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Abstract The shear rheological behavior is investigated in
this work for a series of poly(ethyl acrylate) samples, whose
molar mass ranges from oligomers to high polymers. The
focus was on studying the onset of entanglement effects
over selected reptation models in order to ascertain their
ability to reproduce the complex shear modulus of the
polymers and to provide consistent values of the micro-
scopic parameters driving the structural relaxation of the
polymer system. Among ordinary reptation topological
models, we found that the Doi–Edward model, implemented
with contour length fluctuation and constraint release
mechanism for the tube relaxation, better reproduced the
rheological response of the materials. Most importantly,
we were able to simulate material functions to obtain con-
sistent microscopic information on the materials, such as
Rouse time and entanglement molar mass, over the whole
range of investigated molar masses, therefore overcoming
the discrepancy usually found, mostly in the mass region
of partial entanglement. Finally, descriptions of the polymer
entanglement features, in agreement with the experimental
and microscopic model findings, are provided in the frame-
work of the packing-length phenomenological model and
by means of analytical calculations of the polymer viscosity
according to the Milner–McLeish–Likhtman model.
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Introduction

Nowadays, predictions on the rheological behavior of poly-
mer melts start from the Rouse model (Rouse 1953), well
established for the long-time diffusion of low molecular
weight polymer melts, and proceed to include dynamics
processes that arise with the increasing of the polymer molar
mass (Larson et al. 2007). In particular, it has been rec-
ognized that the chain entanglement is a salient feature in
polymers, producing the viscoelastic polymer response and
affecting flow behavior of polymer melts and solutions, and
mechanical properties as well (Doi and Edwards 1988).

Dynamics of melts of high polymers and their concen-
trated solutions is prominently described by the tube models
(Doi and Edwards 1988; de Gennes 1971). Accordingly, a
topological restriction to molecular motion (entanglement)
arises because of the presence of other chains. The entan-
glements confine the polymer chain motion to a tube. Since
polymer chains would have be broken to allow the restricted
chain to pass through them, chain diffusion induces the
chain to flow outside the tube in a snake-like way (repta-
tion). While tube models provide a plausible mechanism
for the relaxation of polymers via reptation, the concept of
tube that constrains the polymer motion is ill defined and
elusive (for a very recent attempt to quantify the tube con-
cept, see Likhtman 2014). Moreover, tube theories foresee
scaling laws with respect to the polymer mass from which
experiments deviate. Therefore, over the years, several mod-
els have been developed that implement reptation with more
relaxation mechanisms, such as tube length fluctuations and
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constraint release relaxation, and that also refine mixing
rules in order to obtain quantitative predictions of linear vis-
coelasticity of polymer melts from the knowledge of molar
mass distribution (Carrot and Guillet 1997; des Cloizeaux
1990; 1992; Léonardi et al. 2000; Likhtman and McLeish
2002; Pattamaprom et al. 2000; Thimm et al. 2000; van
Ruymbeke et al. 2002). Also, many studies attempted to
answer the question of the best overall model for the melt
dynamics of well-entangled linear polymers (Carrot and
Guillet 1997; des Cloizeaux 1990; 1992; Léonardi et al.
2000; Likhtman and McLeish 2002; Pattamaprom et al.
2000; Thimm et al. 2000; van Ruymbeke et al. 2002).

The tube theory of polymer dynamics relates the onset
of entanglement to the entanglement mass Me, which is the
mass of a strand between neighboring entanglement points
and is the fundamental topological input parameter of the
theory. Me, in turn, is related to the plateau modulus G0

N

(Larson et al. 2003), as explicitly recalled later in this work,
so that the value of Me could be conveniently estimated
by measurements of the experimental elastic modulus G.
However, recognizable effects of the polymer entanglement
appear in the rubbery plateau of the experimental storage
modulus for molar masses greater than 2Me, and, in addi-
tion, fluctuations have been reported in the literature for
the experimental G0

N values of the same polymer matrix
(Liu et al. 2006 and references therein).

It appears therefore of interest to investigate the onset and
the presence of entanglement by studying the rheological
response of a same narrowly distributed linear homopoly-
mer as a function of its increasing mass from oligomer
to high polymer, including the slightly entangled masses.
This last range, characterized by molar masses greater than
the entanglement mass Me and smaller than 2Me, has not
been widely investigated yet, although the study of the
viscoelasticity of slightly entangled polymers, as well as
unentangled ones, deserves particular attention because it
could allow the focusing on the onset of entanglement
itself.

In this work, the complex shear modulus of poly(ethyl
acrylate) (PEA) melts is predicted according to four models
based on reptation. Since the molar mass of the sam-
ples ranges from oligomers to high polymers with about
15Me, indication could be inferred on the mass where the
entanglement is expected to onset and its influence for
a correct calculation of the experimental master curves
(Andreozzi et al. 2013; Lin and Juang 1999).

Indeed, special care has been devoted to simulate in
a consistent way the rheological response at the different
masses. In particular, relaxation mechanisms and mixing
rules were carefully taken into account so that consistent
values of the common parameters, pertinent to the same
relaxation mechanisms at the different masses, are obtained.
To the aim, an isofrictional correction (Andreozzi et al.

2008; Colby et al. 1987) is adopted to consider the different
free volume amount at the chain-ends of the lightest sam-
ples. Moreover, the role of contour length fluctuation and
constraint release relaxation is discussed.

The Me datum obtained from calculations of PEA mas-
ter curves has been used to test the packing model (Fetters
et al. 1994; Fetters et al. 1999), an empirical model, widely
employed in the literature, that relates viscoelastic proper-
ties to the chain dimensions. The insertion of PEA in the
framework of the packing model confirmed the possibility
of describing the dynamics of these homopolymers in terms
of their conformation properties, as recently demonstrated
also in case of a series of methacrylate liquid crystalline
copolymers (Andreozzi et al. 2013).

The analysis of reptation dynamics was completed
using the Milner–McLeish–Likhtman model (Likhtman and
McLeish 2002) to calculate viscosity of PEAs. The predic-
tive ability of the model was confirmed by the resulting eval-
uation of entanglement-related material parameters such as
reptation mass and critical mass for PEAs.

Theoretical background

In this paper, the complex shear modulus of the series
of PEA polymer melts was calculated, considering dif-
ferent models and mechanisms for relaxation, including
Rouse model, Doi–Edwards theory for entanglement poly-
mer dynamics, contour length fluctuation, and constraint
release relaxation (Doi and Edwards 1988). The discussion
also includes data treatment according to Milner–McLeish–
Likhtman model (Likhtman and McLeish 2002). In the
following, only the results of the models relevant to the
present work are reported. More details can be found in
literature (des Cloizeaux 1988; Doi and Edwards 1988;
Graessley 1982; Ianniruberto and Marrucci 1996; Larson
et al. 2003; Marrucci 1985; Milner and McLeish 1998; Pat-
tamaprom et al. 2000; Rubinstein et al. 1987; Rubinstein
and Colby 1988; Tsenoglou 1991; Viovy et al. 1991).

According to the Rouse theory for unentangled chains
(UR), the shear relaxation modulus of a monodisperse melt,
with molar mass M and at temperature T , can be written as
a function of the time t as (Doi and Edwards 1988)

G(t) = ρNAkBT

M

∑

p>0

exp

(
−2

p2t

τR

)
= ρNAkBT

M
mUR(t)

(1)

In Eq. 1, mUR(t) is the relaxation function, ρ the density
of the melt, NA is the Avogadro number, kB the Boltzmann
constant, and τR is the Rouse relaxation time, which, in turn,
depends on the monomeric friction coefficient ζ0, the length
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b and the number N of chain segments according to (Doi
and Edwards 1988)

τR = ζ0N
2b2

3π2kBT
= KRN2 (2)

In Eq. 2, KR is a parameter independent of the molar mass
M (i.e., N).

When the macromolecules in the melt are not constrained
by entanglements (M < Me), the relaxation results from
monomer friction only and is described by the Rouse mech-
anism. Also in entangled polymers, the relaxation processes
are dominated by the Rouse mechanism (Doi and Edwards
1988) at a time much shorter than a characteristic time for
reptation and named reptation time. However, a significant
difference is found for the Rouse relaxation of entangled
polymer melts with respect to the unentangled ones: at times
about the entanglement time1 τe = τRM2

e /M2 (Larson et al.
2003) or greater, those modes given by sub-chains with
molar mass lower than Me are relaxed, while the Rouse
relaxation of longer modes/sub-chains is hampered by the
presence of the reptation tube (van Ruymbeke et al. 2002;
Likhtman and McLeish 2002; Léonardi et al. 2000; Carrot
and Guillet 1997), so that only longitudinal Rouse modes
along the tube contribute to the relaxation. This leads to
(Likhtman and McLeish 2002)

G(t) = ρNAkBT

M

∑

p>M/Me

exp

(
−2

p2t

τR

)
(3)

+ κ
ρNAkBT

M

M/Me∑

p=1

exp

(
−p2t

τR

)
= ρNAkBT

M
mER(t)

where mER(t) is the relaxation function of the Rouse modes
in entangled chains (ER).

The Rouse mechanism of relaxation of unentangled sub-
chains (fast modes with p > M/Me inside the tube) and the
relaxation of the slower longitudinal modes are combined in
Eq. 3. For the latter, in some studies (Milner and McLeish
1998; Pattamaprom et al. 2000; van Ruymbeke et al. 2002),
the empirical factor κ = 1/3 was used to account for that
only one mode over three takes part in the relaxation. Other
studies (Likhtman and McLeish 2002) provided the differ-
ent value κ = 1/5. This means that 1/5 of the stress stored
in the tube is relaxed after a time τR by longitudinal modes.
At τR, the residual fraction of the stress is therefore supplied
by unrelaxed mechanisms, such as reptative relaxations. In
this paper, we will refer to the model of Eq. 3 as ER3 or
ER5 depending on the value employed for κ 1/3 or 1/5,
respectively.

1In this paper, we follow the “G” convention for the definitions of
entanglement spacing and time constants in the tube model treated
extensively in Larson et al. (2003).

Several models have been proposed in the literature to
describe the reptative dynamics of entangled linear chains.
According to the first quantitative description by Doi and
Edwards (1988), the shear stress modulus in entangled
chains (DE) can be expressed as

G(t) = ρNAkBT

Me

8

π2

∑

p: odd

exp

(
−p2t

τd

)
= G0

N mDE(t)

(4)

In Eq. 4, G0
N is the plateau modulus, mDE(t) the relaxation

function. τd is the disengagement time, or reptation time,
and is the time for the chain to renew its configuration and to
escape from the tube. τd is also the longest relaxation time
of the polymer melt. It is given by (Larson et al. 2003)

τd = ζ0N
3b4

π2kBT a2
= 3

Nb2

a2
τR = 3

M

Me

τR (5)

where a is the tube diameter.
It is seen from Eq. 5 that DE model yields τd ∼ M3,

which is not equal, but quite close, to the experimental result
of τd ∼ M3.4. As a matter of fact, the empirical expression
for the disengagement time

τd = Kd (M/Me)
α (6)

is often used that forces the exponent value to α = 3.4.
In Eq. 6, Kd is a proper temperature-dependent factor (van
Ruymbeke et al. 2002).

In order to recover the τd ∼ M3.4 experimental depen-
dence of the entangled polymer melts from the theory, the
DE relaxation function can be modified to include fluctua-
tions of the tube length around its equilibrium value. This
leads to an expression for G(t) (DECLF) (Doi and Edwards
1988; van Ruymbeke et al. 2002; Likhtman and McLeish
2002) in terms of the fractional distance ξ of tube segments
from the end of the tube at the time t = 0

G(t) = ρNAkBT

Me

1∫

0

exp

(
− t

τ (ξ)

)
dξ = G0

N mDECLF(t)

(7a)

with

τ(ξ) = ξ4

4ξ4
cr

τd 0 < ξ < ξcr (7b)

τ(ξ) =
(

ξ − ξcr

2

)2

τd ξcr < ξ < 1 (7c)

ξcr = 2v

√
Me

M
(7d)
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that is just constructed to merge the fluctuations at short
time scale with the reptation at long times, discriminated by
ξcr (Doi and Edwards 1988). Equation 7d expresses ξcr in
terms of the molar mass, the entanglement mass, and the
parameter v that depends on the material (van Ruymbeke
et al. 2002).

The contour length fluctuations are also semi-empirically
accounted for by another development of the DE theory,
the time-dependent diffusion model (TDD), which provides
(des Cloizeaux 1988)

G(t) = ρNAkBT

Me

8

π2

∑

p: odd

1

p2
e
−p2

(
t

τd
− Md

M
g
(

Mt
Md τd

))

= G0
N mTDD(t) (8)

In this formula, mTDD(t) is the TDD relaxation function,
Md is an empirical parameter and g is defined according to
des Cloizeaux (1988)

g(x) =
∑

k>0

1 − e−kx2

k2
≈ −x +

√
x2 +

√
πx3 + πx (9)

As a general remark, the tube model assumes an immo-
bile tube. Indeed, this assumption is an oversimplifica-
tion: the tube constraints are themselves chains that are
also reptating, having therefore a finite lifetime. The con-
straint release (CR) mechanism overcomes this drawback
of the tube model and can be included as a relaxation way
for the chains, applying the double reptation scheme (des
Cloizeaux 1988; Graessley 1982) to the DE, DECLF, and
TDD models. The semi-empirical approach of double repta-
tion explicitly describes entanglements as binary events (des
Cloizeaux 1988; Graessley 1982). The intuitive idea behind
it is that an entanglement disappears, and hence a con-
straint is released, whenever a chain end passes beyond the
entanglement. For monodisperse polymer melts, the stress
relaxation function within the double reptation theory is pro-
portional to the square of m(t) according to (des Cloizeaux
1988; Tsenoglou 1987)

Gdouble(t) = G0
N m2

single(t) (10)

where msingle(t) is the shear modulus relaxation function of
single reptation models without the CR mechanism (e.g.,
Eqs. 4, 7, and 8).

Then, the total shear relaxation modulus G(t) of the
monodisperse polymer melt can be obtained as a sum of the
different contributions chosen to model the relaxation:

G(t, M) = G0
N m

β

single(t, M) + ρNAkBT

M
mRouse(t, M)

(11)

The exponent β accounts for the CR mechanism,
msingle(t, M) is the shear modulus relaxation function of
single reptation models of the monodisperse polymer of
mass M , as for Eq. 10. The mRouse(t, M) provides the Rouse
relaxation of the polymer chains and corresponds to mER(t)

or mUR(t) for entangled or unentangled chains, respectively.
A further model was proposed in the literature, which

combines self-consistently theories for contour length
fluctuations and CR mechanism: the Milner–McLeish–
Likhtman (MML) model (Likhtman and McLeish 2002).
This model starts from the DE model and unites theoretical
and stochastic simulation approaches, adopting a renor-
malization of the disengagement time to include contour
length fluctuation, while CR mechanism is added follow-
ing a scheme proposed by Rubinstein and Colby (1988) and
Viovy et al. (1991).

With reference to Eq. 11, β is always set to 1 in the MML
model and the reptative contribution to G(t) is given by
(Likhtman and McLeish 2002):

G(t) = G0
N R (t, cv) s(t) = G0

N mMML(t) (12)

where mMML = msingle(t, M) is the shear modulus relax-
ation function of the MML model, s(t) is an occupation
function accounting for the fraction of tube segment not vis-
ited by a chain end during the time t , and R(t, cv) is the
relaxation function of the tube. The dimensionless param-
eter cv reflects the “strength” of the CR mechanism, so
that the value cv = 0 means no CR, while cv = 1 cor-
responds to the Rubinstein–Colby theory (Rubinstein and
Colby 1988; Viovy et al. 1991). Details about the deter-
mination of R(t, cv) are given in Likhtman and McLeish
(2002), where an important role is also played by the
knowledge of b.

By means of fitting the results of stochastic simulations,
MML model provides for s(t)

s(t) = G̃f

8

π2

√
Z/10∑

p: odd

1

p2
exp

(
−p2t

τ̃f

)

+
∞∫

ε̃f

0.306

Zτ
1/4
e ε5/4

e−εt dε (13a)

where the factor 0.306 was adopted to reproduce the early
time value, when relaxation process of tube segments is
strongly non-exponential, Z = M/Me and

τ̃f

τd

= 1 − 2
1.69

Z1/2
+ 4.17

Z
− 1.55

Z3/2
(13b)

G̃ = 1 − 1.69

Z1/2
+ 2.00

Z
− 1.24

Z3/2
(13c)
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ε̃f = 1

τe

(
4 × 0.306

Z

)4
⎛

⎝1 − G̃f

8

π2

√
Z/10∑

p: odd

1

p2

⎞

⎠
−4

(13d)

The last equation is set by the condition s(0) = 1.
Polydisperse polymers can be profitably handled taking

into account the contributions to G(t, M) of all monodis-
perse components of mass M of the molar mass distribution
w(M) of the melt

w(M) = dW(M)

dlogM
(14)

where W(M) is the weight fraction of chains with molar
mass lower than M . Accordingly, the overall relaxation
modulus of polydisperse polymers can be written in the gen-
eral mixing rule form (Tsenoglou 1991; van Ruymbeke et al.
2002)

G(t) = G0
N

⎛

⎜⎝

log Mf∫

log Mi

msingle(t, M)w(M) d logM

⎞

⎟⎠

β

+ ρNAkBT

M

log Mf∫

log Mi

mRouse(t, M)w(M) d logM (15)

where msingle(t, M) and mRouse(t, M) are the relaxation
functions of the monodisperse polymer of mass M . The
values of the extremes of the molar mass range (Mi

and Mf ) and the value of the exponent β > 0 are
specific to the model describing the monodisperse shear
modulus and relaxation function, as detailed in Table 1.
In particular, β is a dumb parameter for MML model
and has to be set to 1, because CR mechanism is con-
trolled by cv . Note that, in the absence of CR mechanism,
namely β = 1 (and also cv = 0 for MML model), one
could obtain G∗(ω) from Eq. 15 analytically for all the
models.

The approaches employed in this work to evaluate the
shear modulus are summarized in Tables 1 and 2, together
with the pertinent expressions and parameter settings for Eq.
15. It is worth noting that the monomeric friction coefficient

Table 1 Summary of Rouse relaxations employed in calculating the
shear modulus. The core modulus function refers to the nomenclature
of Eq. 11

Model Core modulus mRouse Second integral of Eq. 15

UR Eq.1 Mi = 0, Mf = Me

ER3 Eq. 3 with κ = 1/3 Mi = 0, Mf → ∞
ER5 Eq. 3 with κ = 1/5 Mi = 0, Mf → ∞

Table 2 Summary of reptation models employed in calculating the
shear modulus. The core modulus function refers to the nomenclature
of Eq. 11

Model Core modulus msingle First integral of Eq. 15

DE Eqs. 4 and 6 β tunable, Mi = Me, Mf → ∞
DECLF Eq. 7 β tunable, Mi = Me, Mf → ∞
TDD Eqs. 8 and 9 β tunable, Mi = Me, Mf → ∞
MMLa Eqs. 12 and 13 β = 1, Mi = 10Me, Mf → ∞

aIt should recalled that β is a dummy variable for this model, since the
CR mechanisms are controlled by the cv parameter (Likhtman and
McLeish 2002)

ζ0 and G0
N are the sole temperature-dependent parame-

ters of all the models, with ζ0 much more temperature-
dependent than G0

N . In addition, in this work, the behavior
of short chains was taken into account by an “inverse”
isofrictional correction (Andreozzi et al. 2008) as detailed
later in the manuscript.

Materials and methods

In this work, we study ten PEA samples (Table 3), character-
ized by narrow molecular weight distributions and different
molar masses (molar mass of PEA repeating unit M0 = 100
g mol−1). The polymer samples were synthesized following
the atom transfer radical polymerization (Andreozzi et al.
2006). Number average Mn and weight average Mw molar
masses were determined by size exclusion chromatogra-
phy (SEC) using monodisperse polystyrene standards for
column calibration (Andreozzi et al. 2006). For some sam-
ples, light scattering experiments were also carried out that
confirmed mass measurements obtained with SEC. As in

Table 3 Mass averages, polydispersity index and glass transition tem-
peratures of PEA samples, ordered with decreasing magnitude of
Mn

Sample Mn (kg mol−1) Mw (kg mol−1) Mw/Mn Tg (K)

PEA20R 120.00 150.00 1.25 253

PEA06R 58.20 66.50 1.15 253

PEA05R 24.90 26.60 1.07 253

PEA04R 18.65 20.20 1.08 250

PEA02R 11.65 13.10 1.13 252

PEA18R 8.80 9.60 1.09 250

PEA01R 7.50 8.25 1.10 248

PEA17R 7.30 7.80 1.07 247

PEA16R 2.75 3.00 1.09 243

PEA15R 0.98 1.20 1.22 231



190 Rheol Acta (2015) 54:185–205

Andreozzi et al. (2006), in this study the density ρ of PEA
samples is taken as 1.12 g cm−3 (Wen 1999).

Differential calorimetry measurements were performed
by means of a PerkinElmer DSC7 calorimeter to obtain the
glass transition temperatures Tg of the samples that were
evaluated according to the onset definition (Hohne et al.
2003). Thermograms were recorded on heating at 10 K
min−1 after a quench at 40 K min−1.

A Haake RheoStress RS150H stress-controlled rheome-
ter was used, equipped with a RS150H Peltier system and
a programmable thermal bath. A sensor with cone-plate
geometry (35 mm diameter, cone angle 4◦) was utilized for
PEA15R sample, while a parallel plate system (diameter 20
mm) was chosen for the other samples. In rheological mea-
surements at different temperatures, the thermal dilatation
of the system was taken into account by varying the gap of
the sensors, all the gaps being chosen to ensure gap inde-
pendent measurements. A flux of ultrapure nitrogen gas was
injected into the rheometer cell to avoid aqueous condense
for measurements at temperatures lower than the ambient
one.

All measurements were carried out in linear viscoelas-
tic regime of the materials. Isothermal frequency sweeps
were measured from 10−2 to 24.4 Hz. Zero shear viscosity
was evaluated (Andreozzi et al. 2006) in independent ways
from creep, creep recovery, and flow experiments at various
temperatures and from the complex modulus in oscillatory
measurements (Macosko 1994; Morrison 2001).

Viscosity and thermal parameters were discussed in a
previous paper (Andreozzi et al. 2006). Recurring to time-
temperature superposition principle (TTS) master curves
(Hiemenz and Lodge 2007) were obtained by mathematical
shifting of the isotherm frequency sweeps of the complex
modulus G∗(ω) to the reference temperature Tr = 270
K, according to a literature procedure (Honerkamp and
Weese 1993). The mass-independent value of the material
parameter plateau modulus G0

N was previously obtained
experimentally in high PEA polymers (Andreozzi et al.
2006), resulting in G0

N = (2.1 ± 0.1) × 105 Pa at 270 K;
from that, it comes Me = 12 kg mol−1 evaluated following
the “F” definition of Larson et al. (2003) and the minimum
of tanδ criterion.

The master curve fitting was obtained via a C++
code. The experimental master curves were prelimi-
narily interpolated sampling the frequency according
to a geometric progression of ratio 2. G′

exp(ω) and
G′′

exp(ω) were thus obtained. Also, experimental data
provided by GPC experiments were interpolated after
sampling geometrically logM . The procedure provided
w(M) with at least 20 points per molar mass decade.
To make a quantitative comparison between the exper-
imental master curves and the theoretical ones G∗

th(ω)

with n fitting parameters, the reduced χ2
r function

χ2
r = 1

P − n

P∑

k=1

⎛

⎝
log

(
G′

exp (ωk) /G′
th (ωk)

)

σ

⎞

⎠
2

+ 1

P − n

P∑

k=1

⎛

⎝
log

(
G′′

exp (ωk) /G′′
th (ωk)

)

σ

⎞

⎠
2

(16)

was then minimized by means of a Nelder–Mead routine
(Nelder and Mead 1965) over P points, implemented on
purpose.
In the routine, a function is called to calculate G∗

th(ω). Such
a function

1. Computes msingle(t, M) and mRouse(t, M) according
to the dynamic models described in the theoretical
section of this manuscript for each mass M used in
the sampling of w(M). In the computation, it operates
an “inverse” isofrictional correction (Andreozzi et al.
2008) in order to remove the intrinsic isofrictional
behavior of the models and to adhere to the experi-
mental data affected by different chain mobility (see
Section “Results and discussion”).

2. Uses the Eq. 15 to calculate G∗
th(t) according to the

guidelines detailed at the end of the previous section
in order to account for molar mass distribution and
possible CR mechanism.

3. Adopts different strategies to obtain the G∗
th(ω) func-

tion in the angular frequency domain: for Rouse
relaxation the dynamic modulus was obtained ana-
lytically, Fourier-transforming the second term of
Eq. 15; on the other hand, the complex modulus of
reptation models was obtained by Schwarzl approxima-
tions (Schwarzl 1971), which were preferred over the
numerical Fourier transform approach because of their
simplicity and the associated computational speed.

A global maximum relative error of σ = 7.0 % was used
in the minimization of Eq. 16, which is reliable enough in
consideration of the experimental uncertainty and the master
curve building.

Results and discussion

Relaxation of slightly entangled PEA chains

The master curves of dynamic moduli G′ and G′′ of the sam-
ples PEA02R and PEA04R are shown in Fig. 1. According
to the values of Mw given in Table 3 and of the PEA entan-
glement mass Me evaluated in Andreozzi et al. (2006), these
samples have Mw greater than Me ≈ 12 kg mol−1 and lower
than Mc ≈ 2Me (Andreozzi et al. 2006). Therefore, follow-
ing the polymer dynamics theories, these samples should be
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Fig. 1 Experimental master curves of G∗ for the slightly entangled
PEA samples PEA02R and PEA04R. G′ (a) and G′′ (b) moduli,
calculated according to UR model, are superimposed to the experiment

subjected to entanglement. However, PEA02R and PEA04R
do not show any plateau modulus in their master curves and,
in addition, it was demonstrated (Andreozzi et al. 2006) that
the isofrictional viscosity of these samples obeyed to a lin-
ear dependence on the molar mass, in accordance with the
Rouse model.

To prove that the reptation is actually determinant for a
proper description of the mechanical response of those PEA
melts, we calculated master curves and compared the val-
ues of microscopic parameters both with Rouse model only
(UR, Table 1) and with the combination of the different
models of reptation, proposed in Table 2, with the Rouse
modes for entangled melts (ER5, Table 1).

In all the calculations, we decided to adopt a correction
for the monomeric friction coefficient ζ0. In fact, a rheolog-
ical study, carried out according to the Rouse model for the
unentangled PEA samples (PEA15R, PEA16R, PEA17R,
PEA01R, and PEA18R), resulted in fits of very good qual-
ity, but provided a monomeric friction coefficient, set as
a free parameter, with values strongly dependent on the
polymer mass (Andreozzi et al. 2008). As an example,
calculations for PEA17R and PEA18R samples provided
b2ζ0 = (6.7 ± 0.1) × 10−24 N s m and b2ζ0 = (1.98 ±

0.03) × 10−23 N s m, respectively. This was ascribed to the
different available free volume in the different melts.

Actually, all the dynamic models considered in this work
assume isofrictional relaxation times, while, as well estab-
lished in the literature (Andreozzi et al. 2006; Andreozzi
et al. 2008; Colby et al. 1987), a highly mass-dependent ζ0

is found for polymer chains of low molar masses (Andreozzi
et al. 2006; Andreozzi et al. 2008; Colby et al. 1987; Doi
and Edwards 1988) because of the different mobility of the
chains consequent upon the distinct concentration of chain
ends (Colby et al. 1987). This experimental result leads
to non-invariant ζ0 values for polymers with high and low
molar masses and then to different values of KR. Colby and
coworkers proposed a scaling equation in Colby et al. (1987)
in order to reduce the experiments to isofrictional results,
coherent with theoretical models. In this paper, the reverse
approach is needed. In fact, the experimental master curves
result from the contribution of chains of different mass and
distinct mobility, each of them with the pertinent ζ0. Then,
because a single scaling factor does not work over all the
components of the molar mass distribution, the assumption
of mass-independent ζ0 was removed from the calcula-
tion of the theoretical master curve (Eq. 15) by applying a
scaling, reciprocal of the one of Colby et al. (1987).

More precisely, the following correction of the
monomeric friction coefficient is necessary to tune up the
theoretical master curves with the experiments (Andreozzi
et al. 2008):

ζ0(M)/ζ0 = 10c1∞−c1(M) (17)

where c1(M) is the Williams–Landel–Ferry (WLF) param-
eter c1 (Ferry 1980) at the molar mass M; c1∞ is the WLF
parameter at very high molar masses (in the limit M → ∞).
The rescaling of Eq. 17 provides an “inverse” correction
with respect to the one found in the literature (Andreozzi
et al. 2006; Colby et al. 1987), which is adopted when exper-
imental data of viscosity are requested to fit the theoretical
behavior.

It is worth noting that, according to free-volume theories
(Andreozzi et al. 2006; Pearson et al. 1994; Richter et al.
1994), the function c1(M) can be expressed analytically as
(Andreozzi et al. 2006; Andreozzi et al. 2008)

c1(M) = c1∞
M

M + Mc1

(18)

The parameters c1∞ and Mc1 for PEAs were determined in
Andreozzi et al. (2006) from WLF parameters obtained by
the master curve construction at the reference temperature
Tr = 270 K and resulted to be c1∞ = 9.12 and Mc1 = 0.58
kg mol−1.

In Fig. 1, the master curves of PEA02R and PEA04R
calculated according to the UR model are shown. The high
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Table 4 UR fitting parameters for slightly entangled (PEA02R and
PEA04R) and unentangled PEA melts, listed with decreasing Mn

Sample KR (ms) χ2
r

PEA04R 1.07 1.4

PEA02R 0.85 0.8

PEA18R 0.79 1.8

PEA01R 0.80 1.0

PEA17R 0.76 0.6

PEA16R 0.81 0.8

PEA15R 0.76 0.6

quality of the fits can be appreciated, also from the perti-
nent χ2

r reported in Table 4. Table 4 also lists the KR values
(see Eq. 2). The results do not match the model, even with
the correction of Eq. 17, and provide a clear indication that
reptation plays a role in this molar mass range. For compar-
ison purposes, Table 4 also reports the values pertinent to
the unentangled samples (Andreozzi et al. 2008). For them,
the iso-free-volume correction of Eq. 17 was effective and
provided coherent KR values, resulting in a mean b2ζ0 =
(7.8 ± 0.2) × 10−23 N s m (Andreozzi et al. 2008). It is
seen (Table 4) that the KR value of PEA02R and PEA04R is
beyond the 95 % confidence interval (Martinelli and Baldini
2008; Taylor 1997).

Then, we calculated the dynamic moduli of PEA02R and
PEA04R with different reptation models, either including
or not CR relaxation, and letting Me, KR, and one repta-
tion parameter (see Table 5) to be free parameters. One
expects that the best fitting of the master curves provides
free-parameter values independent of the sample (e.g., Me

constant over the whole set of PEA samples) and depen-
dent on the model only. Also, the applicability or not of the
model is determined by the fluctuation amount of the free
parameters.

It must be noted that, at this stage, all the calculations
were carried out setting at 3 the number of free parameters
of each model and constraining the others to preset values.
In particular, β (Eq. 15), for all the models, and cv for MML
were always constrained as shown in Table 5. Regarding
Kd , its values were calculated, for models other than DE,
during the fitting procedure according to the Eqs. 5 and 6
with α = 3. In the DE model case, Kd was set as free and α

(Eq. 6) was constrained to the literature value of 3.4.
In Fig. 2, experimental master curves of PEA02R and

PEA04R are compared with G′ and G′′ calculated by com-
bining ER5 and, from time to time, DE, DECLF, TDD, and
MML reptation models, in the absence of the CR relaxation.
In Fig. 3, the experimental master curves are compared to
the calculated ones, by using the same models, each of them
including the CR mechanism.

Table 5 Parameters for slightly entangled PEA02R and PEA04R from 3 free-parameter fitting procedures according to reptation models

Sample Model CRa Me (kg mol−1) KR (ms) Kd /KR Reptation par. χ2
r

PEA02R DE No, β = 1 Undetectableb 0.85 Undetectableb α = 3.4a 0.7

DECLF No, β = 1 29.0 0.83 Derivedd v = 0.4 0.6

TDD No, β = 1 20.0 0.81 Derivedd Md = 350 kg mol−1 0.6

MML No, cv = 0c Undetectableb 0.85 Derivedd b, undetectablee 0.7

DE Yes, β = 2.1 14.5 0.79 330 α = 3.4a 0.6

DECLF Yes, β = 2.1 11.7 0.77 Derivedd v = 0.1 0.6

TDD Yes, β = 2.1 12.1 0.78 Derivedd Md = 21 kg mol−1 0.6

MML Yes, cv = 1c 14.5 0.79 Derivedd b = 6 Å 0.6

PEA04R DE No, β = 1 17.0 0.76 115 α = 3.4a 2.2

DECLF No, β = 1 9.5 1.18 Derivedd v = 2.2 3.8

TDD No, β = 1 8.5 1.23 Derivedd Md = 2000 kg mol−1 4.0

MML No, cv = 0c 28.5 1.03 Derivedd b, undetectablee 1.6

DE Yes, β = 2.1 14.4 0.79 370 α = 3.4a 1.1

DECLF Yes, β = 2.1 12.5 0.80 Derivedd v = 0.1 0.6

TDD Yes, β = 2.1 11.7 0.79 Derivedd Md = 30 kg mol−1 0.8

MML Yes, cv = 1c 17.5 0.89 Derivedd b = 5 Å 1.4

aConstrained values
bUndetectable: the fitting procedure determines an Me higher than the highest mass content of the molar mass distribution. This means that
practically the UR fit was obtained
cIn this case, β of Eq. 15 is a dummy variable, to be set to 1
dCalculated during the fitting procedure according to Eqs. 5 and 6, using the running values of the Me and KR free parameters
eNote that in the absence of CR, the MML model reduces to 2 the number of free parameters being b only accounted for in the CR function R(cv, t)



Rheol Acta (2015) 54:185–205 193

Fig. 2 Slightly entangled PEAs: 3 free-parameter reptation models
without CR. Experimental master curves and superimposed calcu-
lated G′ (a) and G′′ (b) moduli are shown for PEA02R and PEA04R,
respectively

In both the cases, the fitting parameters are summa-
rized in Table 5. Once applied to PEA02R and PEA04R,
all these models provided master curves of good quality,
with values of χ2

r within the 95 % confidence interval (Mar-
tinelli and Baldini 2008; Taylor 1997), excluding the case
of DE, DECLF, and TDD without CR for the PEA04R
sample.

An analysis of the fitting parameters could provide more
insight and a discrimination guide to select the dynamic
model more appropriate to the slightly entangled PEA
polymers.

At first, we start with inspecting reptation without CR
relaxation. The KR value obtained with reptation mod-
els without CR is in accordance with its mean value
retrieved with UR model in unentangled PEA samples
(Table 4) only for DE model in PEA04R. Moreover, when
applied to this latter sample, DE, DECLF, and TDD mod-
els show rejectable values for χ2

r . Simultaneously, for all
these models without CR relaxation, it is observed that
the Me value, if evaluated by the fit, turns out to be
either greater or smaller than the one evaluated according

Fig. 3 Slightly entangled PEAs: 3 free-parameter reptation models
with CR. Experimental master curves and superimposed calculated
G′ (a) and G′′ (b) moduli are shown for PEA02R and PEA04R,
respectively

to the entanglement plateau of PEAs in Andreozzi et al.
(2006). This finding leads to an evident disagreement
with respect to the well-established result Mc/Me ≈ 2
(Doi and Edwards 1988), being Mc about 26 kg mol−1

in PEAs (Andreozzi et al. 2006). In particular, MML
model foresees for PEA04R a very high value of Me.
On the other hand, for PEA02R, no plausible Me value
was provided by simulations according to DE and MML
models. Indeed, the estimated Me fell at so high values
that the reptation dynamics could have taken place for
masses overrunning on the available mass distribution of the
sample.

Regarding Kd , a free parameter in DE model case,
unphysical variations were found for PEA04R, with values
by far less than the values of Kd = 620KR that could be
retrieved from calculations carried out according to Eq. 5,
Eq. 6, and the KR values, as resulting from the fitting proce-
dures. On the other hand, for PEA02R, the fitting procedure
was not able to provide any result different from the out-
come that was formerly obtained by using the UR model.
The collection of all these considerations allowed us to rule
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Fig. 4 Slightly entangled PEAs: 4 free-parameter reptation models
with CR. Experimental master curves and superimposed calculated
G′ (a) and G′′ (b) moduli are shown for PEA02R and PEA04R,
respectively

out all reptation models that not included CR mechanism.
The best fit parameters from reptation models including

CR mechanism are also available in Table 5. Inspecting χ2
r ,

a remarkable global enhancement of the fit quality is now
obtained for PEA04R, for which the molar mass is higher
than for PEA02R and probably the reptation contribution to
its dynamic moduli becomes dominant.

A glance at the results for KR and Me shows that their
value is much more homogeneous over the whole model and
sample set and generally comparable to both the KR value
of unentangled PEA series and the Me value obtained from
the entanglement plateau evaluation: actually, the values of
Me (Table 5), in presence of CR, stabilize at about 12−16 kg
mol−1. This indicates that the CR mechanism is important
in describing the dynamics of these slightly entangled PEA
polymers. Moreover, recalling the unphysical KR results
from application of the UR model to PEA02R and PEA04R
(Table 4), it seems possible to conclude that the change
in the outcome of KR , and then of the monomeric fric-
tion coefficient, signals the onset of entanglement in passing
from the unentangled PEA series studied in Andreozzi et al.
(2008) to PEA02R and PEA04R samples.

Fig. 5 Slightly entangled PEAs: 4 free-parameter reptation models
without CR. Experimental master curves and superimposed calcu-
lated G′ (a) and G′′ (b) moduli are shown for PEA02R and PEA04R,
respectively

To get more insight, a more refined analysis of the param-
eters allows a selection among the models. It appears that
the DE model should be abandoned, even after including
CR. In fact, while the quality of the fit is good, the values
obtained for Me are indeed quite different, in compari-
son with the consistence exhibited by the results from the
DECLF and TDD models. Moreover, the Kd free param-
eter of DE admittedly shows very similar values for the
slightly entangled PEAs (Table 5), but the empirical nature
of Eq. 6 in the DE model makes difficult to obtain quan-
titative information about the terminal region of the master
curves. To summarize, the DE model provides good qual-
ity fits and a very fast and simple calculation of slightly
entangled master curves, but the obtained parameters allow
only a rough estimation of Me, and it is not possible
to quantitatively link the disengagement and the Rouse
time.

On the other hand, looking at DECLF and TDD imple-
mented with CR relaxation mechanism, they appear to pro-
vide not only KR in accordance with the unentangled PEA
series, but also Me nicely close to 12 kg mol−1 and in agree-
ment with the evaluation of the entanglement mass from
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the entanglement plateau of PEAs (Andreozzi et al. 2006).
Moreover, the linking between disengagement and Rouse
times via Eq. 5 makes these models promising also for
quantitative considerations on the monomeric friction coef-
ficient. However, at this stage, it should be noted that the
values of the reptation parameter Md , obtained from TDD
with CR in PEA02R and PEA04R, are not constant and are
small with respect to the literature results (van Ruymbeke
et al. 2002) for entangled polystyrene (PS), which is a poly-
mer exhibiting similar Me values. The finding here could be
ascribed to the low molar mass of the specific nearly entan-
gled PEA samples, being TDD model known to be unable to
correctly predict relaxation of short chains (van Ruymbeke
et al. 2002).

Regarding the MML model with cv = 1, the parame-
ters show intriguing features such as the effectiveness of
the correlation between disengagement and Rouse times via
Eq. 5, and the values of Me with the right order of magni-
tude, but greater than 12 kg mol−1. Nonetheless, the MML
model applied to PEA04R provides the highest χ2

r among
the models with CR, and a value of KR quite different
from the expected one. At a first glance, these last issues
could be ascribed to the cv value, constrained to 1, or to the
upper limit of the summations in Eqs. 13a and 13d set to
(Z/10)1/2 as in Likhtman and McLeish (2002). A deeper
analysis showed that the MML model is not that sensitive

to these choices, as also stated in Likhtman and McLeish
(2002). Therefore, the obtained KR values could come from
the definition of τ̃f (Eq. 13b), which could be not suitable
for PEAs.

Up to now, the results show that some reptation models
with a 3 parameter fitting provide in nearly entangled PEAs
microscopic quantities consistent with the oligomer series.

In some literature studies, the disengagement time Kd ,
which is a mass-independent coefficient, is set as a free
parameter (van Ruymbeke et al. 2002). For comparison
purposes and with the aim to eventually clarify some of
the above topics and flaws, the calculations of the com-
plex modulus G∗ were extended in this work to the case
of 4 free fitting parameters. As an additional intent, evi-
dence is expected to be obtained regarding the validity
of the results from 3 parameter fitting procedure: qual-
ity of the fits and values of the parameters should be
quite unchanged despite the additional free fitting parame-
ter. Any constraint over the Kd value was then removed in
simulations of slightly entangled PEAs for DELCF, TDD,
and MML models and the value of the parameter α for
DE model was also set as free. In Figs. 4 and 5, the
experimental master curves are compared to the calculated
ones, by using the 4 free-parameter models, including or
not CR, respectively. Fitting parameters are summarized
in Table 6.

Table 6 Parameters for slightly entangled PEA02R and PEA04R from 4 free-parameter fitting procedures according to reptation models

Sample Model CRa Me (kg mol−1) KR (ms) Kd /KR Reptation par. χ2
r

PEA02R DE No, β = 1 Undetectableb 0.85 Undetectableb α, undetectableb 0.8

DECLF No, β = 1 Undetectableb 0.85 Undetectableb v, undetectableb 0.8

TDD No, β = 1 Undetectableb 0.85 Undetectableb Md , undetectableb 0.8

MML No, cv = 0c Undetectableb 0.85 Undetectableb b, undetectabled 0.8

DE Yes, β = 2.1 Undetectableb 0.84 Undetectableb α, undetectableb 0.6

DECLF Yes, β = 2.1 10.4 0.72 50,500 v = 0.3 0.6

TDD Yes, β = 2.1 10.8 0.76 38,000 Md = 26 kg mol−1 0.6

MML Yes, cv = 1c 15.8 0.80 43,000 b = 3 Å 0.6

PEA04R DE No, β = 1 14.5 1.05 55 α = 1.6 1.2

DECLF No, β = 1 12.8 0.79 7300 v = 0.1 1.4

TDD No, β = 1 13.8 0.87 26,500 Md = 245 kg mol−1 1.4

MML No, cv = 0c 20.5 1.04 22 b, undetectabled 1.0

DE Yes, β = 2.1 14.5 0.79 350 α = 3.4 1.1

DECLF Yes, β = 2.1 13.5 0.80 84,000 v = 0.25 0.6

TDD Yes, β = 2.1 14.0 0.81 49,000 Md = 17 kg mol−1 0.6

MML Yes, cv = 1c 16.0 0.89 64,000 b = 7 Å 0.8

aConstrained values
bUndetectable: the fitting procedure determines a parameter value corresponding to an unentangled polymer. This means that practically the UR
fit was obtained
cIn this case, β of Eq. 15 is a dummy variable, to be set to 1
dNote that in the absence of CR, the MML model reduces to 3 the number of free parameters being b only accounted for in the CR function
R(cv, t)
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Inspection of Figs. 4 and 5 and Table 6 shows that,
in general, an additional free parameter hardly improves
the curves and the parameter values calculated accord-
ing to DE, DECLF, TDD, and MML models. This find-
ing is confirmed by the χ2

r values that are practically
unchanged in most cases and are now fixed for the PEA04R
simulations with TDD and DECLF models without
CR.

Indeed, it is seen that the values of the parameters from
calculations including CR mechanism (Table 6) are only
slightly changed with respect to the ones pertaining to the
3 free-parameter simulations (Table 5). The sole differ-
ent result pertains to the DE model applied on PEA02R,
whose outcome would locate the sample outside the entan-
glement region. This conclusion parallels the one provided
after applying to PEA02R the DE model without CR and
with 3 free fitting parameters. Furthermore, χ2

r is practically
unchanged for the DE, DECLF, and TDD models in both
the samples. Then, one can conclude that for these mod-
els there is no need of adding a further degree of freedom
to improve the goodness of the fit. On the other hand, in
the case of the MML model, unlocking Kd allows a sig-
nificant improvement of the quality of the fit for PEA04R,
but gives fluctuating values for the b reptation parameter.
This confirms that assumptions about relaxation times or
upper limits set in the MML model by Eq. 13 are not effec-
tive in finely determining the dynamics of slightly entangled
samples.

As a matter of fact, an appreciable improvement in fit
quality can be found instead after increasing to 4 the num-
ber of free parameters when CR mechanism was omitted.
However, the additional free parameter did not allow the
recovery of physical meaning for those parameters that, in
the 3 free-parameter calculations, were not consistent with
the assumptions of the theory (e.g., mass-independent val-
ues for Me and KR, relationship of KR and Kd through
Eqs. 5 and 6 with α = 3). Furthermore, introducing a
fourth parameter causes a general loss of significance for
those parameters of PEA02R that in Table 5 still had some
consistence with other (literature) experimental findings.

To summarize the results of the present section, the
sample-by-sample fitting procedure of the slightly entan-
gled PEA samples, implemented with the isofrictional cor-
rection, has shown that the analysis of the coherence of the
free parameters is a powerful tool that allows to harmonize
material parameters each other and with the data pertinent to
low molecular weight PEAs. Moreover, it provides reptation
models with CR relaxation mechanism as eligible models
for describing the dynamics of these samples. In particular,
4 free-parameter calculations have shown not to compen-
sate the 3 free-parameter calculations with CR, evidencing
the need of including this relaxation mechanism also at this
mass values.

Fig. 6 Entangled PEA05R, PEA06R, and PEA20R samples: 3 free-
parameter reptation models with CR. Experimental master curves and
superimposed calculated G′ (a) and G′′ (b) moduli

Relaxation of well-entangled PEA samples

In the previous section, we have shown that reptation mod-
els become effective for molar masses at Me, namely 12 kg
mol−1 for PEA. The molar masses of PEA05R, PEA06R,
and PEA20R samples rank well above this value and their
G∗ master curves show entanglement plateau (e.g., Fig. 6).
Because of these features, these samples offer an effective
test for reptation models. Satisfactory reptation models are
expected to provide values of the parameters consistent with
the ones found in the previous section. In particular, we
expect coherent values of the entanglement mass Me and
of KR over the whole range of PEA molar masses. Inci-
dentally, it must be noted that the high molar mass of these
well-entangled samples makes ineffective the isofrictional
correction of Eq. 17. Being well-entangled polymers usu-
ally employed to verify reptation theories, this justifies the
lack of studies in the literature that take into account the
“inverse” isofrictional correction.

In Fig. 6, experimental master curves of PEA05R,
PEA06R, and PEA20R are compared with G∗ curves cal-
culated by combining ER5 and, from time to time, DE,
DECLF, TDD, and MML reptation models (with 3 free
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Fig. 7 Entangled PEA05R, PEA06R, and PEA20R samples: 3 free-
parameter reptation models without CR. Experimental master curves
and superimposed calculated G′ (a) and G′′ (b) moduli

parameters), each of them including CR. In Fig. 7, experi-
mental master curves are compared with the calculated ones,
by using the same models in the absence of CR relaxation.
Fitting parameters are summarized in Table 7.

It is apparent that from inspection of Figs. 6 and 7 and the
pertinent χ2

r reported in Table 7, the good fits are obtained in
the presence of CR relaxation and poor quality is retrieved
with reptation models without CR relaxation. Moreover,
without CR, the higher the molar mass of the sample, the
worse the fits and the χ2

r values. Further confirmation is
given by the values of the parameters of Table 7, signaling
that the DECLF, TDD, and MML reptation models without
CR mechanism fail also because of the values of Me and
KR, by far different from their expected values. Likewise,
DE model without CR should be immediately discharged as
a consequence that the values of Kd differ orders of magni-
tude with respect to the molar-mass-independent values of
Kd retrieved from KR and Eqs. 5 and 6 with α = 3. There-
fore, CR mechanism is definitely demonstrated as a neces-
sary ingredient to obtain fitting parameters with values both
consistent each other and in accordance with the model.

After including CR, the DE model improves its perfor-
mance, but still suffers from the intrinsic impossibility of

defining a reliable microscopic expression for Kd when the
power law M3.4 is assumed. DECLF and TDD models, on
the other hand, provide KR in accordance with the unen-
tangled PEA series. Regarding Me, in general, it appears
nicely close to 12 kg mol−1 and in agreement with its eval-
uation from the entanglement plateau of PEAs (Andreozzi
et al. 2006), but its value fluctuates for the various sam-
ples in the TDD model. Also, it turns out that the parameter
v in DECLF is stable, having therefore smaller deviations
with respect to its mean value across all the series with
respect to the ones of Md reptation parameter of TDD.
This definitely makes eligible DECLF with respect to the
TDD model.

A particular mention has to be devoted to the Md values
in the TDD model, which result to increase with the molar
mass, up to a value about one order of magnitude greater
than the Me mass. This finding is in agreement with the
literature results on PS (van Ruymbeke et al. 2002)2. As
previously noted, Me of PS was found to be of the same
order of magnitude of the PEA one, and an evaluation of
Md , applying TDD on PS well-entangled samples, provided
Md values one order of magnitude greater than the pertinent
Me (Fetters et al. 1994; van Ruymbeke et al. 2002).

Regarding the MML model, Me, KR, and b parameters
for PEA06R and PEA20R, shown in Table 7, are consis-
tent each other. Me and b outcomes are quite in agreement
with the forecasts, so that the reptation dynamics seems to
be correctly taken into account. Nonetheless, KR is very dif-
ferent from the expected one. From these results, one can
conclude that, to reproduce the experiments (in which the
reptation is dominant), the MML model is compelled to
track τ̃f (Eq. 13b), with a consequent penalization of the
Rouse relaxations.

For comparison purposes, the calculations of the complex
modulus G∗ of entangled samples were extended to the case
of 4 free fitting parameters. As in the case of nearly entan-
gled PEAs, any constraint was removed over the Kd value
and, for the DE model, over the value of the parameter α. In
Table 8, the best-fit parameters are reported after including
or not the CR relaxation in the main models. The best fits
are compared with the experimental curves in Figs. 8 and 9,
respectively.

Looking at the figures, it appears that 4 free-parameter
models without CR mechanism sensibly improve the abil-
ity to reproduce the experiments with respect to the 3
free-parameter models without CR. However, the obtained
fits are not satisfactory and the gauge is provided by the
analysis of the parameters of the table, where it is seen

2In van Ruymbeke et al. (2002), the number of free fitting parameters
was 3 as well, but Me was a fixed parameter, while Kd , KR , and Md

were left free.
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Table 7 Parameters for entangled PEA05R, PEA06R, and PEA20R from 3 free-parameter fitting procedures according to reptation models

Sample Model CRa Me (kg mol−1) KR (ms) Kd /KR Reptation par. χ2
r

PEA05R DE No, β = 1 13.0 0.79 70 α = 3.4a 2.6

DECLF No, β = 1 25.0 0.88 Derivedb v = 0.4 0.6

TDD No, β = 1 23.0 0.86 Derivedb Md = 180 kg mol−1 0.8

MML No, cv = 0c 15.5 0.99 Derivedb b, undetectabled 2.6

DE Yes, β = 2.1 14.5 0.75 360 α = 3.4a 0.8

DECLF Yes, β = 2.1 12.8 0.78 Derivedb v = 0.1 0.6

TDD Yes, β = 2.1 14.6 0.76 Derivedb Md = 21 kg mol−1 0.8

MML Yes, cv = 1c 13.5 0.86 Derivedb b = 6.5 Å 0.6

PEA06R DE No, β = 1 11.6 0.78 25 α = 3.4a 1.2

DECLF No, β = 1 6.0 0.91 Derivedb v = 4.3 2.6

TDD No, β = 1 6.0 0.90 Derivedb Md = 4200 kg mol−1 3.0

MML No, cv = 0c 15.2 0.85 Derivedb b, undetectabled 12.0

DE Yes, β = 2.1 15.2 0.79 330 α = 3.4a 0.9

DECLF Yes, β = 2.1 12.0 0.80 Derivedb v = 0.1 0.8

TDD Yes, β = 2.1 8.0 0.81 Derivedb Md = 200 kg mol−1 1.0

MML Yes, cv = 1c 10.2 0.32 Derivedb b = 6.0 Å 1.4

PEA20R DE No, β = 1 12.0 0.81 50 α = 3.4a 1.6

DECLF No, β = 1 16.4 0.20 Derivedb v = 0.01 18.8

TDD No, β = 1 6.0 0.82 Derivedb Md = 18,900 kg mol−1 6.6

MML No, cv = 0c 13.8 0.19 Derivedb b, undetectabled 18.0

DE Yes, β = 2.1 15.0 0.78 300 α = 3.4a 1.1

DECLF Yes, β = 2.1 12.2 0.76 Derivedb v = 0.1 0.9

TDD Yes, β = 2.1 9.0 0.74 Derivedb Md = 230 kg mol−1 1.5

MML Yes, cv = 1c 10.0 0.33 Derivedb b = 5.0 Å 1.6

aConstrained values
bCalculated during the fitting procedure according to Eqs. 5 and 6, using the running values of the Me and KR free parameters
cIn this case, β of Eq. 15 is a dummy variable, to be set to 1
dNote that in the absence of CR, the MML model reduces to 2 the number of free parameters being b only accounted for in the CR
function R(cv, t)

that unphysical results are obtained, for each model and
sample, in correspondence of some mass invariant param-
eters. As in the case of the slightly entangled samples
discussed in the previous section, this result is not unex-
pected because the additional free parameter is not effective
in reproducing the relaxation details connected with the CR
mechanism.

After introducing CR, still important fluctuations are
associated to the values of mass-independent parameters,
KR , Me, Kd , and α, in some cases by far different from the
expected values. We can then conclude that addition of a
further free parameter does not improve sensibly the qual-
ity of the fits with CR mechanism, while it may lead to
variations of the parameters incoherent with the theoretical
models. Thus, 4 fitting parameters should be profitably dis-
charged, being 3 parameter simulations able to discriminate
among models and to suitably describe the PEA relaxation
dynamics.

As a final result of our 4 fitting parameter study,
we test the goodness of the hypothesis implied by the
previous assumptions for β and cv . Figure 10 presents
the result of best fitting at 4 free parameters of well-
entangled PEA20R sample. The calculation was accom-
plished according to DECLF and MML models with β and
cv , respectively, used as a free parameter together with KR

and Me, as well as the pertinent reptation parameter of
the model.

From Fig. 10, it is seen that good fits are obtained, even if
DECLF model appears more effective. This is signaled also
by the values of the reduced chi-square of the fits χ2

r = 0.9
for DECLF and χ2

r = 1.5 for MML model. The other free
parameters that were obtained resulted in β = 2.11, Me =
11.0 kg mol−1, KR = 0.78 ms, v = 0.25 in the DECLF
case, and cv = 0.8, Me = 10.0 kg mol−1, KR = 0.34 ms,
b = 5 Å in the MML case. Comparing these values with the
ones in Table 8, it is possible to conclude that, in both cases,
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Table 8 Parameters for entangled PEA05R, PEA06R, and PEA20R from 4 free-parameter fitting procedures according to reptation models

Sample Model CRa Me (kg mol−1) KR (ms) Kd /KR Reptation par. χ2
r

PEA05R DE No, β = 1 21.4 1.27 4 α = 2.8 3.2

DECLF No, β = 1 10.0 0.81 3500 v = 0.2 3.0

TDD No, β = 1 10.9 0.85 3000 Md = 6 kg mol−1 2.6

MML No, cv = 0b 16.0 0.97 99,000 b, undetectablec 1.4

DE Yes, β = 2.1 31.3 1.06 3200 α = 3.5 1.2

DECLF Yes, β = 2.1 14.2 0.79 81,600 v = 0.2 0.6

TDD Yes, β = 2.1 14.1 0.78 42,000 Md = 12 kg mol−1 0.6

MML Yes, cv = 1b 11.0 2.10 4300 b = 8.5 Å 0.7

PEA06R DE No, β = 1 11.4 0.77 12.6 α = 3.4 1.2

DECLF No, β =1 10.6 0.77 4000 v = 0.01 1.2

TDD No, β =1 11.4 0.80 2450 Md = 2 kg mol−1 1.0

MML No, cv = 0b 8.0 0.88 1750 b, undetectablec 1.0

DE Yes, β =2.1 18.2 0.82 530 α = 3.4 1.1

DECLF Yes, β =2.1 11.5 0.80 38,800 v = 0.1 0.8

TDD Yes, β =2.1 10.5 0.85 12,000 Md = 14 kg mol−1 0.8

MML Yes, cv = 1b 9.0 0.51 5600 b = 6.5 Å 0.8

PEA20R DE No, β =1 12.1 0.85 40,700 α = 2.8 1.6

DECLF No, β =1 10.0 0.80 2700 v = 0.4 1.4

TDD No, β =1 11.0 0.84 1600 Md = 0.5 kg mol−1 1.0

MML No, cv = 0b 8.0 0.84 980 b, undetectablec 1.6

DE Yes, β =2.1 13.0 0.76 2.05 α = 3.8 1.2

DECLF Yes, β =2.1 11.5 0.78 38,000 v = 0.2 0.8

TDD Yes, β =2.1 10.5 0.78 127,000 Md = 30 kg mol−1 0.8

MML Yes, cv = 1b 11.0 0.83 6200 b = 4.5 Å 0.8

aConstrained value
bIn this case, β of Eq. 15 is a dummy variable, to be set to 1
cNote that in absence of CR, the MML model reduces to 3 the number of free parameters being b only accounted for in the CR function R(cv, t)

assumptions made about the strength of CR mechanism are
confirmed.

Further tests and method analysis

To conclude this study, we further test the possibility of
profitably carrying out separate coherent simulations of
the PEA samples and we discuss, in comparison, the out-
comes of a more straightforward method consisting in
a global fitting procedure that includes all the master
curves.

Regarding the possibility of carrying out single coherent
simulations of the PEA samples in the range of mass from
slightly entangled to entangled ones, a graphical method
is shown in Fig. 11 to control the quality of the models
and to display the validity of our conclusions about the
best model for PEAs. The three-variable star plot refers to
the parameters of Tables 5 and 7, obtained in the 3 free-
parameter simulations with CR mechanism. The standard

deviations of parameters KR and Me divided by their mean
values are reported over two axes, while the same ratio
is calculated for the reptation parameter of the considered
model and is reported on the third axis. Note that for the
TDD and MML models, there is a separated display for
well-entangled (“-1”) samples, in the presence of entangle-
ment plateau (PEA06R and PEA20R), and for the remaining
(“-2”) samples, showing the degree of inability of these
models to provide coherent simulations of PEAs in the
absence of an evident entanglement plateau.

It is seen that the DECLF model exhibits the less dis-
persed geometry, as confirmed by the area of the perti-
nent triangle. This result supports our previous detailed
analysis and indicates DECLF as eligible to calculate
in a coherent manner the rheological response in the
mass range of polymers from slightly to well-entangled
regime.

To get more insight into the proposed method of analysis,
a multiple curve fit is carried out that simulates the whole
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Fig. 8 Entangled PEA05R, PEA06R, and PEA20R samples: 4 free-
parameter reptation models with CR. Experimental master curves and
superimposed calculated G′ (a) and G′′ (b) moduli

master curve set by means of a single Nelder–Mead rou-
tine. This was accomplished by extension of Eq. 16 to the
following cost function:
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where the index i spans the sample set. We selected a
multiple-fitting procedure for DECLF, TTD, and DE models
including CR relaxation, where KR , Me, and the reptation
parameter appropriate to the model were set as free. This
choice is consistent with the conclusion of the previous
paragraph, where it has been shown that CR mechanism is
effective in the relaxation processes of PEAs and that the
3 free fitting parameter procedures are eligible over those
with 4 free parameters.

For the TDD model, Me = 17.0 kg mol−1, KR = 0.80
ms, and Md = 13 kg mol−1 were obtained, with an overall

Fig. 9 Entangled PEA05R, PEA06R, and PEA20R samples: 4 free-
parameter reptation models without CR. Experimental master curves
and superimposed calculated G′ (a) and G′′ (b) moduli

μlog = 3.1. TDD might easily expected to be unsatisfactory
because the previous findings, according to the single-fit
procedure, provided mass-dependent Md (see Fig. 11) with
incoherent values between the ranges of slightly and highly
entangled PEAs. It resulted for DE: Me = 15.7 kg mol−1,
KR = 0.86 ms, and Kd/KR = 330, with μlog = 2.7.
The DECLF model confirmed itself as the eligible one with
the smallest value of μlog = 1.6. Me = 11.8 kg mol−1,
KR = 0.81 ms, and v = 0.2 are found to be compatible
with the values found in single-fitting procedure (Tables 5
and 7).

As a final issue of the present section, the attention is
addressed to the form of the cost function. Different choices
for it could be adopted. In particular, it has been suggested
in the literature a form with the absolute values of the
moduli. In Shanbhag (2011), the substantial equivalence of
cost functions expressed in terms of logarithms or absolute
values was highlighted. In the present study, it has been pre-
ferred the logarithmic form (Eq. 16), for its capability to
sustain statistical tests.

Nevertheless, with the aim of testing the sensitivity of our
conclusions to the alternative definition of the cost function
(Shanbhag 2011), a multiple-fitting procedure for DECLF
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Fig. 10 Calculations of G′ (a) and G′′ (b) of PEA20R according to
the DECLF and MML model with β and cv , respectively, used as free,
together with KR, Me, and the pertinent reptation parameter of the
model

with CR and 3 free fitting parameters has been carried out
minimizing the function
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The outcome of the procedure provided the following
values of the free parameters: Me = 12.0 kg mol−1, KR =
0.78 ms, and v = 0.15. This result has to be compared with
the above values pertinent to the multiple-fitting procedure
according to the minimization of μlog. It is seen that they
result in good agreement with each other. A calculation of
μlog according to the values found at the minimum of μabs

gives μlog = 1.9.

Fig. 11 Dispersion plots of the fitting parameters obtained in simu-
lations of master curves. The 3 free-parameter case (Tables 5 and 7)
with CR is shown. In parenthesis, the area of the triangle (multiplied
by 104) is reported. For TDD and MML, samples are collected in two
sets on the basis of the presence of the entanglement plateau: “-1”
(PEA06R and PEA20R) and “-2” (PEA02R, PEA04R, and PEA05R).
MML-1 only is reported in the figure; for MML-2 the area is 0.022
corresponding to the values σMe/E [Me] = 14 %, σKR

/E [KR] =
5 % and σrept/E[rept] = 10 %

Entanglement features, packing length, and MML model

The previous study provided a set of information about
materials parameters of the PEA polymers that were unam-
biguously determined. More insight can be gained on PEAs,
looking at universal empirical laws that link entanglement
parameters, such as Me, and microscopic quantities detailed
in literature studies on different polymer melts (Fetters et al.
1994; Fetters et al. 1999).

Accordingly, the packing model is an empirical model
and combines entangling properties of the chain with its
conformational properties (Fetters et al. 1994; Fetters et al.
1999). All the macromolecular information is contained in
the definition of the packing length p̂

p̂ = M0

b2NAρ
(19)

that connects p̂ to the effective length b and to the molar
mass M0 via the polymer density ρ and the Avogadro num-
ber NA. Within the framework of the packing model, the
following empirical expression has been developed relating
the packing length to the entanglement molar mass (Fetters
et al. 1994; Fetters et al. 1999):

Me = 361.9NAρp̂3 (20)

Starting from the evaluation of Me for PEAs from Tables
5 and 7, Eq. 20 provides the value of the packing length of
the PEA polymers as p̂ = 3.7 Å, which is analogous to
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the one of ordinary flexible polymers (Fetters et al. 1994;
Fetters et al. 1999). On the other hand, the effective length
b for the PEA can be evaluated from the packing model via
Eq. 19, providing b = 6 Å, a value nicely similar to that
found by the MML calculations reported in this work (Table
7). Then, it is also possible to estimate the Flory characteris-
tic ratio C∞, defined as the square of the ratio b/l0, where l0
is the length of the dynamic unit along the main chain (Doi
and Edwards 1988). It is found C∞ = 5.6, a value similar to
literature findings for similar flexible linear homopolymers
(Fetters et al. 1994; Fetters et al. 2002).

Information can be obtained also on other molar masses,
related to entanglement and reptation, namely the critical
mass Mc and the pure reptation mass Mr . The pure repta-
tion mass Mr is defined as the molar mass at the crossover
between two mass regimes for the viscosity, namely the
contour-length fluctuation where η(M) ∼ M3.4 and pure
reptation, where η(M) ∼ M3. Also, at the critical mass
Mc, the entangled behavior becomes apparent in the materi-
als functions of ordinary flexible polymers (Andreozzi et al.
2006; Fetters et al. 1999; Fuchs et al. 1996), such as the
first appearance of the entanglement plateau in G∗ mas-
ter curves. In ordinary entangled polymers, Mc is usually
associated to Me by means of the empirical law Mc/Me =
2.0 − 2.2 and defines the crossover from the Rouse mass
dependence of the viscosity to the M3.4 regime (Andreozzi
et al. 2006; Colby et al. 1987; Ferry 1980). Accordingly, it
is possible to write for η(M) above Mc (Fetters et al. 1999)

η(M) = η(Mc)

(
M

Mc

)3.4

(21)

Actually, a relationship among Mc, polymer molar mass
and radius of gyration, was proposed in the literature (Fox
and Allen 1964) that can be reformulated in terms of the
parameters of the packing-length model as (Fetters et al.
1999)

Mc = Me

(
9.2Å

p̂

)0.65

(22)

According to Eq. 22, the entanglement and the critical molar
mass Mc become equal at p̂ = 9.2 Å. Adopting the best fit
value of the simulation parameters of DECLF model with
CR in Tables 5 and 7, Eq. 22 provides Mc = 22 kg mol−1,
which fairly approximates the experimental finding of 26 kg
mol−1 (Andreozzi et al. 2006). It appears, therefore, that, in
this case, a microscopic model, such as the packing length,
is able to reproduce via Eq. 22 a fully empirical parameter
such as Mc. However, if Eq. 21 is rather used together with
viscosity data of PEAs reported in Andreozzi et al. (2006),
the value for Mc of about 24 kg mol−1 is found that fits in a
better way the indication drawn in Andreozzi et al. (2006).

Analytically, the reptation mass Mr can be defined as
(Graessley 1980, 1982)

η(M) = 12

5

M3

McM2
e

η(Mc) (23)

Mr signals the crossover from a regime where contour-
length fluctuations are active to a pure reptation regime for
very long chains, where contribution of the fluctuations is
reduced (Doi and Edwards 1988; Likhtman and McLeish
2002) and η(M) ∼ M3 (Fetters et al. 1999). When η(Mr)

from Eq. 21 equals η(Mr) from Eq. 23, the relationship is
found (Fetters et al. 1999)

Mr

Me

= 7.17

(
Mc

Me

)6

(24)

From Eq. 24, the ratio Mr/Me results to be about 700 if
the Mc/Me value experimentally obtained from Andreozzi
et al. (2006) and Eq. 21 are used.

A possible way to verify such finding is done with the
calculation of the viscosity curve as a function of the molar
mass according to the Rouse model, for oligomers, and
MML model for slightly entangled and entangled PEA sam-
ples. The MML model is able to provide the crossover of
η(M) from Rouse to reptation regimes, in an analytical way,
without introducing any Mc (Likhtman and McLeish 2002).
Very importantly for the consistence of all the results, in the
calculation of the viscosity3, the parameters were set at the
average values found in this work for well-entangled PEAs:
cv = 0.8, KR = 0.70 ms, Kd = 4.0 s (Table 7). Accord-
ingly, η(M) was determined as the integral

∫ ∞
0 G(t) dt , for

PEAs taken in this case as monodisperse homopolymers.
The resulting curve is shown in Fig. 12. In the figure (left),
a departure from the Rouse behavior at Mc, located at about
2Me, is apparent, in accordance with the findings of this
work and Andreozzi et al. (2006). Also, it is seen the pure
reptation region, at sufficiently high molar masses.

This dynamic regime is better appreciated looking at the
right side of the Fig. 12, where a rescaled function of the
calculated viscosity is plotted as a function of the rescaled
mass. Then, the pure reptation region results in a plateau
for η/M3, at sufficiently high molar masses. Interestingly
enough, the plateau onsets at Mr about 8400 kg mol−1 that
is ≈ 700Me. This value was taken as the intercept of the
plateau straight line and the line from the 3.4 power law
region, in accordance with the result obtained previously
in this work via experimental findings and Eq. 24. In Fig.
12, towards the lowest masses, Mc separates the power law
region and the linear dynamic region of the viscosity. This

3According to the approximations about CR presented in Likhtman
and McLeish (2002), it is possible to calculate the viscosity analyt-
ically. In such a way, the calculation of η(M) depends on KR , Kd ,
M/Me, and cv . It is worth noting that for Z > 10 calculations become
insensitive to KR .
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comparison provides a further confirmation of the predic-
tive ability of the MML model when Kd and KR are allowed
to be uncorrelated and a strong consistency check for the
results obtained in the present work.

As a final remark, Fig. 12 also shows the superpo-
sition of the rescaled iso-free-volume corrected experi-
mental viscosity of PEA series at 270 K taken from
the study of Andreozzi et al. (2006). The agreement of
the experimental data with the theoretical values is quite
satisfactory.

Conclusions

It appears of paramount importance for the researcher the
availability of coherent values for the quantities and param-
eters that define the viscoelastic behavior and the micro-
scopic dynamics of relaxation of polymers. Indeed, some-
times, data of the same dynamic parameter, obtained from
identical polymer materials but with different molecular
weights, exhibit very poor accordance. This is particularly
true when the masses of the samples fall in the slightly
entangled region. Therefore, with the aim of verifying the-
oretical models and procedures, different reptation theories
were tested in this work on a number of slightly entangled
and entangled PEA samples.

Main results can be summarized as follows.
By fitting all the experimental master curves of the shear

modulus, it was possible to reach an agreement between
the values of Me obtained from different experiments on
the same system and to definitely locate the onset of the
entanglement at Me. The onset resulted effective for all the
tested models and samples, even if rubbery plateau in G∗
and reptation dynamics in the mass dependence of viscos-
ity manifested itself experimentally at molar masses higher
than Mc ∼2Me. Moreover, all the microscopic parameters
appear to be each other in a very good agreement, once
that all the relevant dynamic processes and mixing rules

were suitably taken into account to model the microscopic
dynamics of the polymer series at the different masses.

In our opinion, this result suggests the need of placing
the sample in a wider dynamic frame if reliable microscopic
dynamic description is requested in the presence of inter-
mediate masses of the polymers at the crossover between
unentangled and entangled dynamics.

It is worth noting that, because of the very different
tail concentration in the samples, in the present study,
“inverse” iso-free-volume correction had to be performed
for slightly entangled PEAs in order to fit experimental data
and theoretical models. This correction uses a mass depen-
dence function for the WLF c1 parameter inferred in the
free-volume framework and effective also in the isofric-
tional correction of the viscosity (Andreozzi et al. 2006;
Andreozzi et al. 2008).

Regarding the dynamic models, we were able to show
that all the reptation models provided good results in
reproducing the experiments. However, a more refined
analysis designated DECLF model, also inclusive of CR
relaxation, as the most suitable for modeling the PEAs
microscopic dynamics from slightly to highly entangled
samples.

According to the present study, the suggested proce-
dure in the presence of slightly entangled polymers foresees
the use of reptation models after implementation of the
“inverse” isofrictional correction. The transition regime of
the masses requires to adopt a simulation strategy sample
by sample, looking for the best dynamic model that ensures
coherence of the mass independent material parameters
such as Me and KR, rather than a global multiple-fitting pro-
cedure that could hide relaxation mechanisms and provide
rough values of the materials parameters.

Shear macroscopic response of linear PEA homopoly-
mers and pertinent reptation parameters were also suc-
cessfully related to the coiling properties of the polymer
matrix, according to the packing-length model. We pro-
vided estimation of the packing length as well as the Flory

Fig. 12 Mass dependence of
viscosity for PEAs as evaluated
according to the Rouse and
MML models. Experimental
values of the iso-free-volume
corrected viscosity η(M)/η(Mc)

of PEAs at the temperatures of
270 K (Andreozzi et al. 2006;
Colby et al. 1987) are also
superimposed in correspondence
of their Mw . The rescaled η/M3

plot (right side) is more
effective in highlighting details
with respect to the η versus M

graph (left side)
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characteristic ratio C∞ and the effective bond length of
PEA homopolymers. All the values resulted in accordance
and comparable with the literature ones for similar linear
homopolymers. Interestingly enough, it was evidenced the
consistence of the value for effective bond length drawn
from fitting procedures and the packing-length model, as
well as the estimation of the critical mass Mc according to
packing model and the experiment. The predictive ability of
MML, supported with the best fit values previously obtained
for master curves of dynamic moduli, was used in PEAs to
infer the critical mass Mc and the pure reptation mass Mr .

In conclusion, the analysis of the rheological response
in the linear viscoelastic regime in terms of dynamic mod-
els represents a powerful investigation tool for the PEA
homopolymers, providing unambiguous results for dynamic
processes and relaxation mechanisms that take place at the
different length scales of the PEAs.
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