range of ionic amphiphile
and non-amphiphile concentrations. Likewise, it would be inter-
esting to perform multi-scale Brownian or molecular dynamics
simulations, which can incorporate complex behavior such as
entropy contribution of ions, on dense disordered systems of
constant-volume droplets stabilized by ionic surfactants to arrive
at predictions for the two universal parameters. A more sophisti-
cated model or simulation could be developed to incorporate the
microscopic details of the system, such as the local coordination
number and the distribution of the degree of deformation of
constituent droplets, into predictions for Π(ϕ) and G′p(ϕ). The
EEImodel could further be advanced into the regime of attractive
ionic emulsions by incorporating the effects of secondaryminima
in the interaction potentials between proximate surfaces of neigh-
boring droplets (Bibette et al. 1993; Mason et al. 1996; Datta
et al. 2011; Hegelson et al. 2012). Moreover, the EEI model does
not explicitly treat polydispersity, which can alter ϕc and also
change the shape of G′p(ϕ) and Π(ϕ) of emulsions. While chal-
lenging, extending the EEI model and simulations to include
polydispersity, such as a peaked monomodal distribution, would
also be useful.
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