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Abstract We propose a micromechanical model for the be-
havior of dilute magnetorheological fluids under unidirection-
al slow-compression, constant-volume squeeze flow mode. In
the linear magnetization regime, the model predicts a power
law scaling of the normal stress with the particle volume frac-
tion and magnetic field strength squared at low fields. The
predictions are satisfactorily compared with experimental
measurements for different particle loadings, sample volume,
surface roughness, and initial gap distance.
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Introduction

Magnetorheological (MR) fluids are field-responsive colloids
that typically exhibit a liquid-to-solid transition upon the ap-
plication of a magnetic field. In current commercial applica-
tions, MR fluids are subjected to strongly demanding defor-
mations. Among standard kinematics, simple shear is un-
doubtedly the most widely studied and better known.
However, the understanding of the squeeze flow behavior of
MR fluids is still incomplete in spite of recent advances during
the last decade (de Vicente et al. 2011a, 2011b; Ruiz-López
et al. 2012; Guo et al. 2013; Xu et al. 2014).

Currently, continuum media theories are claimed to suc-
cessfully explain their normal force versus gap dependence
in slow-compression, no-slip conditions, under constant vol-
ume operation (see Fig. 2 in Ruiz-López et al. 2012; Guo et al.
2013; Xu et al. 2014). These theories predict the appearance of
a yield compressive stress and a power law relationship be-
tween F and 1 - ε with exponent − 2.5 (e.g., see Eq. 9 in de
Vicente et al. 2011b). Here, F stands for the normal force and
ε ¼ 1� h

h0
is the compressive strain, where h is the gap dis-

tance and h0 =h(t=0) is the initial gap. Up to now, deviations
between experiments and continuum media theory are quali-
tatively explained in terms of a shear strengthening effect
(Tang et al. 2000) and demonstrated via superposition rheol-
ogy (de Vicente et al. 2011b) and optical microscopy (Ruiz-
López et al. 2012).

In this manuscript, we follow a microscopic approach to
develop a slender-body like micromechanical model for the
squeeze flow behavior of MR fluids in slow compression. The
model accounts for magnetostatic forces between the particles
and predicts the appearance of a yield compressive stress (and
normal force) that scales with particle volume fraction and
magnetic field squared, at low fields, in the linear magnetiza-
tion regime. Strictly speaking, the validity of this model is
limited to infinitesimally small deformations (ε→0) and for
dilute suspensions (ϕ→ 0), where single-particle-width
chains should exist and interchain interactions are safely
neglected. However, in spite of the many simplifications in
this model, we will demonstrate here that it works well for a
wide range of deformations (ε∈ [0 - 0.7]) and concentrations
(ϕ∈ [0.001 - 0.10]), and that it is also capable to enlighten
some experimental findings reported in the literature that re-
main currently unexplained. In particular, the model predicts a
logF versus log(1 - ε) slope of −2 in much better agreement
with experimental data at very low loadings where the shear
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strengthening effect is expected to be negligible (ϕ≲ 0.05)
(Ruiz-López et al. 2012). In the second part of the manuscript,
we describe carefully designed experiments at low particle
concentrations to validate the model. Apart from these, we
also address the influence of sample volume, surface rough-
ness, and initial gap distance in the squeeze flow behavior.

Theoretical model

We assume a collection of single-particle-width chains con-
fined between two parallel plates separated by a distance h and
approaching with a velocity v. We assume that the gap h be-
tween the plates is much larger than the diameter of the
(monodisperse) particles σ: h≫σ. Also, we assume that v is
small enough so that particles, initially forming straight chains
in the field direction, readjust their positions into a thicker
column but they do not spread out from the aggregate.

The magnetic dipolar energy for two particles with identi-
cal magnetic moments m!i and m! j separated at a distance rij
follows the expression:

Uij ¼ 1

4πμ0μcr

m!i⋅m! j−3 m!i ⋅̂r
� �

m! j ⋅̂r
� �

rij3
ð1Þ

where m!i ¼ m! j ¼ m!¼ 3μ0μcrβpV pH
!
. Here, μ0 is the

magnetic permeability of the vacuum, μcr is the relative perme-
ability of the continuous medium, βp is the so-called contrast
factor of the particles, βp= (μpr -μcr)/(μpr+2μcr) , μpr is the
magnetic permeability of the particles,Vp is the particle volume,

r̂ is the unit vector along the centerto-center line, and H
!

is the
magnetic field strength. In this work, themagnetic field strength

is calculated using the local field theory, H
!¼ H

!
loc (Martin and

Anderson 1996). According to this, the local field in the center

of a particle, i, can be calculated as H
!

loc;i ¼ H
!

0 þ ∑
j≠i

Npc

H
!

m j ,

where H
!

0 is the external magnetic field, Npc is the number of

particles per chain, and H
!

m j ¼
3 m! j �̂r
� �

r̂−m! j

4πμ0μcrrij3
is the magnetic

field produced by the magnetic dipole, m! j located at the center
of the particle i. Assuming an infinite and straight (no defects)
single-particle-width chain aligned in the field direction, the

local field becomes H
!

loc ¼ 1� βpζ 3ð Þ=2� ��1
H
!

0, where ζ is
the Riemann Zeta function. Obviously, as a result of the ap-
proximations performed, the local field calculation is strictly
valid in the limit of infinite gaps. However, for the gap intervals
explored in this work, deviations are below 5 %. It is important
to remark here that the use of local fields instead of external
fields is crucial because the local field is about 50 to 100 %
higher than the external magnetic field.

The total energy of a chain Uc is obtained by the
addition of the contributions from all the pairs of parti-
cles within a chain:

Uc ¼ ∑
Npc�1

i¼1
∑

j¼iþ1

Npc

U ij ð2Þ

Under the hypothesis that σ/h≪1, it is possible to extend
the summations in Eq. 2 to the continuum and hence, the
magnetic energy in a chain can be written as

Uc ¼
Z

1

4πμ0μcr

dm!� dm!0−3 dm!� r̂
� �

dm!0 � r̂
� �

r!− r!0
���

���
3 ð3Þ

with dm!¼ 3μ0μcrβaH
!
dV and dm!0 ¼ 3μ0μcrβaH

!
dV 0.

βa is now the contrast factor of the aggregate: βa= (μa -μcr)/
(μa+2μcr). The magnetic permeability of the aggregates μa is
estimated in this work using a mean field theory (e.g., Bötcher
equation):

μa � μcr

3μa
¼ ϕa

μp � μcr

2μa þ μp
ð4Þ

For simplicity, we suppose now that the aggregates have a
cylindrical shape and that they are thin enough to suppose that
dV=πrc

2dz and dV ' =πrc
2dz' where rc is the radius of the

cylinder. We also assume that the magnetic field points in

the z-direction so H
!¼ Hẑ. Then, the magnetic energy of a

chain is obtained as follows:

Uc ¼ � 9

2
πrc

4μ0μcrβa
2H2

Z
dz dz0

z� z0j j3 ð5Þ

The limits of integration in Eq. 5 come from the limits of
the summations in Eq. 2. Thus, the summation from 1 to Npc -
1 is now the integral of z from σ/2 to h - 3σ/2 and the summa-
tion from j= i+1 to Npc is the integral from z+σ to h -σ/2.
Bearing in mind that σ≪h, after some algebra, Eq. 5 can be
written as

Uc ¼ � 9

4
πrc

4μ0μcrβa
2H2 h

σ2
� 3

σ
þ 1

h

� �
ð6Þ

Next, the total energy of the system U is estimated by
multiplying the energy of a chain Uc times the number of
chains Nc; U=NcUc. Here, the total number of chains Nc is
obtained from the particle volume fraction in the system
Nc=6ϕV0/πσ

2h0 and the radius of the chain rc can be obtained
as a function of the initial radius of the chain rc0. Here, we
assume that the initial radius of the chain is the radius
of the particle rc0 =σ/2 and that the volume of the ag-
gregate remains constant during the compression
πrc

2h = πrc0
2h0. As a result, the following relation is
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obtained: rc
4 =σ4h0

2/16h2. Therefore, substituting rc, the
total energy U can be written as

U ¼ � 27

32
ϕV 0μ0μcrβa

2H2 ho

h
� 3σ

h0

h0
2

h2
þ σ2

h0
2

h0
3

h3

� �
ð7Þ

Considering σ≪h0 and the definition of the compressive
strain, ε= (h0 -h)/h0, we arrive to the final expression of the
magnetostatic energy:

U ¼ � 27

32
ϕV 0μ0μcrβa

2H2 1

1� ε
ð8Þ

It is worth to note that the definition used for the compres-
sive strain is only strictly valid for small deformations. For
larger strains, the Hencky strain must be used εH ¼ ln h

h0

(Engmann et al. 2005). In the case of large strains, 1=
1� εð Þ should be replaced by eεH .
With this, the normal stress in the sample is obtained as the

derivative of the energy density with the instantaneous gap (de
Vicente et al. 2011b):

τ zz ¼ � 1

S

∂U
∂h

¼ � 1

Sh0

∂U
∂ε

¼ � 1

V

h

h0

∂U
∂ε

¼ � 1

V
1� εð Þ ∂U

∂ε
ð9Þ

Finally, substituting Eq. 8 into Eq. 9 we get

τ zz ¼ 27

32
ϕμ0μcrβa

2H2 1

1� ε
ð10Þ

From Eq. 10, the yield compressive stress τYC can be cal-
culated as the normal stress τzz in the limit of no deformation

(i.e., ε→ 0): τYC≡ lim
ε→0

τ zz ¼ 27

32
ϕμ0μcrβa

2H2. As a result,

the yield compressive stress shows a linear dependence on
the particle concentration ϕ and a quadratic dependence on
the magnetic field strength H at low fields. These predictions
are similar to those obtained from other micromechanical
models reported in literature for yield shear stresses (Martin
and Anderson 1996; de Gans et al. 1999; de Vicente et al.
2004; Volkova et al. 2000).

The magnetic normal force F can be obtained as the normal
stress τzz multiplied by the surface area of the sample. There
are two possibilities for the calculation of the surface area. On
the one hand, we can assume that the field-induced structures
slip along the surfaces and move radially when compressing.
On the other hand, we can assume that the structures remain
connecting the plates and do not displace radially. In the for-
mer case, the surface area can be simply calculated as S=V0/h.
In the latter case, the aggregates do not slip over the plates, the
particle volume fraction increases within the gap according to
ϕ = ϕ0/1 - ε, and the surface area is given by S = V0/h0.

Nevertheless, no matter the particular assumption employed,
we arrive to the same final equation for the magnetic normal
force acting on the plates:

F ¼ 27

32
ϕμ0μcrβ

2
aH

2V 0

h0

1

1� εð Þ2 ð11Þ

Strictly speaking, apart from magnetostatic forces, capil-
lary forces Fcap do, a priori, contribute as well to the normal
force under compression (e.g., Ewoldt et al. 2011). Fcap de-
pends on the surface tension γ, the contact angle, θ and the gap
separation h according to: Fcap= -2γ cos (θ)V0/h

2. It is an ad-
hesive force (Fcap<0), and therefore, it tends to diminish the
gap between the plates. As observed, it depends on (1 - ε)-2,
similar to the magnetostatic contribution (c.f. Eq. 11). As a
result, capillary forces contribute shifting (vertically) the nor-
mal force curves. For large particle concentrations and mag-
netic fields, Fcap is clearly much smaller than F because
F∝ϕH2. However, capillary forces can be important in the
case of small loadings and small fields. In order to avoid
complications coming from capillary forces, the normal force
transducer will be reset after loading the sample in the geom-
etry. With this, the effect of the capillary force can be safely
neglected at least in the limit of validity of the model (i.e., at
low compressive strains).

Similar to τYC, a yield normal force FY can also be defined
starting from Eq. 11:

FY≡ lim
ε→0

F ¼ 27

32
ϕμ0μcrβa

2H2V 0

h0
¼ τYC

V 0

h0
ð12Þ

As observed from Eqs. 10–12 predictions of this model are
linear with the volume fraction and quadratic with the external
magnetic field strength at low fields. On the one hand, the
linearity with the volume fraction comes from the assumed
arrangement of particles in single-particle-width chains at
the beginning of the compression. Infinite dilution is a neces-
sary condition for this to occur. On the other hand, the qua-
dratic dependence with the magnetic field strength is a conse-
quence of the linear magnetization approximation employed
in the calculation of the magnetic moments of the particles,
and it is strictly valid in the limit of low fields. Of course, a
constant dependence with the field strength is expected in the
saturation regime by simply replacing βa

2H2 by Mas
2/9 (with

Mas the saturation magnetization of the aggregates).

Experimental

Conventional MR fluids were prepared by carefully mixing
carbonyl iron microparticles (HQ grade, BASF) in silicone oil
o f 20 mPa Is (S igma-Aldr i ch ) . A para l l e l p l a t e
magnetorheometer MCR-501/MRD180 (Anton Paar) was
used to perform constant volume squeeze flow experiments
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in the presence of magnetic fields similarly to Ruiz-López
et al. 2012. Details on the experimental setup can be found
in Laun et al. (2008). Nonmagnetic titanium plates (diameter
20 mm) were employed except for the most concentrated MR
fluids. Unless otherwise stated, the initial separation was h0
¼ 300 μm and the sample volume was V 0 ¼ 20 μL. Plates
were supposed to be perfectly parallel even though a small
misalignment exists (Andablo-Reyes et al. 2010, 2011).
Also, the distortion of the force sensor under pressures gener-
ated in this work and wall slip were neglected (de Vicente
et al. 2011b). Wall slip was only noticeable for the highest
concentrations and prevented using sandblastered plates.
Magnetic fields were not too large (smaller than ≈300 kA/m)
to minimize magnetic field gradients within the magneto cell
(Laun et al. 2008).

All compression experiments reported here were run at
constant volume V0, and constant velocity v = 10 μm/s
(elongational rate range: ε∼0:03� 0:2=s ). This corresponds
to low plasticity numbers S<0.5 and low Reynolds numbers
Re∼10-3≪1 so lubrication and creeping flow approximations
can be used in the so-called filtration regime (McIntyre and
Filisko 2010). The normal force sensor was zeroed after load-
ing the sample in the geometry. Then, an external magnetic
field was (suddenly) applied for 60 s for the field-induced
structuration prior to the compression test. Results presented
below are always averages over at least three separate runs.
All experiments were run at 25 °C.

Results and discussion

In Fig. 1, the model is compared to experimental data,
for different external magnetic field strengths (from
H0= 88 to 354 kA/m), on MR fluids formulated at a
particle concentration of ϕ= 0.05. We employ this par-
ticular loading as a reference (it is the same as in de
Vicente et al. 2011b). Experimental data are represented
as symbols, and solid lines correspond to theoretical
predictions (Eq. 11). In this representation, experiments
exhibit a slope of −2 in good agreement with the mod-
el. However, some deviations occur for the larger gap
separations that could be due to inertia at the start-up of
the compression test. Overall, a reasonably good quan-
titative agreement is found, bearing in mind that the
model does not contain any free fitting parameter.

A more convenient way to visualize the experimental data
is to plot a reduced force normalizing by the yield normal
force, FY. From a theoretical point of view, this must result
in a master scaling curve as a function of 1 - ε. Figure 2 rep-
resents theoretical and experimental data for a particle loading
of ϕ=0.05. Generally speaking, a reasonably good scaling is
found in agreement with the theory.

Effect of particle concentration

Next, we aim to explore the influence of particle concentra-
tion. From a theoretical perspective, it is expected a better
agreement the lower the particle loading. Figure 3a
demonstrates that the model satisfactorily explains the
experimental data for low particle loadings. A very good
agreement with the experiments is found for concentrations
below ϕ = 0.10. This was expected to be so because
interactions between aggregates (interaggregate interactions)
are not important for dilute systems and they are neglected in
the theoretical model. Figure 3b demonstrates that the linear
scaling with particle concentration predicted by the
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Fig. 1 Compression tests for ϕ = 0.05 suspensions at different external
magnetic field strengths. Symbols: experimental data. Lines: theoretical
predictions (Eq. 11). Sample volume V0 = 20 μL. Initial gap distance
h0 = 300 μm.
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Fig. 2 Scaling compression curves for ϕ= 0.05 suspensions at different
external magnetic field strengths. Normal forces, F, are scaled here
by the yield compressive stress FY ¼ 27

32ϕμ0μcrβa
2H2V 0

h0
. Symbols:

experimental data. Line: theoretical prediction (Eq. 11). Sample volume
V0 = 20 μL. Initial gap distance h0 = 300 μm.
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micromechanical model actually experimentally occurs for
low loadings (below ϕ=0.10).

For concentrations larger than ϕ=0.10, the model under-
estimates the experimental data (c.f. Fig. 3). This is expected
because of the presence of interaggregate interactions
(Fernández-Toledano et al. 2014). Figure 3b demonstrates that
the normal force is no longer proportional to the particle con-
centration and increases more rapidly (Ruiz-López et al.
2012). The slope is now closer to 3, in good qualitative agree-
ment with observations by Guo et al. (2013). In their paper,
see Fig. 6, they report a larger than 2 slope for the most con-
centrated suspensions. However, contrary to Guo et al. (2013),
where magnetic field increased under compression, in our
experimental assembly, the magnetic field distribution re-
mains essentially constant during compression and this facil-
itates the interpretation of the results. The deviation from a
slope of 2 for the most concentrated MR fluids will be later
explained in terms of slip at the walls that favors
interaggregate interactions when the aggregates come into
contact (see below).

In the case of the lowest concentrations investigated (below
ϕ=0.05), the normal force sharply decreases for large 1 - ε
values, at the early stages of the deformation. Unfortunately,
the normal force resolution of our magnetorheometer is ap-
proximately 0.01 N which is very close to the typical force
corresponding to this drop, and therefore, we cannot get sound
conclusions on this issue that, as stated above, may be related
to inertia.

Effect of sample volume

As commented in the discussion of Fig. 3, the normal force
resolution of the transducer impedes its accurate determina-
tion for large gap separations (large 1 - ε values), especially for
the lowest particle loadings where the sensed normal force is
very small (below 1 N). In order to better explore this region,
we decided to carry out further experiments involving larger
sample volumes V0. These experiments would also be
employed to test whether the theoretical prediction applies
(F∝V0 according to Eq. 11).

Figure 4 contains experimental and theoretical predictions
for initial volumes ranging from V0=20 μL to V0 =80 μL in
dilute MR fluids (ϕ=0.01). As expected, larger 1 -ε values
(above the normal force resolution) can be reached because
the resulting normal force increases. In qualitative agreement
with the model, larger initial volumes give a larger normal
force (c.f. Fig. 4a). However, only for the lowest initial vol-
ume explored (V0 =20 μL), a good quantitative agreement is
found between experiments and the theoretical prediction (i.e.,
a linear dependence is found). For the largest initial volumes,
the model again underestimates the experimental data. These
results are better appreciated in Fig. 4b. Figure 4b contains
normalized normal force data for different sample volumes V0.
For sufficiently small 1 - ε values, experimental data collapse
in very good quantitative agreement with the proposed
theoretical model; a linear dependence is expected.
However, for large V0, experimental data systematically
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Fig. 4 Effect of sample volume,
V0, on the compression behavior
of dilute MR fluids (ϕ= 0.01).
Symbols: experimental data.
Lines: theoretical predictions
(Eq. 11). Magnetic field strength
H0 = 265 kA/m. Initial gap
distance h0 = 300 μm. a Normal
force, F, as a function of 1 - ε. b
Normal force, F, divided by the
yield normal force, FY, as a
function of 1 - ε.
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Fig. 3 Effect of particle loading
ϕ. Symbols: experimental data.
Lines: theoretical predictions
(Eq. 11). Sample volume
V0 = 20 μL. Initial gap distance,
h0 = 300 μm. Magnetic field
strength, H0 = 177 kA/m . a
Normal force, F, as a function of
1 - ε. b Normal force, F, divided
by the yield normal force, FY, as a
function of 1 - ε.
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deviate from the predictions, hence suggesting that
inhomogeneities in the magnetic field distribution, which
become more important for large V0 and large 1 - ε,
influence the results.

Effect of surface roughness

According to the model (Eq. 11), a slope of 2 should be ex-
perimentally found when plotting the normalized force as a
function of 1 - ε independently of the existence of slip or not.
However, experiments reported for the larger concentrations
explored (ϕ=0.10 , 0.20 , and 0.30) give a slope of nearly 3
(c.f. Fig. 3). To better understand these findings, we decided to
carry out further experiments using roughened plates. In par-
ticular, the plates employed in these new experiments were
subjected to sand-blastering and had a peak-to-valley rough-
ness of 9.2 μm.

Results obtained for ϕ=0.10 , 0.20 , and 0.30 suspensions
are contained in Fig. 5 and demonstrate that the slope is very
close to 2 when rougher surfaces are used, in very good qual-
itative agreement with the model. This suggests that the

change in slope is actually mainly determined by slip of the
MR fluid as a whole. Of course, the model still underestimates
the experimental data because of the presence of
interaggregate interactions at these particularly large particle
loadings. In summary, the geometry assembly that is used by
default in this work seems to prevent slip in the lowest con-
centrated MR fluids. However, for the largest concentrations
investigated, the default roughness is not large enough to pre-
vent slipping under this flow field. An important consequence
of this is that the aggregates slipping along the surface can
easily meet and form more complex interconnected structures
therefore increasing the slope. By simply roughening the sur-
faces, slip is prevented and the slope becomes very close to 2
in agreement with the model. It is worth to note here that
inhomogeneities in the field distribution do not explain the
trends discussed in Fig. 5 because the wetted area is the same
for all tests.

Effect of initial gap distance

According to the model described in the theoretical section, an
initial gap distance, h0, dependence is expected. In particular,
the magnetic contribution to the normal force scales with

F∝h�1
0 . Figure 6a demonstrates that the larger the gap

distance the smaller the normal force, in good qualitative
agreement with the model. This implies that the yield
compressive stress decreases upon increasing the gap. The
model is in a reasonably good agreement with the
experiments for h0>300 μm. However, for h0≤300 μm, the
model underestimates the experimental normal force
presumably because of the increasing importance of
inhomogeneities in the magnetic field distribution in the
magneto cell (note that V0 is constant in this set of tests).
Also, the hypothesis that magnetic particles self-assemble in
straight single chains prior to the test is more difficult to
achieve in view of the major importance of particle wall and
interaggregate interactions at low h0 values. In Fig. 6b, the
normal force is scaled by the yield normal force FY. As shown,

the initial gap scaling predicted by the model (F∝h�1
0 ) is in

very good agreement with the experiments for h0>300 μm.
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the compression behavior of MR
fluids. MR fluid concentration
ϕ= 0.10. Magnetic field strength
H0 = 177 kA/m. Initial sample
volume V0 = 20 μL. a Normal
force, F, as a function of 1 - ε. b
Normal force, F, divided by the
yield normal force, FY, as a
function of 1 - ε.

0.2 0.4 0.6 0.8 1

10
0

10
1

10
2

φ = 0.10

φ = 0.20

φ = 0.30

F
/F

Y
 (

-)

1-ε (-)

slope 3
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concentrated MR fluids (ϕ = 0.10 , 0.20 , and 0.30 vol%). Smooth plates
(closed symbols): V0 = 20 μL; h0 = 300 μm; H0 = 177 kA/m. Roughened
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theoretical expression (Eq. 11)
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Conclusions

A novel micromechanical model is proposed for the flow be-
havior of magnetorheological fluids in unidirectional slow
compression. Even though this model is strictly valid in the
dilute regime and for infinitesimally small deformations, it
still explains experimental findings for a wide range of con-
centrations and deformations where the classical continuum
media theory tends to fail (de Vicente et al. 2011b). In partic-
ular, the model provides an explanation for reported devia-
tions from the slope of −2.5 that is theoretically predicted by
continuous media theories. The predictions of the model are
validated for different particle loadings, sample volume, sur-
face roughness and gap distance.
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