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Abstract We present analyses to provide a generalized
rheological equation for suspensions and emulsions of non-
Brownian particles. These multiparticle systems are sub-
jected to a steady straining flow at low Reynolds number.
We first consider the effect of a single deformable fluid par-
ticle on the ambient velocity and stress fields to constrain
the rheological behavior of dilute mixtures. In the homoge-
nization process, we introduce a first volume correction by
considering a finite domain for the incompressible matrix.
We then extend the solution for the rheology of concentrated
system using an incremental differential method operating
in a fixed and finite volume, where we account for the
effective volume of particles through a crowding factor.
This approach provides a self-consistent method to approxi-
mate hydrodynamic interactions between bubbles, droplets,
or solid particles in concentrated systems. The resultant
non-linear model predicts the relative viscosity over parti-
cle volume fractions ranging from dilute to the the random
close packing in the limit of small deformation (capillary or
Weissenberg numbers) for any viscosity ratio between the
dispersed and continuous phases. The predictions from our
model are tested against published datasets and other con-
stitutive equations over different ranges of viscosity ratio,
volume fraction, and shear rate. These comparisons show
that our model, is in excellent agreement with published
datasets. Moreover, comparisons with experimental data
show that the model performs very well when extrapolated
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to high capillary numbers (Ca � 1). We also predict the
existence of two dimensionless numbers; a critical viscosity
ratio and critical capillary numbers that characterize transi-
tions in the macroscopic rheological behavior of emulsions.
Finally, we present a regime diagram in terms of the vis-
cosity ratio and capillary number that constrains conditions
where emulsions behave like Newtonian or Non-Newtonian
fluids.

Keywords Emulsion rheology · Suspension rheology ·
Particle deformation · Relative viscosity regime diagram

Introduction

Suspensions and emulsions of a Newtonian fluid includ-
ing dispersed non-Brownian particles are ubiquitous in
nature (Faroughi et al. 2013), and have many applications
in industry (Schramm 2006). When the Brownian motion
due thermal energy is neglected, the dynamics of suspen-
sions/emulsions is mainly governed by external body forces,
interparticle forces, and long-range hydrodynamic interac-
tions due to the presence of other particles (Brady and
Bossis 1988). It is known that the existence of a cloud of
particles in a Newtonian fluid at low Reynolds number dra-
matically changes the mechanism by which momentum is
exchanged between particles and the ambient fluid. More-
over, the macroscopic rheological behavior of suspensions
and emulsions, which are heterogeneous microscopically,
depends mainly on the particle size distribution, particle
concentration, shear dynamic viscosity of the matrix (con-
tinuous phase) and dispersed phase, the order of the particle
deformation, and the rate of deformation.

In the last century, since the calculation conducted
independently by Sutherland (1905) and Einstein (1911)
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to obtain the viscosity of a very dilute suspension of
non-deformable solid spheres, the macroscopic rheological
behavior of multiparticle systems has received a remark-
able attention. Solutions are mainly based on conceptual
models that account for the change in hydrodynamic inter-
actions based on the particle concentration and deformation.
Einstein-Sutherland theory was first extended to very dilute
emulsions by Taylor (1932) where he assumed that fluid
particles remain spherical, i.e., the dimensionless capillary
number, Ca, (the ratio of viscous force to the force associ-
ated with the surface tension) is assumed Ca � 1. These
models predict an increase in the macroscopic shear viscos-
ity of the system that is linearly proportional to the particle
concentration, with a greater effect for solid spheres. The
Einstein-Sutherland law for a dilute suspension of identical
rigid spheres was then extended to second-order in volume
fraction by Batchelor and Green (1972). Other investiga-
tions by Mackenzie (1950), Ducamp and Raj (1989), and
Bagdassarov and Dingwell (1992) have constrained expres-
sions for the rheology of dilute emulsions including highly
deformable fluid particles (Ca � 1). More generalized con-
stitutive equations for the rheology of dilute systems were
derived by Oldroyd (1959) for emulsions of two immiscible
Newtonian fluids, by Goddard and Miller (1967) for sus-
pensions including deformable Hookian solid sphere, and
by Frankel and Acrivos (1970) for emulsions consisting
of deformable fluid particles up to the first order of the
particle deformation. These constitutive equations predict
the macroscopic viscosity of relatively dilute systems over
a wide range of deformation rates (capillary number) and
viscosity ratios.

For concentrated systems, Pal (2003b) and Pal (2004)
employed the differential effective medium (DEM) the-
ory (Norris et al. 1985) to determine phenomenologically
the relative viscosity for elastic solid particle suspension
(λ → ∞) and bubbly emulsion (λ → 0). Pal (2003c) devel-
oped a more general model for concentrated emulsions with
different viscosity ratio and deformable particle using the
analogy between shear modulus and shear viscosity. In these
studies, different interpretations and definitions are used
for the change in the volume available for adding particles
(termed “free volume” by Robinson (1949)), which leads
to different sub-models. More recently, new rheological
equations for concentrated suspensions of rigid solid par-
ticles have been proposed by Mendoza (2011) using DEM
theory, and by Brouwers (2010) who matched the viscos-
ity of bimodal suspensions with identically sized particles
to yield a closed form solution for the relative viscosity
of monomodal suspensions. Faroughi and Huber (2014)
also proposed a crowding-based rheological model to quan-
tify the shear dynamic viscosity of suspensions of rigid
and spherical bimodal-sized particles with interfering size
ratios.

These theoretical models have been tested and com-
plemented with several numerical and experimental stud-
ies. For instance, Brady and Bossis (1988) used numer-
ical modeling based on Stokesian dynamics and took
into account lubrication forces at high particle density
to study the rheology of monosize suspensions. They
showed that microstructures can form in sheared suspen-
sion, and outlined the role of particle clusters on the
rheological behavior of concentrated suspensions. Schaink
et al. (2000) extended the Stokesian dynamics method to
study the rheology of suspensions of rigid spheres sus-
pended in viscous and viscoelastic matrices. The rheological
behavior of suspensions of rigid particles has also been
investigated using other numerical techniques (for exam-
ple Aidun (1995) and Ladd and Verberg (2001) who used
Lattice Boltzmann method and studies of Koelman and
Hoogerbrugge (1993) and Strating (1999) for Brownian
dynamics method, see also the recent numerical studies by
Rexha and Minale (2011) and D’Avino et al. (2013) and
Villone et al. (2014)).

Experimental studies also have provided a great insight
into the role of particles on the suspension rheology (e.g.,
Rutgers (1962), Thomas (1965), Chan and Powell (1984),
Rodriguez et al. (1992), Segre et al. (1995), Cheng et al.
(2002), Pasquino et al. (2008), Mueller et al. (2009), Boyer
et al. (2011), and Dai et al. (2013)) and bubbly emulsion
rheology (e.g., Stein and Spera (2002), Manga and Loewen-
berg (2001), and Rust and Manga (2002) and Llewellin
and Manga (2005)). Additionally, the role of the viscos-
ity ratio and capillary number on the viscoelastic properties
and rheology of dilute and concentrated emulsions has been
studied extensively by Pal and Rhodes (1021), Pal (1245),
Pal (1996), Pal (2001), and Pal (2003c). These studies pro-
vided many experimental data on the viscosity of emulsions
which will be used here to validate the accuracy of our
new theoretical model for predicting the shear viscosity in
multiparticle systems.

We summarize the contribution and applicability of sev-
eral studies (non-exhaustive) for the rheology of suspen-
sions and emulsions as function of the particle volume
fraction, ψ , viscosity ratio, λ, and capillary number, Ca

in Fig. 1. For example, the model proposed by Lim et al.
(2004) is suitable for ψ < 0.2, λ → 0 and Ca � 1, while
models of Pal (2003a) and Pal (2004) cover the entire range
of ψ and capillary number within the limit of λ → 0. This
diagram serves to clearly identify regions of the volume
fraction, viscosity ratio, and capillary number parameter
space that need to be further explored. It also points to the
lack of unified model valid over the entire space. A more
complete list of published equations developed for solid par-
ticle suspensions and emulsions along with the range over
which they are deemed applicable is reported in Tables 1
and 2, respectively.
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Fig. 1 Summary of some of
published rheological models
and their range of applicability
with respect to particle volume
fraction, ψ , viscosity ratio, λ,
and capillary number, Ca. See
Tables 1 and 2 for more details
about published models

The present study is undertaken for three reasons. The
first goal is to present a complete derivation of the macro-
scopic rheology for both dilute and concentrated monosized
suspensions/emulsions under simple steady shearing flow
conditions. The effective viscosity is determined from the
knowledge of the influence of individual particles on the
fluid flow and the pressure field by taking two steps of
volume correction into consideration. The first volume cor-
rection serves to build a general rheological model for dilute
systems. With this correction, each particle inside the finite
volume can interact with all particles added simultaneously
to the system through a decrease in the volume of the ambi-
ent fluid. We then introduce the second volume correction
to extend the model phenomenologically to highly con-
centrated systems (up to the random close packing). This
correction accounts for the interaction of particles added
during the differential effective medium procedure with par-
ticles already present in the system. Therefore, the second
volume correction includes a term that carries the effect
of the particle shape and size distribution as a geometrical
constraint on the amount of volume that can be eventu-
ally filled by particles (i.e., the second volume correction
accounts for the volume of matrix trapped in interstices
formed by particles through a crowding factor). The sec-
ond objective of the present work is to provide a robust
and general equation for the macroscopic rheology of emul-
sions applicable for a wide range of viscosity ratio, capillary
number, and particle concentration which is missing in the
literature (see Fig. 1). This general equation shall reduce to

the well-known relative viscosity law developed by
Sutherland-Einstein (1911) and Taylor (1932) in the lim-
iting cases when ψ � 1 along with either λ → ∞ or
λ → 0, respectively. The third objective is to provide a
regime diagram which illustrates how the relative viscosity
for emulsions depends on the viscosity ratio and capil-
lary number. We find different regimes that are delimited
by two critical dimensionless numbers; a critical viscos-
ity ratio and a critical capillary number. These regimes
constrain the influence of different parameters on the defor-
mation of particles, and provide insight on transitions in
the rheology of non-Brownian emulsions from Newtonian
to shear thinning due to the particle deformation (the effect
of microstructure changes such as shear-induced migra-
tion, wall-slip, and heterogeneity is not considered in this
study).

In the following sections, we present a brief physical
description of the perturbation in the flow fields due to
the presence of a single fluid particle. Next, we discuss
the homogenization process and the application of the first
volume correction to obtain the macroscopic property of
dilute systems. Then, we explain the procedure of the fixed
volume differential effective method including the second
volume correction to extend the relative viscosity model
to concentrated systems. The model is then tested against
a number of experimental data and published constitutive
equations. Finally, the ability of the model to approximate
the relative viscosity for polydisperse systems including
non-deformable particles is discussed.
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Table 1 Selected published models to predict the relative viscosity of suspensions of rigid solid particles and the range of volume fraction over
which they intend to be applied

Reference Equation Specific Parameter Concentration

Einstein (1911) and

Sutherland (1905) μψ

μm
= 1 + Kψ K = 2.5 limψ→0

Hatschek (1913) μψ

μm
= 1 + Kψ K = 4.5 Up to 40 %

Eilers (1943) μψ

μm
= (1 + Kψ

2(1− ψ
ψM

)
)2 K = 2.5 All range

Vand (1948)
μψ

μm
= exp(

2.5ψ+2.7ψ2

1−Kψ
) K = 0.609 Up to 60 %

Mooney (1951) μψ

μm
= exp(

2.5ψ
1−Kψ

) 1.35 < K < 1.91 Up to 50 %

Simha (1952) μψ

μm
= 1 + 2.5ψ(1 + 25ψ

4f 3 ) 1 < f < 2 Up to 10 %

= 1 + 54
5f 3

ψ2

(1− ψ
ψM

)3
1 < f < 2 limψ→ψM

Oliver and Ward (1953) μψ

μm
= 1

1−Kψ
2.34 ≤ K ≤ 2.77 Up to 35 %

Maron and Pierce (1956) μψ

μm
= (1 − ψ

ψM
)−2 — All range

Happel (1958)
μψ

μm
= exp(4.58ψ) — Up to 30 %

Krieger and Dougherty (1959) μψ

μm
= (1 − ψ

ψM
)−KψM K = 2.5 All range

Thomas (1965) μψ

μm
= 1 + 2.5ψ + 10.06ψ2 A = 0.0027 Up to 60 %

+ Aexp(Bψ) B = 16.6

Frankel and Acrivos (1967) μψ

μm
= C′( C1/3

1−C1/3 ), C = ψ
ψM

C′ = 9
8 limψ→ψM

Roscoe (1952) μψ

μm
= (1 − Kψ)−2.5 K = 1.35 Up to 50 %

Batchelor and Green (1972)
μψ

μm
= 1 + 2.5ψ + 5.2ψ2 — Up to 15 %

Chong et al. (1971) μψ

μm
= (1 + K

ψ
ψM

(1− ψ
ψM

)
)2 K = 0.75 All range

Barnea and Mizrahi (1973) μψ

μm
= exp(

K1ψ
1−K2ψ

) K1 = 5
3 ,K2 = 1 Up to 10 %

Quemada (1977) μψ

μm
= (1 − 1

2 K0ψ)−2 2.54 ≤ K ≤ 3.71 Up to 50 %

Leighton and Acrivos (1986)
μψ

μm
= (1 + Kψ

1− ψ
ψM

)2 K = 1.5 All range

Cichocki and Felderhof (1991)
μψ

μm
= 1 + 2.5ψ + Kψ2 K = 5.00 Up to 15 %

Verberg et al. (1997) μψ

μm
= 1 + 2.5ψ + Kψ2 K = 6.03 Up to 20 %

Morris and Boulay (1213) μψ

μm
= 1 + 2.5ψ(1 − ψ

ψM
)−1 — Up to 20 %

+ 0.1(
ψ

ψM
)2(1 − ψ

ψM
)−2

Zarraga et al. (2000) μψ

μm
= exp(Kψ)(1 − ψ

ψM
)−3 K = −2.34 Up to 30 %

Cheng et al. (2002) μψ

μm
= 1+1.5(1+K)ψ

1−(1+K)ψ
K = ψ + ψ2 − 2.3ψ3 Up to 56 %

Brouwers (2010) μψ

μm
= (

1−ψ

1− ψ
ψM

)
KψM
1−ψM K = 5

2 All range

Mendoza (2011) μψ

μm
= (1 − ψ

1−Kψ
)−2.5 K = 1−ψM

ψM
All range

This study Equation 49 — All range

Physical description

We shall consider two incompressible and immiscible New-
tonian fluids forming a matrix (the continuous phase) and
the dispersed phase (a single fluid particle at this stage). The
fluid flow at large distances from the fluid particle satisfies
the conditions of a simple steady straining flow:

u�(x) = ϒ · x. (1)

Here, x denotes the position vector with respect to the ori-
gin located at the center of the fluid particle, and ϒ is a given
velocity gradient tensor for which the incompressibility of

the matrix imposes trϒ = 0. We shall assume that inertial
forces can be neglected (small Reynolds number, Re � 1),
and the density of dispersed particles is the same as that of
the matrix. The force balance which governs the equation of
motion is characterized by Stokes creeping equations

∇ · σm = 0, σm = −pmI + μm

[
∇um + (∇um)T

]
, (2)

where sub/superscript m refers to properties associated with
the matrix, σm is the total stress tensor, pm is the dynamic
pressure, I is the unit tensor, and μm denotes the shear
dynamic viscosity of the matrix. um is the velocity vector
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that satisfies the continuity equation, ∇ · um = 0. Similar
expressions can be formulated for the fluid flow inside the
particle just by changing the superscript m to d which refers
to the dispersed phase. We assume that the particle deforms
due to the shearing. To the first order, the stress that acts to
elongate the particle is proportional to μmϒ where ϒ = |ϒ|
is the magnitude of the velocity gradient (or the shear rate
magnitude) with unit [t−1]. The resisting stress on the sur-
face of the particle opposing the induced shear stress is of
order γ /Rd where γ is the surface tension, and Rd is the
radius of the particle. For the case of a deformable elas-
tic solid particle, the resisting stress will be proportional to
the shear modulus G. The equilibrium state between these
two counteracting surface stresses on the surface of par-
ticle controls the final shape of the particle, and leads to
the definition of the dimensionless deformation number; the
capillary number,

Ca = ϒμmRd

γ
, (3)

for the case of fluid particles and the Weissenberg number,

Wi = ϒμm

G
, (4)

for the case of solid particles. The required sets of boundary
conditions directly depends on the order of particle defor-
mation considered. Here, we shall consider a homogeneous
straining flow at a large distance from the center of the fluid
particle, (1), along with the continuity of tangential velocity
and tangential components of the stress tensor at the surface
of the particle in order to find the zeroth order of deforma-
tion solution (assuming the particle remains spherical). We
can also obtain the first order of deformation solution by
using the discontinuity in normal components of the stress
tensor across the particle surface based on Laplace’s equa-
tion. Overall, the velocity, pressure, and stress fields outside
the particle are decomposed up to the second order of the
particle deformation O(D2) as follows

ut = u� + u0,d + Du1,d + O(D2),

pt = p� + p0,d + Dp1,d + O(D2),

σ t = σ� + σ 0,d + Dσ 1,d + O(D2). (5)

Here, D is a dimensionless parameter which specifies
the amount of deformation (departure from the spherical
shape), and it is proportional to either Ca or Wi number,
respectively, for fluid particle and solid particle. p� is an
arbitrary constant pressure at a large distance from the parti-
cle which is normally assumed to be zero. At large distances
from the particle, the zeroth and first-order correction terms
(parameterized by superscript 0, d and 1, d) vanish.

Zeroth order deformation

Using the general solution for Stokes equations formulated
by Lamb, and considering appropriate solid spherical har-
monics of degree j (pj and φj ) for the exterior fluid, one
can express both velocity and pressure fields. The zeroth
order deformation solution was first provided by Taylor
(1932) who used the following solid spherical harmonic
functions of degree −3:

p
0,d
−3 = μmA

0,d
−3

(
Rd

r2

)3

r(ϒS : xx),

φ
0,d
−3 = B

0,d
−3

(
Rd

r

)5

(ϒS : xx), (6)

where r is the magnitude of the position vector at the inter-
face between phases, and ϒS is the normalized pure shear
rate tensor (the rate of deformation tensor as the symmetric
part of the velocity gradient normalized by the magnitude of
the shear flow). By applying the aforementioned boundary
conditions for the zeroth order, Taylor (1932) arrived at the
following expression for the constants in Eq. 6:

A
0,d
−3 = −5ϒ

(
λ + 2

5

λ + 1

)
, B

0,d
−3 = −ϒ

2

(
λ

λ + 1

)
, (7)

in which λ is the viscosity ratio defined as,

λ = μd

μm

. (8)

First-order deformation

The solution for a first-order deformation can be obtained
with the same method, and by using Laplace’s equation as
a proper boundary condition to define the stress jump at the
boundary of the particle (see Frankel and Acrivos (1967)
and Frankel and Acrivos (1970) for more details). The solid
spherical harmonics p−3 are the only functions needed for
the integration of the stress components over a large volume,
owing to the fact that other solid spherical harmonics vanish.
The final result for the solid spherical harmonic reduces to
the following expression (Schowalter et al. 1968):

p
1,d
−3 = 20

7
μmϒ

25λ2 + 41λ + 4

25(λ + 1)2

(
Rd

r

)3

·
[
(ϒS : ϒS)− 3

r2
(ϒS · x)2

]
+12μmϒ

19λ + 16

15(λ + 1)

· r

(
Rd

r2

)3 [
(
u�
ϒ

−ϒS · x) · (ϒS · x)
]
. (9)
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Furthermore, the shape of the particle up to the second
order of the deformation (O(D2)) is calculated as:

r − Rd

⎡
⎢⎢⎣1 + 2

r2

Ca

16

19λ + 16

λ + 1︸ ︷︷ ︸
D

(ϒS : xx)

⎤
⎥⎥⎦ = 0. (10)

Second-order deformation

To proceed to higher orders deformation, for instance to
Ca2, one needs to derive the complete second-order solu-
tions of the spherical harmonics for the pressure and veloc-
ity fields and an expression for the particle shape. Deriving
these solutions following the same methodology is complex
and tedious (Chaffey and Brenner 1967; Greco 2002). Alter-
natively, Greco (2002) presented an analysis that calls for
rotational invariance to find all unknown fields (velocity and
pressure) and the particle shape. According to Greco (2002),
one arrives to the following function for the fluid particle
shape up to the third order of the deformation (O(D3)),

r − Rd

[
1 + 2

r2

Ca

16

19λ + 16

λ + 1
(ϒS : xx) + Ca2

·
(

S1(λ)

r3
(ϒSϒS :: xxx) + S2(λ)

r2
(ϒSϒS : xx)

+S3(λ)(ϒS : ϒS) + S4(λ)

r2
(� : xx)

)]
= 0, (11)

where coefficients S1 through S4 depend only on the viscos-
ity ratio and are listed in the Appendix F of Greco (2002). In
Eq. 11, � is the second Rivlin-Ericksen tensor (Astarita and
Marrucci 1974) that, under simple shear flow conditions,
reduces to

� = 2(ϒS · ϒA − ϒA · ϒS) + 4ϒS · ϒS , (12)

where ϒA is the normalized spin tensor (skew-symmetric
part of the velocity gradient normalized by the magnitude of
the shear flow).

While Greco (2002) provides a starting point to further
develop our model to higher orders of particle deforma-
tion, we restrict our derivation to the first order of the
deformation (up to O(D2), therefore the model is theo-
retically applicable only for small particle deformations).
Interestingly, we show below that our model predictions for
emulsions sheared at high Ca are in good agreement with
experiments which suggest that the second-order trunca-
tion with respect to particle deformation does not introduce
significant errors when extrapolated to high Ca.

The harmonic functions for the case of a matrix including
a Hookean elastic solid particle are obtained with the same
methodology to the zeroth order of deformation. For first-
order deformations, we replace Laplace’s equation with
another stress boundary condition at the fluid-elastic solid

interface (Goddard and Miller 1967). This is the case even
for a fluid particle which has a infinite viscosity where the
spherical shape of the particle is not maintained by surface
tension forces, but rather by its shear modulus G.

Relative viscosity of a dilute system

According to Batchelor (1967), the rate of energy dissi-
pation per unit volume inside a suspension (or emulsion)
increases when more solid particles (or fluid particles pos-
sessing high surface tension or shear viscosity) are fed to the
system. Therefore, a multiparticle systems can be treated as
a homogeneous Newtonian fluid of the same average den-
sity in a fixed volume of Vψ = V r

m + V t
p (in which V t

p is the
total volume occupied by particles, and V r

m is the remain-
ing volume of the matrix) and with viscosity μψ . The stress
tensor at any point of the system (outside particles), σ t , is
given by

σ t = −pmI + 2μmϒ −p′I + μm

[
∇u′ + (∇u′)T

]
︸ ︷︷ ︸

σ ′

, (13)

where the primed terms are associated with the distur-
bance in stress tensor, velocity and pressure fields due to
the presence of particles, and consequently they include
both perturbation arising from zeroth and first order of
deformation. Namely,

σ ′ = σ 0,d + Dσ 1,d . (14)

Besides, the stress tensor for the homogeneous equivalent
fluid at any point can be calculated as

σψ = −pψ I + 2μψϒ. (15)

The equivalence assumption implies the equality of the
total rate of work done on the boundary of the emul-
sion/suspension, Aψ , in both structures characterized with
the stress tensors defined in Eqs. 13 and 15.

In previous models (Einstein 1911; Taylor 1932; Batch-
elor 1967; Goddard and Miller 1967; Frankel and Acrivos
1970; Schowalter et al. 1968; Landau and Lifshitz 1987), the
matrix is considered unbounded (infinite volume). There-
fore, the excluded volume taken by particles has been
overlooked which results in particles being represented as
mass points. These models provide valuable results only
in cases where the particle concentration is low (less than
5 %). In this study, a finite volume for the matrix is consid-
ered; however, it is assumed large enough to satisfy the fact
that the perturbation of single particles on the flow fields
are independent of each other (no hydrodynamic interac-
tions in the dilute limit). The model, thus, takes into account
the excluded volume of the matrix replaced by particles
using a first-volume correction. Using this correction, parti-
cles added simultaneously interact by decreasing the volume
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available in the ambient fluid. We note that the considera-
tion of a finite volume is physically more consistent when
the model is tested against experiments.

Owing to the fact that the rate of work associated with the
isotropic component of the stress tensors stated in Eqs. 13
and 15 are the same on the boundary of the physical domain
(far from particles), the equality of the rate of work exerted
by the deviatoric components, represented by τ , yields∫

Aψ

uψ
�τψ ·n dA =

∫

Aψ

u�(τ� + σ ′) ·n dA, (16)

∫

Aψ

ϒik(2μψϒij )xknj dA =
∫

Aψ

ϒik(2μmϒij )xknjdA

+
∫

Aψ

ϒikσ
′
ij xknj dA, (17)

where n is a outward unit vector normal to the surface. We
proceed by transforming the first two surface integrals into
integrals over the boundary of the remaining ambient fluid,
Am, (a surface enclosing the matrix). Thus, by applying the
divergence theorem, Eq. 17 can be recast as∫

Vψ−V r
m

2μψϒij
∂ui

∂xj

dV +
∫

Am

2μψϒijϒikxknj dA =
∫

Vψ−V r
m

2μmϒij
∂ui

∂xj

dV +
∫

Am

2μmϒijϒikxknj dA +
∫

Aψ

ϒikσ
′
ij xknj dA. (18)

Assuming that equations governing the perturbation in
the fluid flow caused by particles are in Stokes regime, we
obtain

∂(σ ′
ij xk)

∂xj

= σ ′
ik. (19)

Using Eq. 19, the third integral in the right-hand side of
Eq. 18 can be expressed as∫

Aψ

ϒikσ
′
ij xknj dA =

∫

Vψ−NVp

ϒikσ
′
ikdV

︸ ︷︷ ︸
−N

∫
Ap

2ϒikμmu′
i nkdA

+ N

∫

Ap

ϒikσ
′
ij xknjdA. (20)

N is the number of particles fed to the system, and Ap

is the surface of a particle. Integrals in Eq. 20 are treated
in such a way that it is assumed particles are far apart,
and the disturbance they generate does not affect the flow
field around other particles. Therefore, the averaged rate
of energy dissipation per unit of volume is calculated only
for one particle and then generalized (linearly summed)
to account for the effect of other particles on the rate of
dissipation. This assumption is true only for very dilute
suspensions/emulsions where Vψ → V r

m. As a result, the

following equation can be retrieved from Eq. 18 by a simple
integration,

2ϒijϒij (μψ − μm)V r
m =

N

∫

Ap

(ϒikσ
′
ij xknj − 2ϒikμmu′

ink)dA. (21)

The integral in the right-hand side of Eq. 21 indicates
the average additional rate of energy dissipation caused by a
single particle (Batchelor 1967; Happel and Brenner 1983).
To calculate this integral, we can use the reciprocal theorem
developed by Happel and Brenner (1983) or simply replace
Ap by an arbitrary large surface, Aa , enclosing a single par-
ticle at its center. For the latter method, the ambient stress
and velocity fields of the fluid disturbed by the presence of
this particle should be considered as well, namely

u′′ = u� + u′

σ ′′ = σ� + σ ′. (22)

Therefore, we shall restate Eq. 21 as follows

τik = 2μmϒϒS
ik + V t

p

Vψ − V t
p

·
(

1

Vp

∫

Aa

σ ′′
ij xknj dA − 2

Vp

∫

Aa

μmu′′
i nk dA

)
, (23)

where V t
p = NVp, Using Lamb’s general solution, we have

u′′ = u� + 1

2μm

xp−3, (24)

and

σ ′′ = μm

[
∇u� + (∇u�)T

]

+ 1

2

[
∇(xp−3) + (∇(xp−3)

T
]

− Ip−3, (25)

with

p−3 = p
0,d
−3 +

(
ϒμmRd

16γ

)(
19λ + 16

λ + 1

)
p

1,d
−3 . (26)

In Eq. 23, the first correction that accounts for the
volume taken by particles appears in the homogenization
process. Models which overlook this correction underpre-
dict the shear dynamic viscosity of the equivalent fluid in
a finite system. Therefore, if a set of particles are added to
the matrix (forming a dilute system), the position of each
particles is restricted by the presence of other particles.

The detailed solution to integrals in Eq. 23 can be found
in Landau and Lifshitz (1987) and Batchelor (1967) for
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system of non-deformable particles and in Goddard and
Miller (1967), Frankel and Acrivos (1970), and Schowalter
et al. (1968) for systems composed of deformable particles.
Finally,

τ = 2μmϒ

[
1 + ψ

1 − ψ

(
1 + 2.5λ

1 + λ

)]
ϒS

+ μ2
mϒ2Rd

γ

(
ψ

1 − ψ

)
(A − B), (27)

where ψ ≡ NVp

Vψ
is the particle volume fraction and

A = 3(19λ + 16)(25λ2 + 41λ + 4)

140(λ + 1)3

·
[
ϒS · ϒS − 1

3
I

(
ϒS : ϒS)]

, (28)

and

B = 1

40

(
19λ + 16

λ + 1

)2 (
ϒA·ϒS − ϒS ·ϒA)

. (29)

Equation 27 is a special case of simple fluids family
of constitutive equations (Schowalter et al. 1968). We note
that the deformation introduces a non-linear relationship
between the stress and the rate of strain. Thus, emul-
sions/suspensions behave as non-Newtonian fluids. Follow-
ing Frankel and Acrivos (1970), we can apply the operator

1 + 

D

Dt
, (30)

on both sides of Eq. 27. In Eq. 30, D
Dt

denotes the Jaumann
derivative (Goddard and Miller 1967), which is defined as
follows for an arbitrary tensor α,

D

Dt
α = d

dt
α + u · ∇α + ϒ

(
ϒA · α − α · ϒA)

. (31)

In Eq. 30, 
 is determined as


 = (2λ + 3)(19λ + 16)

40(λ + 1)

(
μmRd

γ

)
, (32)

has unit of time and is defined as the relaxation time
(Oldroyd 1959) that characterizes the time-dependency of
the flow response to deformation (the time required for a
slightly deformed particle to relaxes exponentially to its
spherical equilibrium shape). The value of the relaxation
time diverges as the viscosity ratio approaches to infinity or
as surface tension approaches zero.

In a steady and laminar simple straining flow, when
α = ϒS , the material derivative part of the Jaumann deriva-
tive, first two terms of the RHS of Eq. 31, vanishes. This
simplification is valid even when the Jaumann derivative
is applied to the stress tensor associated with dilute sys-
tems subjected to a steady simple shear. For these systems,
fluctuations caused by variation in particle arrangement and
deformation far away from the considered particle remain
relatively small, therefore, we expect this simplification
does not affect our model under steady conditions.

By applying the operator defined in Eq. 30 to 27, we
obtain Eq. 33,

τ + 
ϒ
(
ϒA · τ − τ · ϒA)

= 2μmϒ

[
1 + ψ

1 − ψ

(
1 + 2.5λ

1 + λ

)]
×

[
ϒS + 
ϒ

(
ϒA · ϒS − ϒS · ϒA)]

+

μ2
mϒ2Rd

γ

(
ψ

1 − ψ

)
(A − B) + μ2

mϒ3Rd

γ

(
ψ

1 − ψ

)



(
ϒA·(A − B) − (A − B)·ϒA)

, (33)

in which A and B are defined in Eqs. 28 and 29, respec-
tively. We drop the last term in Eq. 33 to maintain the order
of deformation in Eq. 33 similar to that of Eq. 27 (second
order with respect to ϒ).

For a simple steady straining flow with the following
dimensionless symmetric and skew-symmetric part of the
velocity gradient

ϒS = 1

2

⎡
⎣

0 1 0
1 0 0
0 0 0

⎤
⎦ , ϒA = 1

2

⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ ,

we can restate Eq. 33 in a matrix form, see Eq. 34.

⎡
⎣

τ11 − 
ϒτ12 τ12 + 
ϒ
2 (τ11 − τ22) 0

τ12 + 
ϒ
2 (τ11 − τ22) τ22 + 
ϒτ12 0

0 0 τ33

⎤
⎦ = μmϒ

[
1 + ψ

1 − ψ
(
1 + 2.5λ

1 + λ
)

]⎡
⎣

−
ϒ 1 0
1 
ϒ 0
0 0 0

⎤
⎦ +

(
μmϒ2


14(2λ + 3)(λ + 1)2
(

ψ

1 − ψ
)

)
×

⎡
⎣

(158λ2 + 286λ + 116) 0 0
0 −(108λ2 + 204λ + 108) 0
0 0 −(50λ2 + 82λ + 8)

⎤
⎦ , (34)
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The deviatoric stress components in the direction of the
first and second principal axes are obtained in Eq. 35.

τ11 = 
ϒτ12 − μm
ϒ2
(

1 + 70λ3 + 45λ2 − 111λ − 74

14(2λ + 3)(λ + 1)2
(

ψ

1 − ψ
)

)
,

τ22 = −
ϒτ12 + μm
ϒ2
(

1 + 70λ3 + 95λ2 − 29λ − 66

14(2λ + 3)(λ + 1)2 (
ψ

1 − ψ
)

)
,

τ12 = −1

2

ϒ(τ11 − τ22) + μmϒ

(
1 + 1 + 2.5λ

1 + λ
(

ψ

1 − ψ
)

)
. (35)

A simple manipulation of Eq. 35 yields an expression for
τ12 which can be used to find the macroscopic viscosity of
the emulsion, μψ = τ12/ϒ . Finally, we obtain

μψ

μm

= 1 + 1

1 + 
2ϒ2
(

ψ

1 − ψ
)

·
[

1 + 2.5λ

1 + λ
+ 140(λ3 + λ2 − λ − 1)

28(2λ + 3)(λ + 1)2

2ϒ2

]
. (36)

Now, by substituting 
 from Eq. 32 into Eq. 36, and
using the definition of the capillary number in Eq. 3, we can
recast Eq. 36 into the following general equation for any
capillary number and finite viscosity ratio

μψ

μm

= 1 + 1

1 + κCa2
(

ψ

1 − ψ
)

·
[

1 + 2.5λ

1 + λ
+ 140(λ3 + λ2 − λ − 1)

28(2λ + 3)(λ + 1)2
κCa2

]
, (37)

where

κ =
(

(2λ + 3)(19λ + 16)

40(λ + 1)

)2

. (38)

It should be noted again that the model stated in Eq. 37
is only valid for a dilute system up to the second order of
particle deformation for any finite viscosity ratios and capil-
lary number. Note for the case of infinite viscosity ratio, the
fluid particle acts like a Hookian solid particle and remains
spherical because of the large shear dynamic viscosity, not
surface tension. Therefore, another proper set of boundary
conditions for the normal components of the stresses on
the surface of the deformed particle should be used (God-
dard and Miller 1967). Applying the boundary condition of
Goddard and Miller (1967) and introducing the first volume
correction in the homogenization process, we find

μψ

μm

= 1 + 2.5

1 + 9
4Wi2

(
ψ

1 − ψ

) [
1 − 3

2
Wi2

]
, (39)

for suspensions of elastically deformable solid particles.
We note that at low particle volume fraction, where

ψ
1−ψ

= ψ + O(ψ2), Eq. 37 recovers the equation of Tay-
lor (1932) using λ → 0 and Ca � 1, the equation of

Mackenzie (1950) using λ → 0 and Ca � 1 and that of
Oldroyd (1959) using λ → 0 (see Table 1. Similarly, at low
solid particle volume fraction, Eq. 39 reduces to the well-
known Einstein-Sutherland law when Wi � 1 (see Table
2).

An extension of rheological model to concentrated sys-
tems requires a self consistent approach to account for
particle hydrodynamic interactions. Additionally, for a mul-
tiparticle system of rigid solid or non-deformable fluid
particles, the relative viscosity should satisfy

lim
ψ→ψM

μψ

μm

� ∞, (40)

where ψM is the threshold packing (commonly known as
the maximum random close packing, RCP ) fraction for
spherical particles. We note that in the case of emulsions
including deformable fluid particles, the relative viscosity at
ψ = ψM exhibits considerable increase but does not diverge
(Pal 2000), however, to the first-order deformation for emul-
sions of slightly deformable fluid particles, we will assume
that (40) still holds. We note that ψM depends strongly on
the particle size distribution, particle shape and deformation,
and the protocol employed to produce the random packing
(Faroughi and Huber 2014). This quantity is also defined
as the maximally random jammed state by Torquato et al.
(2000), who argued that the concept of the RCP as the high-
est possible density that a random sphere packing can attain
is ill-defined. For these reasons, in the literature, the value
of ψM for mono-disperse spheres is found in the range of
0.56 < ψ < 0.74 which is related to the mechanically sta-
bility of packing starting from the random loose packing to
face-centered cubic structure, respectively (Rust and Manga
2002; Song et al. 2008; Boyer et al. 2011). Under static con-
ditions, the value of 0.637 is reported for ψM in classical
studies (e.g., Scott and Kilgour (1969)), and it is assumed to
be an acceptable value for the remaining of this study. We
keep this parameter constant; however, our model allows to
modify it freely, if necessary, to account for different pack-
ing protocols in experiments, especially when high shear
stresses (or shear rates) are imposed.
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Extension to concentrated suspension

We use a phenomenological approach based on the differ-
ential effective medium (DEM) method (Norris et al. 1985)
operating in a fixed volume to extend our model to high
concentration systems. The DEM approach is an incremen-
tal method in which, at each conceptual step, a few particles
are introduced into the suspension/emulsion and interact
with particles present in the medium. The homogenized
macroscopic property (effective viscosity) is then computed
for the whole system. It should be noted that the differen-
tial effective medium theory is physically appropriate only
in the case where the incremental addition is sufficiently
sparse that it does not form a preferential connected network
throughout the system. Due to the first volume correction,
particles added simultaneously can interact with each other.
Therefore, we only need to account for interactions between
a new generation of particles and previous generations. We
should account for the fact that this procedure cannot be fol-
lowed until the entire volume of the matrix is replaced by
particles (ψ � 1). This restriction arises because of the
geometrical constraint dictated by the shape and size dis-
tribution of particles. Firstly, we will extend the model for
the relative viscosity of a dense system in the case of zeroth
order of particle deformation. Then, we can find an expres-
sion for the geometrical constraint by utilizing the packing
limit condition of Eq. 40.

Relative viscosity for a dense system of non-deformable
particles

To start the procedure, we can rewrite Eq. 37 in the follow-
ing form (assuming Ca � 1)

μψ

μm

= 1 + ψc

(
1 + 2.5λ

1 + λ

)
, ψc = ψ

1 − ψ
. (41)

Here, ψc is called the corrected volume fraction of parti-
cles for the dilute system (first volume correction). In other
words, this volume correction considers the finite space
taken by other particles of the same generation. Based on
the fixed volume DEM theory, the homogenization process
is characterized by taking a portion of the ambient fluid
out and replacing it with particles at each step. We define
the particle fraction added to the system during each step
as dψi , and the corresponding corrected particle fraction
(effective concentration) added to be �ψi

c . Therefore, the
viscosity change of the homogenized equivalent fluid during
step i + 1 is

μi+1 − μi = μi�ψi+1
c

(
1 + 2.5λ

1 + λ

)
, (42)

where the current value μi represents the matrix viscosity
μm and the next value μi+1 denotes the effective suspen-
sion viscosity μψ . The effective concentration in Eq. 42 is
defined as,

�ψi+1
c = dψi+1

1 − ψi
, (43)

where ψi is the total volume fraction of particles inside
the medium at step i. In Eq. 43, the effective concentra-
tion at step i + 1, �ψi+1

c , introduces the second volume
correction combining the first volume correction ψc and a
self-crowding factor parameter denoted by . This param-
eter, , is a positive constant that accounts for the fact
that particles cannot fill all the volume of the suspen-
sion/emulsion (a geometrical constraint). Theoretically, this
parameter takes the effective volume of particles into con-
sideration knowing that some fluid located in interstices
formed by particles is no longer available to suspend parti-
cles.  is called the self-crowding factor because we assume
that all particles have the same size (volume). In general,
we argue that  is related to the size distribution (assum-
ing small deformation) through the maximum random close
packing concentration, ψM . Substituting Eq. 43 into Eq. 42
yields

μi+1 − μi

μi

= dψi+1

1 − ψi

(
1 + 2.5λ

1 + λ

)
. (44)

Upon integrating Eq. 44 from a system with zero particle
and shear dynamic viscosity μm to a desired particle volume
fraction ψc and shear dynamic viscosity μψ ,
∫ μψ

μm

1

μ
dμ =

∫ ψc

0

1

1 − ψ

(
1 + 2.5λ

1 + λ

)
dψ, (45)

Eq. 41 becomes

μψ

μm

=
(

1 − 
ψ

1 − ψ

)− 1+2.5λ
(1+λ)

. (46)

The model described by Eq. 46 predicts the relative vis-
cosity for a dense system at any finite viscosity ratio to the
zeroth order of particle deformation. The self-crowding fac-
tor  is determined by applying the constraint stated in Eq.
40

lim
ψ→ψM

ψ

1 − ψ
= 1 −→  = 1 − ψM

ψM

. (47)

Based on Eq. 47, we find that  < 1 if ψM > 0.5. This
implies that the added particle volume fraction, say ψ =
a, practically occupies an effective volume of a/. This is
also equivalent to argue that the volume a(1/ − 1) of the
matrix is trapped in interstitial spaces between particles.

Substituting Eq. 47 into Eq. 46 yields the following
equation for the relative viscosity of emulsions of non-
deformable fluid particles
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μψ

μm

=
(

ψM − ψ

ψM(1 − ψ)

)− ψM(1+2.5λ)

(1−ψM)(1+λ)

. (48)

For the particular case of a suspension of rigid solid
particles (λ → ∞ and G → ∞), Eq. 48 reduces to

μψ

μm

=
(

ψM − ψ

ψM(1 − ψ)

)− 2.5ψM
1−ψM

. (49)

Equation 49 is plotted for intermediate- and high-volume
fractions of particles, respectively, in Figs. 2 and 3 where it
is compared to published experimental data and well-known
equations listed in Table 1. Figure 2 shows a monotoni-
cally increasing relative viscosity with particle concentra-
tion. The shaded area in Fig. 2 highlights the region that
regroups most of the experimental data. Our model agrees
very well with published experiments for suspensions. One
can observe that commonly used models for concentrated
suspensions, like Krieger and Dougherty (1959), Barnea
and Mizrahi (1973), and Eilers (1943), deviate from the
experimental data as the particle concentration increases.
As mentioned earlier, ignoring the first volume correction
(e.g., Einstein (1911)) results in underpredicting the shear

viscosity of even dilute suspensions. It is also interesting to
stress that our model closely follows the empirical model
proposed by Mooney (1951) when the free parameter in his
model is set to 1.35 (see Table 1). In Fig. 3, the relative vis-
cosity predicted with our model Eq. 49 is plotted for dense
systems up to the packing limit ψ → ψM , and shows an
excellent agreement with experimental data. Here, again the
shaded area indicates the range observed in experiments.
Over this range of particle concentration (0.35 < ψ < 0.6),
we observe that models that do not include the volume cor-
rections discussed above underpredict the relative viscosity
by up to two orders of magnitude. As a note, we empha-
size here that the model does not include free parameters
to fit the data and that we used ψM = 0.637 which corre-
sponds to the volume fraction for the random close packing
of spherical particles under static conditions.

We compare the model in Eq. 48 with published data
for dense emulsions in the limit of Ca → 0. The pre-
dicted value of the relative viscosity as function of particle
volume fraction is depicted in Fig. 4 for an emulsion of
non-deformable fluid particles where λ → 0 (bubbly emul-
sion). Similarly to the results for solid suspensions in Fig.
2, we observe that the relative viscosity increases mono-
tonically with volume fraction, but with a smaller rate than

Fig. 2 Rheology of suspension
of rigid solid particles (λ → ∞
and G → ∞). Comparison of
the model in Eq. 49 with
previous published models (see
Table 1) and experimental data
from dilute up to the
intermediate particle
concentration. The shaded area
highlights the region that
regroups most of the
experimental data
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Fig. 3 Rheology of suspension
of rigid solid particles (λ → ∞
and G → ∞). Comparison of
the model in Eq. 49 with
previous published models (see
Table 1) and experimental data
at intermediate to high particle
volume fraction

Fig. 4 Rheology of emulsion of
non deformable inviscid fluid
particles (bubbly emulsion
where λ → 0 and Ca � 1).
Comparison of the model in Eq.
48 with existing models (see
Table 2) and published
experimental data
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for solid particles. Based on Fig. 4, one can see that our
model performs very well to reproduce experimental data
in the limit of λ → 0. Predicted results from other well-
known models reported in Table 2 that are applicable to
this range of ψ , Ca � 1, and λ → 0 are also depicted
in Fig. 4 for comparison. Figures 2 to 4 clearly show the
importance of considering a finite volume (the influences
of the first volume correction in the range of dilute emul-
sions ψ < 0.15) and defining an appropriate self-crowding
factor (second volume correction) to improve the model’s
ability to describe interparticle hydrodynamic interactions
at high-volume fraction.

Relative viscosity for a dense system of deformable
particles

To extend our model to concentrated systems with
deformable particles, we shall first rewrite Eq. 37 as

μψ

μm

= 1 + 1

1 + κL2μ2
m

(
ψ

1 − ψ
)
[
N + MκL2μ2

m

]
, (50)

in which L = ϒRd/σ and

N = 1 + 2.5λ

1 + λ
, M = 140(λ3 + λ2 − λ − 1)

28(2λ + 3)(λ + 1)2
. (51)

Applying the same procedure (fixed volume DEM the-
ory) to Eq. 50 leads to the following ordinary differential
equation
(

1

μ
− MκL2μ

N + MκL2μ2 + κL2μ − Mκ2L4μ3

N + MκL2μ2

)
dμ

= N dψ

1 − ψ
.(52)

Upon integrating this equation with respect to the volume
fraction from zero to ψc, with corresponding viscosity of
μm and μψ , we can find the following non-linear relation for
the relative viscosity

μψ

μm

(N + MκL2μ2
ψ

N + MκL2μ2
m

) 1
2 ( N

M−1)

=
(

ψM − ψ

ψM(1 − ψ)

)− NψM
1−ψM

.(53)

Alternatively, defining f μ(ψ, λ, Ca) = μψ/μm and
Ca = Lμm, Eq. 53 can be restated in the following general
form

f μ
(N + MκCa2(f μ)2

N + MκCa2

) 1
2 ( N

M−1)

=
(

ψM − ψ

ψM(1 − ψ)

)− NψM
1−ψM

. (54)

We note that for bubbly emulsions (where λ → 0, N =
1, M = −5/3 and κ = (6/5)2), the left-hand side of Eq. 54
reduces to the phenomenological equation of Pal (2003a).
Furthermore, for non-deformable particles, Eq. 54 reduces

to Eq. 48 or Eq. 49 that have been successfully compared
with experiments in Figs. 2 to 4.

To validate the effective viscosity model for emulsions
of deformable particles defined in Eq. 54, we compare it
with experiments conducted by Rust and Manga (2002) for
bubbly emulsion (λ → 0) over intermediate capillary num-
ber ranges (small deformation) and relatively dilute systems
with ψ = 0.115 and ψ = 0.163, respectively (see Fig.
5a, b). Based on these comparisons, one can see that using
ψM = 0.637, our model provides a satisfying fit to experi-
mental data. In addition, in panels (c) and (d) of Fig. 5, we
show that Eq. 54 is in excellent agreement with experiments
conducted by Stein and Spera (2002) at high shear rate (high
capillary number) for relatively concentrated bubbly emul-
sions of ψ = 0.29 and ψ = 0.45. These results suggest that
the errors associated with neglecting higher orders of par-
ticle deformation have a limited impact on the rheology of
emulsions at (Ca � 1).

For systems containing deformable particles, the physics
of interactions between particles becomes more complicated
when the particle volume fraction approaches or exceeds the
maximum random close packing. Dense systems have dis-
played elastic and plastic behavior at small and large strains,
respectively (Marmottant et al. 2008). Even at very low
shear rates, high particle concentration leads to deformation,
possibly coarsening and drainage phenomena (Benito et al.
2008). It should be emphasized that our rheological model
defined in Eq. 54 does not account for these processes such
as plastic flow resulting from particle rearrangements and
compaction, aging, and yield stress. Our model is therefore
limited to volume fractions below the random close pack-
ing, ψM . Nevertheless, Eq. 54 provides a valid rheological
model for 0 ≤ ψ < ψM ) over any of finite viscosity ratio
and capillary number.

The relative viscosity as function of the capillary num-
ber predicted by Eq. 54 for two viscosity ratios λ = 0 and
λ = 1.1 and different particle volume fractions is plotted in
panels a–b of Fig. 6. We distinguish three regions: (i) the rel-
ative viscosity is constant at low values of capillary numbers
(Ca ≤ 10−3), (ii) the relative viscosity decreases over inter-
mediate values of capillary numbers (10−3 < Ca < 10),
and, finally, (iii) the relative viscosity is constant again at
high values of capillary numbers (Ca ≥ 10). Furthermore,
the viscosity ratio exerts a significant control on the vis-
cosity of emulsions. For instance, based on the relation
between the relative viscosity and capillary number in the
limit of λ → 0, (Fig. 6a), we observe that at capillary num-
ber values smaller than a critical capillary number (where
curves intersect each other), the relative viscosity is greater
than unity (f μ > 1), and its value increases with parti-
cle concentration. At higher capillary numbers, an opposite
trend is captured where the relative viscosity is smaller than
one (f μ < 1 ), and higher particle concentration leads
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Fig. 5 Rheology of emulsion of
deformable inviscid fluid
particles (λ → 0) versus
capillary number. Comparison
between our model (solid line),
containing no fitting parameter,
and experimental data for four
different measured particle
concentrations

to lower relative viscosity. All curves intersect at a criti-
cal capillary number where the viscosity of the system is
independent of particle concentration, and is equal to the
viscosity of the matrix (f μ = 1). This behavior does not
exist for the system shown in Fig. 6b, where the viscosity
of the matrix is slightly smaller than that of the dispersed
phase (λ = 1.1). In this case, the relative velocity is greater
than one (f μ > 1) over the entire range of capillary num-
ber. At small capillary number, the force associated with

capillary stresses controls the resistance against deforma-
tion, and a higher particle concentration (greater surface
area) results in a greater macroscopic shear viscosity for
the emulsion. At high capillary number, the resisting force
against deformation is mostly controlled by shear stresses
(Fig. 6b). As a consequence, introducing more particle does
not significantly affect the overall viscosity of the emulsion.

Interestingly, the relative viscosity is more sensitive to
the capillary number in the intermediate regime (Fig. 6b),

Fig. 6 Relative viscosity, f μ = μψ/μm, as a function of capillary
number for different particle concentrations calculated with Eq. 54 for
a system where a the viscosity ratio is zero (bubbly emulsion) and
b the viscosity ratio is λ = 1.1. Our model predicts that a critical

capillary number exists only when the viscosity ratio λ < 1, while for
emulsions with λ > 1, the effective viscosity is greater than that of the
ambient fluid for all Ca
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and this sensitivity is enhanced at higher particle concen-
tration. It suggests that shear thinning occurs dominantly
when 0.1 < Ca < 1, and that the reduction in viscosity
is greater at higher particle concentration. Zinchenko and
Davis (2003) observed a similar behavior for λ = 1 using a
hybrid approach between a boundary integral method and a
multi-pole approach.

The relative viscosity of emulsions behaves differently
for different combinations of the viscosity ratio and cap-
illary number at a given particle concentration. This inter-
esting behavior captured by Eq. 54 is demonstrated in Fig.
7a, b. These results suggest that the capillary number does
not have a comparable effect on the dynamics of the prob-
lem over the entire range of viscosity ratio. At low viscosity
ratio (λ < 10−1), the effect of the capillary number remains
constant and then increases gradually until it reaches unity
viscosity ratio (λ = 1) at which the capillary number exerts
the greatest influence on the viscosity of the emulsion (max-
imum possible shear thinning). For viscosity ratios λ > 1,
the effect of the capillary number decreases. At high viscos-
ity ratio (λ > 103), the capillary number plays a negligible
role on the rheology of emulsions (Fig. 7a, b). In addition,
at λ > 103, the relative viscosity of emulsions for a given
particle volume fraction does no longer depend on the vis-
cosity ratio. This effect is clearly depicted in Fig. 7b. It
suggests that when the shear viscosity of the dispersed phase
is much greater than that of the matrix, the deformation of
the particle is no longer controlled by surface tension (and
consequently the capillary number). Under these conditions,

the physical property that acts to keep the particle’s shape
spherical is the shear viscosity of the dispersed phase.

For solid suspensions, λ → ∞, of elastic particles
(Hookian particles), the deformation is controlled by the
Weissenberg number. The rheological behavior of these
concentrated suspensions is also obtained by applying the
fixed volume DEM theory along with the second vol-
ume correction to account for the geometrical constraint
described by Eq. 39. This leads to

f μ

(
1 − 3

2Wi2(f μ)2

1 − 3
2Wi2

)− 5
4

=
(

ψM − ψ

ψM(1 − ψ)

)− 2.5ψM
1−ψM

, (55)

which is a non-linear equation in terms of the relative
viscosity, f μ. As expected, the relative viscosity of a sus-
pension including Hookian solid particles increases as more
particles are fed to the system. At a fixed particle volume
fraction, when the Weissenberg number increases (i.e., par-
ticles deform), shear thinning behavior occurs. The shear
thinning behavior decreases as the particle shear modu-
lus increases, and at G → ∞, the suspension behaves
like a Newtonian fluid. It is also worth mentioning that
Wi = 0.816 calculated based on Eq. 55 is a critical
Weissenberg number at which the shear viscosity of the
deformable solid suspensions is independent of the particle
volume fraction, and it is equivalent to the shear viscosity of
the matrix.

Fig. 7 The effect of the capillary number and viscosity ratio on the rel-
ative viscosity at a constant particle volume fraction ψ = 0.4; a shows
that increasing the viscosity ratio results in an increase in relative vis-
cosity up to a point (λ > 103) beyond which increasing viscosity
ratio does not affect the relative viscosity. Also the sensitivity of the
shear thinning behavior to viscosity ratio first increases from zero to

unity, and then as viscosity ratio increases the shear thinning behav-
ior decreases. The shear thinning behavior vanishes for systems where
λ > 103. b Shows the effect of the capillary number in different vis-
cosity ratios. We observe that the effect of the capillary number on the
relative viscosity is maximum around the critical viscosity ratio, and
decreases as the viscosity ratio increases



Rheol Acta (2015) 54:85–108 101

Regime diagram

The macroscopic responses of emulsions to shear, and more
specifically the role of λ and Ca observed in Figs. 6 and 7,
suggest that there should be a set of critical numbers that
controls transitions in the behavior of the relative viscos-
ity. Based on Eq. 54, we can deduce that a critical capillary
number, Cacr , at which the viscosity of the emulsion is
identical to that of the matrix and hence is independent of
the particle volume fraction satisfies

N + MκCa2
cr = 0. (56)

Equation 56 has a real and physical root only in cases
where M < 0, owing to the fact that N and κ are always
positive. For a bubbly emulsion, λ → 0, the critical cap-
illary number is found to be 0.645 (Fig. 6a), while for a
system where λ ≥ 1, the relative viscosity is always a
function of the particle concentration. In other words, there
is no critical capillary number for such system (because
M > 0) as depicted in Fig. 6b. Thus, the presence of the
critical capillary number strongly depends on the viscosity
ratio between the two phases which controls the sign of the
parameter M. Following this assertion, we define the criti-
cal viscosity ratio λcr such that M(λcr) = 0. Therefore, the

critical viscosity ratio satisfies

λ3
cr + λ2

cr − λcr − 1 = 0, (57)

which has only one real physical root, λcr = 1. For λ < λcr ,
a critical capillary number exists and consequently a behav-
ior similar to that shown in Fig. 6a will be expected. For a
viscosity ratio greater than λcr , the behavior of the system
(the relation between the relative viscosity, capillary num-
ber, and the particle concentration) will be similar to that
displayed in Fig. 6b. Note that the critical viscosity ratio and
capillary numbers are independent of the particle volume
fraction.

We summarize the prediction of our rheological model
for the relative viscosity of emulsions as function of the vis-
cosity ratio λ and capillary number Ca in a regime diagram
in Fig. 8. This regime diagram includes three regions A, B,
and C, which are delimited by the critical numbers discussed
above. In the region where the viscosity of the dispersed
phase is greater than the viscosity of the matrix (region A
in Fig. 8 where λ > λcr ), the viscosity of the emulsion
is always greater than the viscosity of the matrix for any
given particle concentration. In this region of the diagram,
the high viscosity of the dispersed phase generates a resist-
ing stress that balances the shear applied on the surface of
the particles. We note that increasing the volume fraction of

Fig. 8 A regime diagram constrained by the critical viscosity ratio
(λcr ) and critical capillary number (Cacr ) shown by solid lines. In
region A, where the viscosity ratio is bigger than λcr , the relative vis-
cosity is always greater than unity. While at smaller viscosity ratio
(λ < λcr ), regions B and C, there is a critical capillary number deter-
mined by Eq. 56 at which a transition in the macroscopic rheological
behavior occurs. Right at Cacr , the relative viscosity is always unity
and is independent of the particle volume fraction. In region C, where

Ca < Cacr , the relative viscosity is greater than unity, whereas at
Ca > Cacr , the shear viscosity of the emulsion becomes lower than
that of matrix (region B). The dashed line separates regions where dif-
ferent parameters control the stress partitioning between the matrix
and particles, and the shape of the fluid particles (deformation), sur-
face tension in region a© , and shear viscosity of the dispersed phase
in region b©



102 Rheol Acta (2015) 54:85–108

particles results in an increase in the effective viscosity of
the emulsion.

As the viscosity ratio of the emulsion decreases below
the critical viscosity ratio λcr = 1, two opposite scenarios
emerge for the relative viscosity depending on the capillary
number. When the capillary number is smaller than its criti-
cal value Cacr (region C in Fig. 8 where λ < λcr and Ca <

Cacr ), the viscosity of the emulsion is greater than the vis-
cosity of the matrix. The large capillary stresses between
the two phases strongly oppose particle deformation. On
the other hand, when the capillary number increases beyond
its critical value (region B in Fig. 8 where λ < λcr and
Ca > Cacr ), the viscosity of the emulsion is lower than the
viscosity of the matrix. This reduction is more pronounced
as more particles are fed to the system (see Figs. 6a and
8). This shear thinning behavior results from the accommo-
dation of most of the induced shear stress by low viscosity
and deformable particles. Finally, considering a viscosity
ratio smaller than λcr and a capillary number equals to that
of determined by Eq. 56 for that specific viscosity ratio
(Ca = Cacr |λ), the viscosity of the emulsion is identical to
the viscosity of the matrix regardless of particle concentra-
tion. From Fig. 8, we can also observe the limiting behavior

of the relative viscosity at λ = λcr and γ → 0 where the
two phase fluid flow actually reduces to a single phase flow.
In this scenario, the shear viscosity of the emulsion is inde-
pendent of the particle concentration and morphology, and
hence the critical capillary number approaches infinity.

This regime diagram can be interpreted differently by
highlighting four regions as shown in Fig. 9. The solid lines
that delimit these regions represent transitions in the gen-
eral rheological behavior (Newtonian or non-Newtonian) of
emulsions. In region 1©, the resistance to deformation of
fluid particles is controlled by surface tension, γ . Accord-
ing to Fig. 6, at Ca � 1 where the capillary stresses are
important, an increase in the viscosity of the emulsion is
expected. Therefore, at low capillary numbers (region 1©),
emulsions behave like a Newtonian fluid, i.e., the shear
dynamic viscosity of the emulsion is independent of the
strain rate for a given particle volume fraction. When the
capillary number increases beyond Cacr , the emulsion dis-
plays a non-Newtonian behavior indicated by region 2© in
Fig. 9. This implies that an increase in the strain rate leads
to a decrease in the viscosity of the emulsion). We observe
that the range of capillary number over which shear thin-
ning occurs is the broadest at λ = 0, and decreases as the

Fig. 9 Same regime diagram highlighting four regions that distinguish
different rheological responses for emulsions. In region 1©, where
the capillary stresses between two phases are important, an increase
in the viscosity of the emulsion is expected, and emulsions behave
like Newtonian fluid. Region 2© illustrates the shear thinning behav-
ior that occurs when the capillary number at a given viscosity ratio
is increased. The largest shear thinning occurs at λ = 1. Region 3©,

where the resistance force against deformation is dominated by the
shear dynamic viscosity of the dispersed phase, is characterized by a
Newtonian behavior for emulsions. However, it has lower shear vis-
cosity than that obtained for the region 1©. The hatched area (region
4©) represents a region where the value of the relative viscosity is inde-

pendent of both capillary number and viscosity ratio and behaves like
a Newtonian fluid
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viscosity ratio increases. However, it is worth mentioning
that for a given particle volume fraction, the amount of vis-
cosity reduction due the shear thinning is the greatest at
λ = λcr . This range shrinks gradually when the viscos-
ity ratio decreases, and it also decreases significantly as the
viscosity ratio increases beyond λcr as illustrated in Fig. 7.

In regions 3© and 4© of Fig. 9, the resisting force against
deformation is dominated by the shear viscosity of the dis-
persed phase which tends to keep the particle spherical
regardless of surface tension. Therefore, the viscosity of
emulsions in these region strongly depends on the viscosity
ratio and particle concentration. Region 3© is characterized
by a Newtonian behavior for emulsions; however, it has
lower shear viscosity than that obtained in region 1©. In the
portion of region 3© where the viscosity ratio is smaller than
λcr (which belongs to the region B in Fig. 8), the resist-
ing forces imposed by both surface tension and the viscosity
of the dispersed phase are small compared to the external
shear force exerted by the ambient fluid. As a results, par-
ticles deform and align with the flow direction. Owing to
the smaller viscosity of the dispersed phase, as the particle
volume fraction increases, the shear viscosity of emulsions
decreases (see Fig. 6a). Thus, in this portion of the regime
diagram, the relative (Newtonian) viscosity is smaller than
unity. However, for parts of the region 3© that belong to
region A in Fig. 8 (λ > λcr ), the relative (Newtonian)
viscosity is greater than unity.

The hatched area (region 4© in Fig. 9) represents a region
where the value of the relative viscosity is independent of
both capillary number and viscosity ratio (Fig. 7b), and
emulsions behave macroscopically like Newtonian fluids.
Beyond a viscosity ratio of O(103), the viscosity of emul-
sions is only controlled by the volume fraction of particles
(e.g., it will be roughly 8.2 and 3.4 times greater than the
viscosity of the matrix for fluid particle concentrations of
ψ = 0.4 and ψ = 0.3, respectively). Mathematically, for
the hatched region, we have

lim
λ→λ≥O(103)

M � lim
λ→λ≥O(103)

N → 2.5, (58)

consequently, the non-linear part of Eq. 54 vanishes, and
the expression to estimate the relative viscosity of emulsions
becomes

f μ ≈
(

ψM − ψ

ψM(1 − ψ)

)− 2.5ψM
1−ψM

(59)

which is similar to the relative viscosity of a suspension of
rigid spherical particles in Eq. 49.

It is important to stress that for an emulsion possessing
a viscosity ratio exactly equal to λcr , the model presented
here diverges because M(λcr ) = 0. Thus, we consider two
emulsions of viscosity ratios λ = λcr + ε and λ = λcr − ε,
where ε is an arbitrary small number. We then determine the

relative viscosity of the emulsion by matching solutions in
the limit where ε → 0. Our model for the rheology of emul-
sions (λ < ∞) or suspension (λ = ∞) relies on our choice
for the maximum random close packing ψM . For slightly
deformable particles (up to the first order of deformation),
we expect ψM to deviate slightly from its value for the ran-
dom close packing of spherical particles. In the majority
of published models for monosized systems, ψM has been
used as a fitting parameter. ψM must be a function of parti-
cle shape, size distribution, and dynamical conditions (order
of deformation). However, for monosized spherical particles
undergoing no or small deformation, which is assumed to be
the case here, it should remain mostly constant. We test this
hypothesis by comparing the predictions from our model,
Eq. 54 with the experimental and numerical data published
in Lejeune et al. (1999), Stein and Spera (2002), and Pal
(2004) and Manga and Loewenberg (2001) in Fig. 10. These
datasets for bubbly emulsions (λ → 0) provide useful test
for our model in the limit of non-deformable (Ca = 10−4)
and highly deformable bubbles (Ca = 104). As shown in
Fig. 10, both limits are successfully modeled by our model
Eq. 54 using a fixed maximum packing ψM = 0.637, corre-
sponding to the random close packing of uniform spherical
particles. The model developed by Pal (2003a) (model 4)
fits these datasets with a varying maximum random packing
limit that increases significantly with Ca (ψM is changed
from 0.54 to 0.7). In Fig. 10, we also show the relative vis-
cosity of bubbly emulsion predicted by our model at Cacr

to highlight the transition in the rheological behavior across
Ca = Cacr , and the fact that at Ca = Cacr , the relative
viscosity is independent of particle concentration.

Polydisperse systems

Providing a theoretical value for ψM in polydisperse emul-
sions/suspensions is more challenging because the void
space between large particles can be filled by smaller parti-
cles (Faroughi and Huber 2014). This causes ψM to reach a
higher limit in polydisperse systems. Therefore, we expect
to observe lower effective viscosities in polydisperse sus-
pensions/ emulsions compared to monodisperse systems for
a given volume fraction (below ψM ). For a multimodal
system (with a wide range of particle sizes), the particle
size distribution and the particle size ratio have signifi-
cant impact on the rheological behavior of the system. The
greatest effect of polydispersity occurs when the modal-
ity is changed from monomodal to bimodal, subsequent
modality changes have lesser influences on rheology (Farris
1968; Faroughi and Huber 2014). Experiments on bimodal
suspensions reported by Chong et al. (1971) at constant
fraction of smaller size particles revealed that the effective
viscosity decreases as the size ratio of spheres (small to
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Fig. 10 Comparison between
our model and published
experimental and numerical data
for the rheology of bubbly
emulsion (λ → 0) over a range
of volume fraction. The
comparison is performed for two
bounding values of the capillary
number representing emulsions
including non-deformable fluid
particles (small capillary
number) and deformable fluid
particles (large capillary
number) using Eq. 54. The
dashed line represents the
relative viscosity versus particle
volume fraction for a bubbly
emulsion at Ca = Cacr

large) decreases. They also showed a negligible reduction
in the shear viscosity when the particle size ratio decreases
below 0.1 (Chong et al. 1971; Stickel and Powell 2005).
For bimodal suspensions of any size ratio, the largest frac-
tion for the random close packing (and hence the minimum
relative shear viscosity) in a fixed volume of total particles
occurs when suspensions consist of 65 to 80% large parti-
cles, or in other words, 20 to 35% of the total particle vol-
ume fraction is made of small particles (Santiso and Muller
2002; Stickel and Powell 2005; Faroughi and Huber 2014).

Quemada (1977) discussed that for a highly polydisperse
systems, ψM approaches unity because the broad distribu-
tion of particle sizes decreases the void ratio to a negligible
value. It is important to stress that, using multimodal size
distribution, we can produce an emulsion/suspension pos-
sessing a fixed shear viscosity but with various amount of
particles. For example, in a bimodal suspension, the par-
ticle concentration can be increased while maintaining the
shear viscosity fixed by varying the size ratio. This is illus-
trated in Fig. 11 where we compare the relative viscosity for

Fig. 11 Relative viscosity
versus solid phase
concentrations and particle size
ratio (PSR) for bimodal systems
obtained from Eq. 49. The
maximum packing is computed
from Eq. 60 where it is assumed
that the fraction of the small size
particles is 25 %
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Fig. 12 Comparison between
experimental data and our model
in Eq. 54 at ψ = 0.5, Ca → 0
and assuming ψM = 0.9 for the
maximum packing of
multimodal emulsions. The two
insets also show how the relative
viscosity of multimodal
emulsions varies as function of
volume fraction for two different
viscosity ratios at Ca → 0

two bimodal suspensions possessing particle size ratio of
PSR = 0.35 and PSR = 0.1 and containing 25 % of small
particles with a monodispersed suspension (PSR = 1). The
maximum packing for these bimodal systems are estimated
with the experimental correlation (Chong et al. 1971; Costa
et al. 2009)

ψb
M = ψM

(
Rs

p

Rl
p

)−0.104

, (60)

where ψb
M denotes the estimated critical fraction for a

bimodal system, and Rs
p and Rl

p are the radius of the smaller
and larger particles, respectively. Other models for the max-
imum close packing of bimodal systems with different size
ratios and fraction of sizes have been published recently
and can be used alternatively (Boumonville et al. 2005;
Qi and Tanner 2011; Brouwers 2013; Faroughi and Huber
2014). The maximum attainable packing for bimodal sys-
tems is around 0.869 (Faroughi and Huber 2014), which
occurs when the size ratio (small to large) approaches zero.
Therefore, we expect that the maximum random close pack-
ing can be even higher than 0.869 for multimodal systems
involving a broad range of particle sizes where the smaller
particles fill void spaces between larger particles. In Fig.
12, we use our rheological model for monosized particles
Eq. 54 and test it against experimental data provided for

polydispersed emulsions at Ca � 1. For this comparison,
we use ψM = 0.9 in Eq. 54 and plot the results from the
model against experimental data over a wide range of vis-
cosity ratio and particle volume fraction. For example, the
experiments associated with λ = 5.52 (inset of Fig. 12), was
conducted with particle sizes ranging from 1 to 24 μm (Pal
2001). While our model, in the limit of Ca � 1, provides
satisfying approximation of the rheology of multimodal
emulsions by considering a corrected maximum packing
limit, a more rigorous account of polydisperse dynamics is
required to find more accurate results, and extend the model
to predict the relative viscosity of multimodal emulsions at
(Ca � 1).

Conclusion

The primary goal of this paper is to provide a gen-
eralized equation to determine the relative viscosity of
both dilute and concentrated emulsions made of two
Newtonian incompressible and immiscible fluids under
a simple straining flow. First, we obtain a constitutive
equation in the dilute limit using the perturbation of the
flow field caused by a single fluid particle. The model is
then extended to concentrated systems using the differen-
tial effective medium theory operating in a fixed volume.
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In our derivation, two volume corrections are introduced.
The first correction accounts for a finite spatial domain
where the addition of a particle requires the removal of
the same volume of the matrix. The second volume cor-
rection accounts for the amount of the matrix inaccessible
to other particles and trapped in the interstices formed
by particles through a self-crowding factor. The result-
ing general equation is a function of the viscosity ratio,
capillary number, particle volume fraction, and the maxi-
mum fraction for random close packing of particles. The
maximum packing is expected to depend on dynamical
conditions (deformation) that affect particles. However,
to the first order, assuming small deformations, we use
the static packing limit for spheres (ψM = 0.637). The
model is then tested against published experimental data,
and we find an excellent agreement with these data sets.
The proposed model provides a generalized framework to
accurately predict the viscosity of emulsions over a wide
range of capillary number, volume fraction, and viscosity
ratios.

Our theoretical model allows us to construct a regime
diagram to highlight the transition in rheological behavior
in emulsions as a function of two critical dimensionless
numbers. The critical viscosity ratio, λcr = 1, determines
whether the system has a critical capillary number or not.
The existence of a critical capillary number requires a vis-
cosity ratio smaller than λcr . The critical capillary number
defines a regime where the relative viscosity is unity (i.e.,
the relative viscosity is independent of the particle volume
fraction). At Ca < Cacr , the relative viscosity is greater
than unity, while the viscosity of emulsions is smaller than
that of the matrix when Ca > Cacr .

In addition, the regime diagram provides information
regarding parameters that control the stress partitioning
between the matrix and particles, and regions where the
emulsion behaves like a Newtonian or non-Newtonian fluid.
We find that beyond a viscosity ratio of order 103, the
effect of capillary number and viscosity ratio on the rel-
ative viscosity of emulsion is negligible, and the relative
viscosity is only function of the particle volume fraction.
In addition, we consider the case of suspensions that con-
tain either deformable Hookian or rigid solid particles. We
derive a model for these suspensions following the same
approach as for emulsions. For both emulsions (λ < ∞)
and suspensions (λ → ∞), we find an excellent agreement
between our model and experimental data over a wide range
of viscosity ratio (0 ≤ λ ≤ ∞), particle volume fraction
(0 ≤ ψ < ψM ), and capillary number (0 ≤ Ca < ∞) or
finite Weissenberg number for Hookian solid suspensions.
Finally, we discuss the application of the proposed model to
predict the relative viscosity of multimodal emulsions in the
limit of Ca � 1.
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