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Abstract The steady and transient nonlinear rheological be-
haviors of dilute rod-like micellar solutions are predicted here
with a particular case of the generalized Bautista–Manero–
Puig (BMP) model that consists of the upper-convected
Maxwell constitutive equation and a dissipative power-
dependent kinetic equation, which takes into account the for-
mation and disruption of shear-induced structures (SISs). This
model has been derived using the extended irreversible ther-
modynamic (EIT) formalism. In steady shear, the model pre-
dicts a Newtonian region at low shear rates and a characteristic
shear rate (γIc ) at which shear thickening develops. In the
shear thickening region, the model predicts either a reentrant
zone, which is caused by multi-valued shear stresses when the
data are collected with a shear stress-controlled mode or a
continuous increase in the shear stress-shear rate flow curve,
when the data are collected with a shear rate-controlled mode;
in this region, two coexisting phases are predicted. The
coexisting phases at the same shear rate in the two-phase en-
velope and the spinodal-like region were evaluated from the
extended Maxwell equal-area criterion, which was calculated
from the equal values of the two minima of the plot of the
extended Gibbs free energy versus shear rate. At higher shear
rates, the model predicts a transition to shear thinning, and
under transient flows, an induction time and a saturation time

are obtained from the predicted and the experimental data as
detailed in the text. The magnitudes of both, the induction and
the saturation times, diminish as the shear rate departs from γIc,
but only the induction time decreases according to a power
law with shear rate. The conditions under which these rheo-
logical responses arise are derived and justified in detail with
the BMP model. The model predictions are compared with
experimental data of two dilute micellar solutions. The model
parameters were determined from a set of independent exper-
iments without fitting.

Keywords Differential constitutive equation . Flow
modeling .Micellar solution . Polymer solution . Shear
thickening . Start-up experiment

Introduction

The shear thickening transition (STT) is characterized by a
several-fold viscosity increase when dilute micellar solutions
are sheared above a characteristic shear rate, γIc; or a characteristic
shear stress,σc (Hu et al. 1998a, b; Puig et al. 2007; Lerouge et al.
2010). For γI (orσ) larger than γIc (orσc), an induction time (tind) is
necessary for the inception of the viscosity growth. This induc-
tion time may range from seconds to several minutes (Hu et al.
1998a). After the induction time, another time, referred as the
saturation time (tsat), is detected before the steady state viscosity
is attained (Berret et al. 2002). Both tind and tsat become longer as
the applied shear rate approaches γIc. A power law dependency of
the form, tind ∼γI�m, has been reported by several authors (Hu
et al. 1993; Boltenhagen et al. 1997a; Pröztl and Springer 1997;
Hu et al. 1998a; Barentin and Liu 2001; Berret et al. 2002;
Macías et al. 2003); although other authors have reported a rela-

tionship of the form tind ~ γI−γIcð Þ−1 (Hu et al. 1993; Berret et al.
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2002). Hu et al. (1993) found that tind ~γI�m is valid even far from
γIc. Nevertheless, the dependence of tind on variables such as the
surfactant concentration and chemical structure has not been
explored so far.

Hu et al. (1998a) observed four regimens in the STT.
The first one occurs below a characteristic shear stress, σc,
where the shear rate increases monotonically with the
stress and no shear thickening or shear-induced structures
(SISs) are detected. The regime II appears when the stress
is greater than σc but lesser than the saturation stress, σs, at
which two coexisting states are observed. The steady state
in this regime is detected only under stress-controlled con-
ditions. The regime III is characterized by a second
Newtonian region for σ > σs followed by a shear thinning
region at high shear rates (regime IV).

Shear thickening is caused by two mechanisms depending
on the reference system. In associative polymers or in colloi-
dal suspensions flocculated by reversible polymer bridging,
shear thickening is attributed to nonlinear elasticity of flexible
polymers, usually followed by forced desorption or disentan-
glement at large chain extensions, producing shear thinning of
the flowing solutions (Séréro et al. 2000). On the other hand,
shear thickening in dilute micellar solutions is caused by the
formation of SIS, the morphology of which is still under de-
bate (Pröztl and Springer 1997; Oda et al. 2000; Berret et al.
2001; Weber and Schoseller 2002; Macías et al. 2003, Marín-
Santibañez et al. 2014). Upon their formation, these structures
may remain for a long time producing rheopexy in addition to
shear thickening (Lopez-Diaz et al. 2010).

Lerouge et al. (2010) suggested that the SISs are formed by
supramolecular structures resulting from micellar association
or by fusion that may occur under shear or extensional flow, as
revealed by a reversible transition to a turbid gel phase that
coexists with an isotropic fluid (Rehage and Hoffmann, 1982;
Wunderlich et al. 1987; Boltenhagen et al. 1997b; Hu et al.
1998a, 1998b). The initiation of the process of SIS formation
has also been attributed to local disturbances in wormlike
concentration created by local velocity gradients (Dhont and
Briels 2008).

Microscopic theories and models to analyze the STT in
dilute surfactant solutions are scarce. Preliminary attempts to
describe this phenomenon include theories that incorporate
non-equilibrium shear-induced phase transitions and hydrody-
namic instabilities (Porte et al. 1997; Olmsted and Lu 1999).
Some models for shear thickening are based on shear-induced
aggregation of rod-like micelles (Cates and Turner 1990;
Wang et al. 1990). Models that couple a gelation transition
to shear bands (Adjari 1998; Goveas and Olmsted 2001;
Picard et al. 2002) or those that attribute shear thickening to
electrokinetic or ionic phenomena (Barentin and Liu 2001)
have also been forwarded, although shear thickening has been
observed in nonionic micellar solutions as well (Hu and
Matthys 1997). Early models have considered a growth

mechanism involving the collinear fusion of flow-aligned mi-
celles, but the predicted characteristic shear rate is not within
the experimental range because interactions among micelles
were not considered (Cates and Turner 1990; Wang 1991).
Nevertheless, progress has been achieved in understanding
the role of short-range attractive electrostatic interactions be-
tween rod-like particles bearing the same net charge (Ha and
Liu 1997). Barentin and Liu (2001) attributed the shear gela-
tion to counterion-mediated-induced intermicellar interactions
by estimating the interaction potential between wormlike mi-
celles; in this situation, the predicted γc is within the range of
observed values. Cates and Candau (2001) proposed the exis-
tence of large ring-like micelles in the quiescent solutions as
the precursors of the gel-like phase; however, experimental
evidence of large ring-like micelles has not been reported.
Aradian and Cates (2006) developed a model in which the
instantaneous constitutive curve at fixed structure is non
monotonic. To allow for spatial structuring, the homogeneous
stress is replaced with one that can vary along the vorticity
direction. They further incorporated a nonlocal gradient term
in the stress to allow for the interfaces that are expected to
arise. When the structural evolution is much slower than the
stress relaxation, the model predicts oscillating shear bands.
Recently, Castillo-Tejas et al. (2011) predicted shear thicken-
ing in micellar solutions using a molecular model that ad-
dresses the dynamics of interaction, orientation, and
migration.

Other phenomenological models have been proposed such
as the one by Goveas and Pine (1999) that considers the
growth of a shear-induced gel phase in which there is no flow;
this model predicts a reentrant region in the shear stress-shear
rate flow curve only under stress-controlled conditions and a
discontinuity under shear rate-controlled conditions. Another
simple model, consisting of the upper-convected Maxwell
constitutive equation coupled to a kinetic equation that ac-
counts for the structural modifications induced by flow, has
been proposed to explain the STT and the velocity variations
observed in pipe and parallel-plate flows (Macías et al. 2003).
This model predicts a continuous increase in the apparent
viscosity with increasing shear rate as reported by several
researchers (Boltenhagen et al. 1997a; Gámez-Corrales et al.
1999; Berret et al. 2000, 2002;Macías et al. 2001, 2003), but it
cannot predict the reentrant region detected by Hu et al.
(1998a) in regime II. In parallel-plate flow, the model can
account for the average steady values of the viscosity in the
structured thickened state, whereas in Poiseuille flow, it pre-
dicts a transition region between two parabolas where a
change in curvature in the velocity profile is observed in the
shear thickening regime. The shear rate in the vicinity of the
wall is smaller than that resulting from extrapolation of the
parabola positioned at the pipe center indicating that a more
viscous liquid layer flows close to the walls, corresponding to
the shear thickening regime of region III of high viscosity.
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This determines the pipe’s region where shear thickening de-
velops. In the region of transition corresponding to that of
regime II, fluctuations in the measured point velocities are
detected, whereas the predictions depict the change in curva-
ture in the transition region. In the vicinity of the wall, there is
an apparent viscosity increase and the predictions of the model
match the change in the curvature of the experiments. Other
interesting predictions that agree with the experimental data
are the flow curves for various values of the pipe length-to-
diameter ratio (L/D): for small L/D, the fluid does not shear
thicken because the residence time is smaller than the induc-
tion time and its behavior is Newtonian; as the pipe L/D and
the residence time increases, a gradual manifestation of shear
thickening occurs (Macías et al. 2003). These predictions il-
lustrate the transient growth of the shear thickening phase, in
which an induction time related to the residence time of the
fluid in the pipe is a necessary condition for the development
of shear thickening.

In this paper, we predict the steady and transient nonlinear
rheology of dilute rod-likemicellar solutions using a particular
case of the generalized Bautista–Manero–Puig (BMP) model,
which is deduced using the extended irreversible thermody-
namic formalism (see Supplementary material (SM)). This
model consists of the upper-convected Maxwell constitutive
equation and a stress-dependent kinetic equation that takes
into account the formation and disruption of the SIS. This
extended model is an improvement of the one we used previ-
ously to describe the shear thickening behavior of
cetyltrimethylammonium tosylate (CTAT) in parallel-plate
and Poiseuille flows (Macías et al. 2003), inasmuch as it also
describes the reentrant region and the shear-thinning region
often observed at high shear rates. The predictions of the ex-
tended BMP model for shear thickening behavior are com-
pared with experimental steady and transient rheological data
of two ca t ion ic sur fac tan t sys tems , CTAT, and
cetyltrimethylammonium vinylbenzoate (CTAVB).

The model

The derivation of the generalized BMP model using the ex-
tended irreversible thermodynamic formalism is detailed in
the SM, emphasizing the origin of the nonlinear reforming
function, where higher order terms are included in the
reforming and destruction functions. This model has been
used successfully for shear (Manero et al. 2002) as well as
extensional flows (Jahromi et al. 2011; López-Aguilar et al.
2014; Stukan et al. 2007). Here, we have considered addition-
al nonlinear terms to build the tensor X2 and the scalar X0 (see
SM). Such additional nonlinear terms allow the prediction of
the reentrant region and the shear thinning–shear thickening
transition. Inasmuch as the shear stress is the controlling var-
iable in shear thickening flow (Hu et al. 1998a; Puig et al.

2007), the kinetic parameter k is considered here to depend
linearly only on the second invariant of the shear stress tensor,
i.e., k = k0(1 – ψσ12), where k0 is the kinetic constant for
structure modification (Macías et al. 2003). The parameter ψ
is related to the reentrant region, i.e., the inhomogeneous–
homogeneous flow transition (IHT). In this case, the charac-

teristic structure time, λ, is given by 1
λ ¼ 1

λ0
1−χσ¼ : D

¼γI
� �

, i.e.,

λ is considered a function of the dissipation termmultiplied by
the shear rate, and λ0 is the characteristic structure recovery
time. The characteristic structure time was defined in the BMP
model previously (Bautista et al. 1999; Manero et al. 2007).
The parameter χ represents the intensity of shear thickening–
shear thinning transition (TTT), suggesting a novel approach
to that exposed previously. As described before, the parame-
ters ψ and χ accentuate the nonlinear character of the consti-
tutive equations. The generalized model contains seven pa-
rameters (φ0, φ∞, λ0, k0, G0, χ, and ψ). The first five ones
can be obtained for single and independent measurements as
shown elsewhere (Manero et al. 2002) whereasχ andψ can be
obtained without fitting as shown below, i.e., they are not
adjustable parameters.

The governing equations are as follows:

σ12 þ 1

G0φ
dσ12

dt
¼ γI12

φ
ð1Þ

dφ
dt

¼ φ0−φ
λ0

1−χσ12γI
2

12

� �
þ k0 1þ ψσ12ð Þ φ∞−φð Þσ12γI12 ð2Þ

(see Eqs. (SM16) and (SM17) in SM). Here, σ12 is the
shear stress and γI12 the shear rate, φ is the inverse of shear
viscosity (η) or fluidity, φ0 is the zero-shear rate fluidity,
and φ∞ is the minimum value of fluidity (i.e., maximum
viscosity) reached at end of the thickening process as de-
fined by Hartmann and Cressely (1997, 1998); in addition,
G0 is the shear plateau modulus, λ0 is a structure reforma-
tion characteristic time, and χ and ψ are phenomenological
coefficients (as indicated in SM), the significance of which
will be disclosed later.

In Eq. (1) of the BMP model, the relation between the
fluidity, the stress relaxation time τ, and the micellar length
n is τ [=(G0 ×φ)

−1 = τ0 (n/n0)], where τ0 is the stress relaxation
time when φ = φ0. Substituting this relation into the evolution
equation for the fluidity (Eq. (2)) yields an equation that can
be expressed in terms of the average micellar length, which is
the microstructural variable. The physical interpretation is that
the micellar length n follows an evolution equation related to
the breakage and reformation process of the micelles. This
equation itself is coupled to the total stress, which contains
the micellar contribution.

In steady, simple shear and since only the shear stress and
the shear rate are considered, the subscript “12” will be
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dropped and so, Eqs. (1) and (2) render a cubic expression in
both σ and shear rate of the form:

k0λ0φ∞ψγIσ
3 þ k0λ0φ∞γI−k0λ0ψγI

2
−χφ0γI

2
� �

σ2

þ φ0−k0λ0γI
2
þ χγI

3
� �

σ−γI ¼ 0 ð3Þ

Inhomogeneous–homogeneous flow transition

It has been observed that at a characteristic shear rate and a
characteristic shear stress, the homogeneous flow becomes
inhomogeneous. That is, the flow becomes multivalued in
the shear stress in a certain shear stress range, which is also
referred as banded flow in the vorticity direction. The in-
homogeneous character of the flow is associated to the
appearance of SIS, suggesting a spinodal-type transition
to a two-phase flow. However, Oda et al. (2000) observed
that the characteristic shear rate at which this transition
appears (γIc ) depends on the gap distance of the Couette
cell employed, which ruled out the SIS phenomenon as a
phase transition. Nucleation and growth of the SISs are
therefore explained by Oda et al. (2000) as a transient in-
homogeneous state, different to that observed in common
shear banded flows, where a well-defined interface is ap-
parent (Hu et al. 1998a, 1998b).

Considering that for 0 < ψ < ψIHT the fluid is homogenous,
let us define ψIHT as the characteristic value at which the
inhomogeneous–homogeneous transition (IHT) is observed,
wherein the multivalued region or reentrant region appears.
The flow becomes inhomogeneous when a characteristic
stress is reached for values where ψ > ψIHT, which implies
that the IHT conditions, dγI /dσ = 0 and d2γI /dσ2 = 0, must
hold. The first and second partial derivatives of γI with respect
to σ are as follows:

dγI

dσ
¼ −

kφ∞ψγI3σ
2 þ kγIφ∞− χφ0 þ kψð ÞγI

2
� �

2σþ χγI
3
−kγI

2
þ φ0

� �

kφ∞ψσ3 þ σ2 kφ∞− χϕ0 þ kψð Þ2γI
� �

þ σ 3χγI
2
−2kγI

� �
−1

� �

ð4Þ

0 ¼ kφ∞ψσ
3 þ kφ∞−2 φ0χþ kψð ÞγI

� �
σ2 þ 3χγI

2
−2kγI

� �
σ−1

� �
d2γI

dσ2

−2 φ0χþ kψð Þσ−3χγIþ k
� �

σ
dγI

dσ

 !2

þ 2 2kφ∞ψσ−4 φ0χþ kψð ÞγIσþ 3χγI
2
−2kγIþ kφ∞

� �
dγI

dσ

þ6kφ∞ψγIσþ 2 kφ∞− φ0χþ kψð ÞγI
� �

γI

ð5Þ

where k0λ0 = k in Eqs. (4) and (5). From the IHT conditions,
the two following equations hold:

kφ∞ψγI6σþ kγIφ∞− χφ0 þ kψð ÞγI
2

� �
2 ¼ 0 ð6Þ

kφ∞ψγI3σ
2 þ kγIφ∞− χφ0 þ kψð ÞγI

2
� �

2σþ χγI
3
−kγI

2
þ φ0

� �
¼ 0

ð7Þ

From Eqs. (6) and (7), a simple relationship is obtained:

ψ ¼ χγI
3
−kγI

2
þ φ0

� �
=kφ∞γI3σ

2 ð8Þ

The characteristic shear stress and shear rate can be obtain-
ed as follows:

σIHT ¼ χγI
3

IHT−kγI
2

IHT þ ϕ0

3kφ∞ψγIIHT

0
@

1
A

1=2

ð9Þ

Equation (9) can be used to evaluate, from experimental
data, the criterion at which the IHT occurs.

Shear thickening–shear thinning transition

At high enough shear rates, a shear thickening–shear thin-
ning transition (TTT) is observed in a number of systems
(Hu et al. 1998a, Lerouge et al. 2010, Puig et al. 2007). To
account for such transition, a new critical variable χTTT is
defined here. For χ > χTTT, a shear thinning behavior for γI

> γITTT is predicted. The condition for this transition is dη/
dγI = 0 (where η = φ−1), which implies the condition dφ/dγI

= 0. The implicit derivative of the fluidity with respect to
the shear rate is given by

−
1

λ0
1−

χγI
3

φ

0
@

1
A dφ

dγI
þ φ0−φ

λ0

� �
−
χ
φ
3γI

2
þ γI

3 χ
φ2

dφ

dγI

 !

þ k0 1þ ψ
γI

φ

 !
φ∞−φð Þ −

γI
2

φ2

dφ
dγ

þ 1

φ
2γI

0
@

1
A−

γI
2

φ
dφ

dγI

0
@

1
A

þ φ∞−φð Þ γ
I
2

φ
k0ψ −

γI

φ2

dφ

dγI
þ 1

φ

 !
¼ 0

ð10Þ
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From the condition dφ/dγI = 0 in Eq. (10), the following
equation holds:

φ0−φ
λ0

� �
−
χ
φ
3γI2

� �
þ k02γI 1þ ψ

γI

φ

� �
φ∞−φ
φ

� �

þ k0ψγI2 φ∞−φð Þ
φ2

¼ 0 ð11Þ

From this equation, an explicit expression for χ is obtained:

χ ¼ k0λ0 φ∞−φTTTð Þ 2φTTT þ 3ψγITTTð Þ
φ0−φTTTð Þ3γITTTφTTT

ð12Þ

Equation (12) can be used to evaluate (from experimental
data) the criterion at which the TTT occurs. It is noteworthy
that no fitting is necessary to obtainψ and χ, since they can be
straight forwardly determined with Eqs. (9) and (12), respec-
tively. For χ = 0, there is no TTT, independently of the value
of ψ and hence φ∞=φTTT. Consequently, only a set of two
equations determines the IHT (Eq. (9)) and the TTT
(Eq. (12)).

Viscosity at high shear rates

In steady state at high shear rates, Eq. (3) becomes

−χ
φ0−φA

λ0
þ k0

ψ
φA

� �
φ∞−φAð Þ

� �
γI3

φA
¼ 0 ð13Þ

where φA is the asymptotic value of the fluidity at high
shear rates.

For χ = 0, we obtain

k0
ψ
φA

� �
φ∞−φAð Þ

� �
γI3

φA
¼ 0

which yields φA=φ∞.
In addition, for ψ = 0,

−χ
φ0−φA

λ0

� �
γI3

φA
¼ 0

which yields φ0=φA.
Consequently, for χ ≠ 0 and ψ ≠ 0, the following final

expression is obtained:

φA ¼
k0λ0ψþ χφ0ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0λ0ψþ χφ0ð Þ2−4χk0λ0ψφ∞

q
2χ

ð14Þ

Experimental section

CTAT, 98 % pure from SIGMA, was recrystallized from chlo-
roform (analytical grade from Aldrich). CTAVB was synthe-
sized by neutralization of a 1 wt% CTAOH aqueous solution
(97 % pure, received as a 10 wt% aqueous solution from
Fluka) with a concentrated solution of 4-vinylbenzoic acid
(97 % pure from Fluka) in acetone (analytical grade from
Fermont) as described elsewhere (Kline 1999). This surfactant
was precipitated by adding absolute ethanol (Aldrich) and
dried. The structure of CTAVB was confirmed by NMR
spectroscopy.

Samples were prepared by weighing the appropriated
amounts of surfactant and HPLC water in 20-ml glass vials,
homogenized and placed in a temperature-controlled chamber
at 30 °C for a week before performing the rheological tests.
Samples with concentrations smaller than 0.1 wt% were made
by dilution from a stock (0.1 wt% surfactant) solution.

Steady and transient shear rate measurements were per-
formed at 30 °C in an ARES strain-controlled rheometer
(TA Instruments), using a double-wall Couette geometry
(bob internal and outer diameters of 29.5 and 32 mm, respec-
tively, and cup internal and external diameters of 27.94 and
34 mm, respectively) and a humidification chamber to mini-
mize water losses by evaporation.

The ODE45 “Matlab” library was used to solve Eq. (1) and
(2). This library is based on a differential equations solver
based in the Runge-Kutta fourth and fifth orders method. In
addition, the “Matlab” library was employed to solve Eq. (3).
Furthermore, near the critical value at which the IHT occurs,
the Runge-Kutta method is sufficiently stable and hence, this
method does not need further modifications (Dormand and
Prince 1980).

Model predictions

The examination of the effect of the several model parameters
on the flow curve requires a sensitivity analysis consisting in
varying only one parameter while keeping the remainder ones
constant.

Figure 1 depicts the effect of varying the intensity param-
eter of the IHT, ψ, on the steady shear flow curve (Fig. 1a) and
the extended Gibbs free energy (derived from EIT) versus
shear rate (Fig. 1b), keeping fixed the other parameters of
the model (see legend of this figure). As detailed elsewhere
(Bautista et al. 2007), the extended free energy, G, of a fluid
system of volume V, under isothermal and isobaric conditions,
subjected to simple shear flow caused by the application of a
stress σ, is given by

dG ¼ Vφ
2G0φ0

σ¼ : dσ¼ ð15Þ
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For simple shear flow and performing the double dot prod-
uct in Eq. (15), one obtains

dG ¼ Vφ
2G0φ0

� �
2σ12dσ12 þ

X3
i¼1

σiidσii

 !
ð16Þ

Since in dilute shear-thickening micellar systems normal
stresses are negligible, Eq. (16) becomes

dG ¼ Vφ
2G0φ0

� �
2σ12dσ12ð Þ ð17Þ

For simple steady shear flow, σ12 = γI=φ, as deduced from
Eq. (1). It is easy to show that Eq. (17) can be rewritten as

dσ12 ¼ 1

φ
1 −

γI

φ
dφ
dγI

� �
dγI ð18Þ

The substitution of Eq. (18) in Eq. (17) yields

dG ¼ V
4σ3

12

φG3
0

� �
dγI ð19Þ

Figure 1A depicts that for low values of ψ, the flow curve
increases monotonically, i.e., a no reentrant region is predicted
(curves a and b); however, as the shear rate increases, the
shear thickening increases sharply as a discontinuity at a given
shear rate (curve c). Moreover, as ψ increases even further, a
reentrant region develops with sigmoidal shape that becomes
better defined as ψ becomes larger (curves d and e). It is
noteworthy that curve c represents a characteristic value be-
low which no reentrant region appears when the measure-
ments are performed in stress-controlled mode (lines a and b
in Fig. 1A), whereas above this characteristic line, a disconti-
nuity in the shear rate is detected (lines d and e in Fig.1A). In
fact, the curve (see dashed line in Fig. 1) obtained by

calculating dσ/dγI = 0, encloses the region at which the shear
rate is discontinuous, given by dσ/dγI > 0, as demonstrated
elsewhere (Bautista et al. 2007). This behavior is akin to the
unstable or spinodal region that appears whenever the condi-
tion, dP/dV < 0, is met in plots of pressure versus molar vol-
ume in the gas–liquid coexistence region (Sandler 2006).
Figure 1B shows that the plot of G versus shear rate shows
twominima (curves d and e), indicating the position where the
stable–metastable coexistence region is located (see Fig. 1A).
The plot of G versus shear is an EIT analog to the Maxwell
equal-area criterion to obtain the coexistence pressure in liq-
uid–vapor equilibrium (Sandler 2006). These plots depict two
minima in the coexistence region and only one minimum out-
side it; the occurrence of the two minima indicates the posi-
tions of the coexisting shear rates when experiments are per-
formed under applied shear rate. When the two minima in the
plots of G versus γI meet into one (curve c in Fig. 1B), the
characteristic shear stress, σc, and the characteristic shear rate,
γIc; occur where the coexisting region becomes indistinguish-
able, similar to the critical point in two-phase liquid–vapor
equilibrium.

It is noteworthy to point out that our model can predict the
homogeneous and the inhomogeneous coexistence regions,
even though our mode l does no t cons ide r any
inhomogeneous states. Interestingly, Onsager (1944) also pre-
dicted a spontaneous phase transition without additional infor-
mation on inhomogeneous states with a partition functionwith
a mean field potential of a homogeneous spins system.

These results are explained on the basis that ψ is related to
the effect of the shear flow on the competition between the
induction and destruction of the SIS. In fact, just above the
characteristic shear stress (or shear rate), the SISs are nucleat-
ed non-homogeneously at the wall of the moving cylinder of
the Couette geometry, or at stresses within region II near the
moving plate in parallel plates, as described by Hu et al.
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the shear stress–shear rate values for the different structures that can
develop in STT
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(1998a). However, the structure (incipient wormlike micelles
or a gel phase) formation becomes dominant as σ augments,
which is regulated by the magnitude of ψ, as shown in Fig. 1.
Clearly then, the parameter ψ is related to the reentrant zone
that is often (but not always) detected during the shear thick-
ening transition (Hu et al. 1998a; Macías et al. 2003) and it
simply reflects the effect of the shear stress on the develop-
ment of the SIS. Moreover, Eq. (9) predicts that ψ at the
reentrant region transition is positive; χ is also restricted be-
cause the characteristic values of σc and γIc must be positive.
This result agrees with the simulations depicted in Fig. 1.

Figure 2 shows steady flow curves as a function of the
parameter χ keeping the rest of the parameters fixed as indi-
cated in the legend of this figure. Setting χ = 0 yields a shear
thickening region at intermediate shear rates and Newtonian
regions at low and high shear rates (curve a in inset of Fig. 2);
however, as χ is increased, a Newtonian region is detected at
low shear rates followed by shear thickening at intermediate
shear rates, and then a well-defined shear thinning regions at
high shear rates (curves b to e); moreover, the shear thickening
intensity diminishes with increasing χ (inset in Fig. 2). Note
also that the shear thinning region shifts to lower shear rates as
χ augments. Hence, the value ofχ determines the extent of the
shear thickening intensity and the development of a shear-
thinning region at high shear rates. Clearly, the parameters ψ
and χ are related to the reentrant region and the shear thick-
ening–thinning transition (TTT), respectively. A dashed line
in the inset of this figure indicates the region at which the TTT
develops at higher shear rates. Notice that both parameters, ψ
and χ, are not fitting parameters since they can be obtained
from Eqs. (9) and (12), respectively.

Figure 3 depicts the effect of k0λ0 on the steady shear flow
curve. Two important effects are revealed as the value of k0λ0

decreases: (1) γIc shifts to larger values and (2) the shear thick-
ening intensity decreases (inset). The factor k0λ0 is related to
the ratio of the destruction-to-formation of SIS under steady
state. As this ratio decreases, the SISs form at higher shear
rates and larger stresses corresponding to strong shear thick-
ening intensity, so γIc shifts to higher shear rates (curves c, d,
and e) and tind decreases (see Fig. 4). The opposite situation
corresponds to large values of k0λ0, where tind is larger and the
SISs form in a large shear rate span (curves a and b). In the
latter case, the structures are labile and they can be easily
disrupted by the flow.

Figure 4 depicts the simulations of start-up shear flow as a
function of increasing shear rate (γI > γIc ) for fixed values of
the other parameters. This figure reveals that the model is
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capable to predict an induction time for the inception of shear
thickening and a saturation time, after which the apparent
steady state viscosity is reached, in agreement with experi-
mental observations (Hu et al. 1998a; Berret et al. 2002;
Macías et al. 2003). Moreover, the model is capable to predict
the power law dependence of tind with γI of the form, tind ~ γI

-m,
as the applied shear stress (or shear rate) departs from the
critical value (inset in Fig. 4). The linearity in the log–log plot
of tind versus shear rate (inset of Fig.4) discloses that the ex-
ponent of the power law (m) is ca. 2.2, which is within the
range of experimentally reported values (Boltenhagen et al.
1997b; Pröztl and Springer 1997; Hu et al. 1998a; Berret et al.
2002; Macías et al. 2003). In contrast, the saturation time
increases with time but it does not follow a power law-
dependence with time (inset in Fig. 4).

Determination of the parameters of the BMP model

The governing equations of the model, i.e., Eqs. (1) and (2),
contain seven parameters, φ0, φ∞, λ0, k0,G0, χ, and ψ, which,
as we show in this section, are not adjustable parameters but
they can be obtained from a closed system of equations.φ0 is
determined from the inverse of the shear viscosity in the
Newtonian region before shear thickening develops, whereas
φ∞ is the inverse of the Newtonian viscosity at the end of
shear thickening when no shear thinning develops or equal
to the inverse of the Newtonian viscosity at very high shear
rates once the shear thinning region turns into a Newtonian
one.

The product of k0 and λ0 (k0λ0) is obtained from the best
fitting of the steady state flow curve employing Eq. (3).

G0 can be easily determined for semidilute and concentrat-
ed micellar solutions, from linear oscillatory shear measure-
ments, and it is equal to the plateau modulus at high frequen-
cies, i.e., G0 ¼ lim

ω→∞
G0 (Soltero et al. 1996). However, for

dilute micellar solutions, it is not possible to perform this kind
of measurements since these dilute systems do not exhibit
strong elastic properties. However, as it is demonstrated here,
G0 can be straightforwardly obtained from shear flow relaxa-
tion, i.e., interruption of shear flow after the steady shear flow
has been achieved. For this kind of flow, the right-hand side
term of Eq. (1) is zero, and so, this equation reduces to

σ12 þ
1

G0φ
dσ12

dt
¼ 0 ð21Þ

Here, the solution is given by

σ ¼ σssexp −G0 φ0t þ λ0 φss−φ0ð Þ 1−e
−t
.

λ0

 ! !" #
ð22Þ

This curve exhibits two regions at inception of stress relax-
ation, one at short times and another at long times. At short
times, the stress is given by

σ ¼ σssexp −G0 φsstð Þ½ � ð23Þ

At long times, the stress is given by

σ ¼ σssexp −G0 φsst þ λ0 φ∞−φ0ð Þð Þ½ � ð24Þ

This set of simultaneous equations allows determining
without fitting G0 and λ0. With λ0, k0 can be easily calculated
from the product k0λ0 obtained from the steady flow curve, as
described above.

Finally, the parametersψ and χ are readily determined with
Eq. (9) and (12), respectively.

Comparison with experimental results

Figure 5 shows experiments of stress relaxation after cessation
of shear flow as a function of applied shear rate for a 0.4 wt%
CTAT. The inset shows a magnification of the stress relaxation
a short time, which reveals the first two relaxations of the three
detected at short, intermediate, and long times. The relaxation
is fast at short times and then it becomes much slower at
longer times, and both, the short and the long times, become
faster with increasing the applied shear rate before stopping
the flow. The solid lines in this figure and in the inset indicate
the predictions of the BMPmodel; clearly, there is good agree-
ment between experimental data and predictions. From the
predictions, the values of G0 and λ0 are readily obtained.
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Fig. 5 Stress relaxation after the application of different shear rates for a
0.4 wt% CTAT micellar solution: 10, 30, 80, and 150 s−1. Symbols and
lines represent experimental data and predictions of the BMP model,
respectively
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Figure 6 presents experimental (symbols) and predicted
(continuous lines) shear viscosity versus steady shear rate
curves for CTAT and CTAVB micellar solutions at selected
concentrations. CTAT micellar solutions exhibit shear thick-
ening at concentrations from 0.1 and up to ca. 0.9 wt% above a
characteristic shear rate γIc (that is nearly concentration inde-
pendent), followed by shear thinning at even higher shear
rates (Berret et al. 2000; Macías et al. 2003; López-Díaz
et al. 2010). For CTAVB micellar solutions, Newtonian be-
havior is detected up to a characteristic shear rate, above
which shear thickening is observed, followed by strong shear
thinning at higher concentrations, similar to the behavior ob-
served for CTAT solutions. However, shear thickening is de-
tected at much lower shear rates and concentrations in the
CTAVB solutions compared to the CTAT system (Macías
et al. 2003; Soltero et al. 2007). In fact, the shear thickening
is observed in the CTAVBmicellar solutions at concentrations
as low as 0.02 wt% and at shear rates of the order of 0.8 s−1,
whereas in the CTAT system, shear thickening is detected for
concentrations around 0.1 wt% and shear rates of ca. 100 s−1

(Fig. 6). Moreover, γIc shifts to lower values as the CTAVB
concentration is increased, in contrast to the CTAT system.
Interestingly, the effect of the counterion (in the absence of

added electrolytes) has not been reported previously in the
literature for the STT. Elsewhere, it has been reported that
the hydrophobicity of the counterion displaces the critical mi-
cellar concentration, cmc; the sphere-to-rod transition, cmc2;
and the entanglement concentration, c* (Hassan and Yakhmi
2000). Results have shown that the STT occurs at concentra-
tions where locally cylindrical micelles exist, as deduced by
SANS experiments in quiescent CTAT solutions (Berret et al.
1998) up to the neighborhood of c* and that electrostatic in-
teractions play an important role (Truong and Walker, 2002).
Our results suggest that the vinylbenzoate counterion binds
more strongly to the micellar surface than the tosylate coun-
terion does, shifting the STT to lower surfactant concentra-
tions and critical shear rates. Predictions of the model (Eq. 3),
setting ψ = 0 in Eqs. (9) and (12), since no reentrant region is
evident, follow closely experimental data in both the shear
thickening and the shear thinning regions for both CTAT and
CTAVB micellar solutions. Model parameters for both micel-
lar solutions are reported in Table 1, which were obtained
experimentally as described elsewhere (Manero et al. 2002).
Notice that the values of k0λ0 are larger for CTAVB than those
for CTAT. Asmentioned in the previous section, an increase in
k0λ0 shifts γIc to lower values, in agreement with the experi-
mental results reported here. Notice also that shear thinning is
more pronounced in CTAVB than in CTAT.

Figure 7 depicts the time evolution of the shear viscosity
upon inception of shear flow at various applied shear rates for
a 0.4 wt% CTAT solution. When the applied shear rate is
smaller than γIc, the steady shear Newtonian viscosity is
reached almost immediately (not shown). However, when
the applied shear rate is equal or larger than γIc, four features
are evident in both systems: (1) the viscosity begins to grow
only after a relatively long time has passed (tind); (2) tind be-
comes increasingly longer as the applied shear rate is closer to
γIc; (3) another long time period is required to achieve steady
state (tsat); and (4) chaotic oscillations in the shear viscosity are
observed. To reproduce the transient experiments, the BMP
model (Eqs. (1) and (2)) requires independent values of k0 and
λ0 as well as of the plateau modulus G0, which can be obtain-
ed as indicated above.

Figure 8 shows the experimental and predicted induction
times as a function of the applied shear rate in a log–log plot
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Fig. 6 Steady viscosity as a function of shear-rate for: CTAVB: (black
square) 0.03; (black circle) 0.05; (black triangle) 0.1 wt%; CTAT: (white
triangle) 0.4; (white square) 0.8 wt%. The values of the parameters of the
model are reported in Table 1. Symbols and lines represent experimental
data and predictions of the BMP model, respectively

Table 1 Values of the model
parameters Surfactant Concentration (wt%) φ0 (Pa

−1 s−1) φ∞ (Pa−1 s−1) k0λ0 (Pa
−1 s) χ (Pa−1 s2)

CTAT 0.2 1063 120 0.055 0.0000007

0.4 1075 126 0.06 0.000001

0.8 356 168 0.01 0.000002

CTAVB 0.03 390 40.7 600 1.0

0.05 361 48.7 500 6.0

0.1 294 50 800 21.3

The reported value of χ is determined from Eq. (12)
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for 0.4 wt% CTAT and 0.05 wt% CTAVB solutions. For both
systems, the plots follow straight lines with a power law of the
form tind∝γI−m, where m = 1.5 ± 0.1 (for CTAT) and 1.9 ± 0.1
(for CTAVB); similar exponents were obtained for other
CTAT and CTAVB concentrations (Macías et al. 2003;
Soltero et al. 2007). Several researchers reported this power
law dependency of the induction time with the shear rate
(Boltenhagen et al. 1997a; Pröztl and Springer 1997; Hu
et al. 1998a; Berret et al. 2000; Macías et al. 2003). The model
predicts remarkably well these dependencies, as expected
from the predictions of the transient behavior of these

surfactant solutions (Fig. 7), except that the predicted power
law exponent is larger (m = −2).

Figure 9 depicts experimental and predicted time-
dependent complex flow histories produced by controlled
shear rate rheometry in a linear increasing and decreasing
mode, keeping the maximum shear rate constant and varying
the ramp time required to reach the maximum shear rate (in-
set). Several features are revealed in this figure: (1) the ampli-
tude of the hysteresis cycle decreases with increasing shear
rate; (2) all the data collapse at the same decreasing shear rate
path. Predicted values follow similar trends than the experi-
mental ones, although they do not overlap. The reason is that
the experimental and predicted steady-state data do not coin-
cide exactly, especially at high shear rates as shown in Fig. 9,
which causes shear thinning. Nevertheless, the predicted
values follow the same tendency of the experimental data:
(1) the increasing shear rate data shifts to lower values with
increasing shear rate; (2) all the decreasing shear rate data
collapse nearly in the same curve similarly to experimental
data; and (3) the predicted area of the hysteresis loops also
diminishes as the applied shear rate increases (see Fig. 9).

The SIS formation as a function of applied stress, explained
in this work as well as in previous reports and theories (Pröztl
and Springer 1997, Dehmoune et al. 2011; Herle et al. 2008) is
depicted in a cartoon (Fig. 10). Two types of rheological be-
havior are observed, monotonic (curves a, b, and c in Fig.1)
and non-monotonic (curves d and e in Fig.1). Cartoons a1, a2,
a3, e1, e2, and e3 in Fig. 10 correspond to points indicated on
the curves of Fig. 1. The first type (χ < χcrit), for monotonic
curves and σ < σaggr, involves small micellar associations. The
average micellar length is not significantly larger than the one
in a solution at rest, hence Newtonian behavior is observed.
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Fig. 7 Viscosity as a function of time for the inception of shear flow for a
0.4 wt% CTAT micellar solution at different applied shear rates (s−1):
(white triangle) 80; (white diamond) 150; (white square) 700. The
parameters employed are k0 = 0.33 Pa−1, λ0 = 0.18 s, and G0 = 0.37 Pa,
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Fig. 8 Induction time as a function of applied shear rate for: CTABV:
(black circle) 0.05; (black triangle) 0.1 wt%; CTAT: (⊲) 0.4 wt.%.
Symbols and lines represent experimental data and predictions of the
BMP model, respectively
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556 Rheol Acta (2016) 55:547–558



As the number and length of associated micelles increases,
shear thickening arises, corresponding to a second stage where
aggregation and entanglement formation occurs (here
σaggr < σ < σorient). The length of the associated micelles in-
creases substantially because of the fusion of shorter micelles.
In the situation when σorient < σ, the micelles undergo breaking
and orientation processes under flow, hence shear thinning
arises in the third stage. In contrast, in non-monotonic curves
(χ > χcrit), the coexistence of two structures induces the
banding in the vorticity direction (Dehmoune et al. 2011,
Herle et al. 2008.

Concluding remarks

A simple model, derived from the extended irreversible ther-
modynamics formulation, consisting of the upper-convected
Maxwell constitutive equation and a stress-dependent kinetic
equation that accounts for nonlinear contributions in the
breaking-and-reformation process of the SIS, predicts the
steady and transient features of the STT in micellar solutions.
It can predict either a reentrant region or a continuous increase
in shear stress with shear rate, depending on whether rheolog-
ical measurements are performed in a shear rate mode or in a
stress mode. Plots of the extended Gibbs-free energy versus
shear rate depict two minima in the coexistence region and
only one minimum outside it; when experiments are per-
formed by applying shear rate, the extendedGibbs-free energy
minima indicate the positions of the coexisting shear rates.
The model predicts a characteristic shear rate and an induction
time for the appearance of shear thickening, and in addition,
the rapid decrease of the induction time with increasing shear
rate and a power law dependence with shear rate, in agreement

with experimental observations. The predictions of the model
compare remarkably well with experimental steady state and
transient data for two dilute micellar solutions. Note the im-
provement attained with regard to the ability of the model to
predict the observed phenomena. In particular, the regions of
shear thinning and shear thickening regimes in steady and
transient flows are clearly predicted.
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