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Abstract We derive exact single-point corrections for parallel
disk measurements of all four asymptotically nonlinear
measures under strain-controlled oscillatory shear. In this
regime, sometimes called medium-amplitude oscillatory
shear (MAOS), the derivatives appearing in the general
stress correction are constant over the range of interest. This
enables an exact single-point correction of all four shear
stress components and material functions in the asymp-
totically nonlinear regime. This greatly simplifies the data
processing and allows convenient measurements of true
nonlinear material functions with parallel disk geometries.
We use a strain amplitude expansion for the stress response,
introducing a general non-integer strain amplitude scaling
for the leading order nonlinearity, σ ∼ γ α , where typically
α = 3 has been assumed in the past. The stress corrections
are a multiplicative amplification by a factor f (α) = α+3

4 ,
shown for the first time for all four asymptotically nonlinear
coefficients. Experimental measurements are presented for
the four asymptotically nonlinear signals on an entangled poly-
mer melt of cis-1,4-polyisoprene, using both parallel disk
and cone fixtures. The polymer melt follows a cubic (α = 3)

strain amplitude scaling in the MAOS regime. The theoretical
corrections indicate a 50 % amplification of the apparent
signals measured with the parallel disk fixture. The corrected
(amplified) signals match the measurements with the cone.
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Introduction

Parallel disk rotational rheometry has several advantages
over a cone-plate setup. A plate-plate combination allows
an adjustable gap height, a feature useful for loading stiff
viscoelastic samples and irreversible gels prone to com-
pressional fracture in the confines of a cone-plate setup.
Additionally, the homogeneous gap in a parallel disk setup
can ensure the material satisfies the continuum assumption
at all radial locations, whereas a cone-plate geometry has
a small truncated center point gap typically on the order
of tens of micrometers, which risks violation of the con-
tinuum hypothesis for some structured materials. A parallel
disk geometry is indispensable for such materials, includ-
ing fiber-filled polymers (Férec et al. 2008), cross-linked
gel networks (Ng et al. 2011), biopolymer networks (Fahimi
et al. 2014), particle suspensions (McMullan and Wagner
2009; Ewoldt et al. 2009) and emulsions (Yoshimura and
Prudhomme 1987).

Despite the advantages, a parallel disk fixture suffers
from a major drawback: it imposes a radially inhomoge-
neous strain field that results in a radially inhomogeneous
stress field. Thus, the calculation of true (edge) shear stress
from the total torque is not always direct. An apparent edge
stress can still be defined by a linear mapping to the total
torque (details in section “Theory”), but this simplest cal-
culation gives incorrect “apparent” nonlinear properties for
the parallel-disk geometry. Figure 1 shows the measurement
discrepancy between cone-plate and the apparent parallel-
disk measurements in large-amplitude oscillatory shear
(LAOS) (experimental details in section “Experiments”).
In Fig. 1, and in general, apparent parallel disk measure-
ments in LAOS tend to soften the nonlinearities, smoothing
out the linear-to-nonlinear transition, and apparent nonlin-
ear measures therefore have lower magnitudes with parallel
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Fig. 1 Amplitude sweeps on
cis-1,4-polyisoprene at
ω = 1 rad/s. (a), (b) Apparent
nonlinear moduli from parallel
disk measurements (squares)
exhibit weaker nonlinearities
compared to the true moduli
from cone-plate measurements
(triangles). (c), (d) A3 and B3
are apparent stress coefficients
defined by Eq. 8. Both show a
γ 3

0 scaling in the MAOS regime,
with cone stresses being 50 %
larger. Open symbols represent
negative values. The low-torque
limit is calculated from σmin in
Eq. 30 using Tmin = 0.05 μNm
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disks (Ewoldt et al. 2009; Stickel et al. 2013). This occurs
because part of the sample will always be in the linear
regime (due to smaller strains at sufficiently small radial
position), in contrast to the nearly homogeneous strain field
with a cone-plate geometry.

The true stress in parallel-disk measurements requires
correction and involves partial derivatives of the torque
response from one test to another. For steady flow
measurements, corrections involve partial derivatives of the
apparent steady flow stress with respect to the strain rate
(Macosko 1994). The derivative calculation can be cum-
bersome with data processing and amplify experimental
noise, so there have been various efforts to regularize (Yeow
et al. 2004) or make single-point approximate corrections
(Cross and Kaye 1987; Carvalho et al. 1994; Shaw and Liu
2006). The exact and approximate corrections are there-
fore useful for steady shear. Similar exact and approximate
corrections have been used for time-dependent viscoelastic
characterization protocols.

For strain-controlled large-amplitude oscillatory shear
(LAOS) (a recent review is given by Hyun et al. (2011)),
quantitative parallel disk corrections are available. Phan-
Thien et al. (2000) identified a general correction that is
always true; successful implementation requires calcula-
tion of partial derivatives with respect to strain amplitude,
requiring multiple cycles of oscillation strain which is non-
trivial. Ng et al. (2011) (see their supplemental information)
gave additional details of the general LAOS correction,
demonstrated implementation with real data of a gluten
network, and discussed the implications of using (or not

using) such a correction. The numerical evaluation of the
partial derivative invariably suffers from numerical noise.
Fahimi et al. (2014) simplified the calculation by represent-
ing the apparent stress waveform as a Fourier series and
computed the derivatives of the Fourier components rather
than the derivatives of the raw data. These available correc-
tions support LAOS experiments with parallel disk fixtures,
but all require numerical differentiation of digital signals as
a function of changing the input strain amplitude.

Here, we derive a general single-point correction (no
numerical derivatives required) for parallel disk measure-
ments of the four asymptotically nonlinear shear stress
components (and material functions). The correction for
the apparent shear stress is based on the key idea that
the strain amplitude scaling is constant throughout this so-
called medium-amplitude oscillatory shear (MAOS) regime.

Asymptotically-nonlinear rheological characteriza-
tion is of interest for several reasons. Experimentally,
measurements in fully nonlinear LAOS can suffer from
experimental artifacts including nonideal flow conditions
(Ravindranath and Wang 2008; Ravindranath et al. 2011),
edge fracture (Mattes et al. 2008), and wall slip. These
issues can be avoided by limiting the strains to an inter-
mediate regime of medium-amplitude oscillatory shear
(MAOS), also known as asymptotically (or intrinsically)
nonlinear oscillatory shear (Ewoldt and Bharadwaj 2013).
Even when correct LAOS measurements are experimen-
tally obtainable, the theoretical understanding of LAOS
characterization is challenging due to the high dimension-
ality of the response. Recent developments have enabled
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a more systematic understanding in the low-dimensional
asymptotically nonlinear regime (Hyun and Wilhelm 2009;
Gurnon and Wagner 2012; Ewoldt and Bharadwaj 2013;
Bharadwaj and Ewoldt 2014, 2015; Bozorgi and
Underhill 2014).

Related corrections have been previously derived in the
asymptotically-nonlinear regime, but only for the third-
harmonic torque intensity (Wagner et al. 2011); they have
been neither derived nor implemented for all four asymp-
totically nonlinear shear stress material functions (involving
first-harmonic deviations and third-harmonic appearances).
Furthermore, previous corrections have assumed a cubic
strain amplitude scaling for the asymptotically nonlinear
shear stress deviation from linearity (Wagner et al. 2011;
Merger and Wilhelm 2014). Our theoretical results will
acknowledge the possibility of a variable power expansion
of strain amplitude scaling for the shear stress in MAOS,
which may be required as suggested by some rheological
constitutive models (Blackwell and Ewoldt 2014).

After deriving the theoretical corrections (section
“Theory”), we demonstrate their use with experimental data
(section “Experiments”). We show that the equations prop-
erly match experimental measurements taken with both
cone-plate and parallel disk geometries on an entangled
polymer melt. The correspondence is convincingly demon-
strated with all four shear stress material functions over a
range of frequencies (section “Experiments”).

Theory

For unsteady strain-controlled shearing on a rotational
rheometer, the control variable is a time-dependent angu-
lar displacement θ(t). The resulting strain of interest γ (t) is
calculated using a strain-conversion factor Fγ as

γ (t) = Fγ θ(t) (1)

where ideal conditions are assumed, such as no slip at the
boundary, no secondary flow, and no viscoelastic waves –
for a review of these experimental challenges see (Ewoldt
et al. 2015). For a cone-plate setup with a linearly vary-
ing gap height h(r), this conversion factor is a constant
Fγ,c = r

h(r)
= 1

tan α
, where α is the cone angle (Macosko

1994). The strain field in a cone-plate setup is thus radially
homogeneous. On the contrary, a parallel disk setup with a
constant gap height h results in a radially-dependent strain-
conversion factor Fγ,p = r

h
, and therefore a linearly varying

heterogeneous strain field. It is useful to work with the rim
shear strain γR(t) at the edge of the disk having radius R

γR(t) = R

h
θ(t). (2)

Practitioners typically use this variable for strain associated
calculations (Macosko 1994).

The response to an imposed displacement (Eq. 1) is a
torque T (t) measured by the rheometer transducer. The
measured torque can be directly mapped to an apparent
shear stress using geometry-specific stress conversion fac-
tors

σc(t) = Fσ,cT (t), (3)

σp(t) = Fσ,pT (t), (4)

where the subscripts c and p stand for the cone and paral-
lel disk fixtures respectively. The stresses are apparent as
they are not measured directly, and their calculation from
torque measurements requires assumptions which are some-
times violated (such as accurate sample volume loading,
negligible viscoelastic waves in the sample, no surface ten-
sion forces, and no free surface effects – for a review of
these experimental challenges see Ewoldt et al. (2015)).
For a cone-plate setup with a homogeneous strain field dis-
tribution, the stress response is independent of the radial
position, and it can be shown that Fσ,c = 3

2πR3 . On the other
hand, the simplest conversion for a parallel-disk fixture,
Eq. 4, requires the assumption of a linear stress response
to the imposed strain, resulting in an apparent plate shear
stress (subscript p) at the rim

σp(t) = 2

πR3
T (t). (5)

Corrections to Eq. 5 have been provided by (Soskey and
Winter 1984; Phan-Thien et al. 2000; Fahimi et al. 2014)
with additional contributions from terms involving partial
strain derivatives of the measured torque. These correc-
tions resemble the Rabinowitsch correction in capillary
rheometry (Macosko 1994).

In this work, we are interested specifically in oscillatory
characterization. For sinusoidal strain excitations at ampli-
tude γ0 and frequency ω, the input shear strain waveform is
conventionally given by (following Ewoldt (2013))

γ (t) = γ0 sin ωt. (6)

A linear stress response is elicited at small deformation
amplitudes, and the protocol is called small amplitude oscil-
latory shear (SAOS). Parallel disk measurements in SAOS
require no correction and Eq. 5 gives the true shear stress
(if all other assumptions are valid). On the other extreme
of large-amplitude oscillatory shear (LAOS), large deforma-
tions invoke a nonlinear stress response. In LAOS, parallel
disk measurements involve a heterogeneous stress field
for which Eq. 5 gives an apparent (and not a true) stress
response.

In the same spirit as earlier proposed corrections, (Ng
et al. 2011) provided corrections for the apparent edge shear
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stress measured with a parallel disk fixture in LAOS. Their
corrected stress (subscript p-corr) involves contributions
from terms involving partial strain (amplitude) derivatives
of the measured torque T (t; γ0, ω) at a fixed cycle time t

and fixed frequency ω

σp-corr(t; γ0, ω) = 2

πR3

[
3

4
T (t; γ0, ω) + γ0

4

∂T (t; γ0, ω)

∂γ0

]
. (7)

Ng et al. (2011) implemented Eq. 7 to good effect on LAOS
data from gluten gels, but this correction required multiple
oscillations at different strains for a numerical evaluation
of the partial derivative. Such numerical derivative calcula-
tions will always suffer from experimental noise. This can
be avoided in the limit of asymptotically-nonlinear shear
stress (or medium amplitude oscillatory shear (MAOS)),
where the derivatives are typically known and are con-
stants, thus allowing for single-point corrections for the
apparent stress. We now derive the single point correction
for asymptotically-nonlinear stress coefficients and material
functions.

For an input shear strain given by Eq. 6, the resulting
time-periodic, shear-symmetric and alternance-state shear
stress waveform can be represented as a Fourier series
expansion in the higher odd powers of the frequency ω

(Philippoff 1966)

σ(t; γ0, ω) =
∞∑
n=1
odd

An(γ0, ω) sin nωt + Bn(γ0, ω) cos nωt. (8)

The coefficients An(γ0, ω) and Bn(γ0, ω) are directly mea-
sured in the experiment, since they are mapped from
the torque, Eqs. 3–4. It is typical to report normalized
Fourier moduli (Philippoff 1966; Onogi et al. 1970; Dealy
and Wissbrun 1990) by scaling with the input strain ampli-
tude γ0

G′
n(γ0, ω) = An(γ0, ω)

γ0
, (9)

G′′
n(γ0, ω) = Bn(γ0, ω)

γ0
. (10)

It is also possible to represent the shear stress as a power
series expansion in increasing odd powers of the frequency
ω (Onogi et al. 1970; Davis and Macosko 1978; Gurnon and
Wagner 2012)

σ(t; γ0, ω) =
(
A

(1)
1 (γ0, ω) sin ωt + B

(1)
1 (γ0, ω) cos ωt

)
+(

A
(3)
1 (γ0, ω) sin ωt + B

(3)
1 (γ0, ω) cos ωt+

A
(3)
3 (γ0, ω) sin 3ωt + B

(3)
3 (γ0, ω) cos 3ωt

)
+ ...

(11)

The expansion in Eq. 11 does not assume any particular
strain or rate amplitude scaling and is a suitable general-
ized form of representation. One can rewrite Eq. 11 with

material functions by scaling with respect to the input strain-
amplitude γ0 (Onogi et al. 1970; Ewoldt and Bharadwaj
2013)

σ(t; γ0, ω) = γ0
(
G′(ω) sin ωt + G′′(ω) cos ωt

)

+γ α
0

( [e1](ω) sin ωt + [v1](ω)ω cos ωt
−[e3](ω) sin 3ωt + [v3](ω)ω cos 3ωt

)

+O
(
γ

β

0

)
. (12)

where the Chebyshev domain is used for interpreting
[e1](ω), [v1](ω), [e3](ω), [v3](ω) (Ewoldt and Bharadwaj
2013). Equation 12 is a generalized form affording
flexibility with the strain-amplitude scaling through expo-
nents α and β, where β > α. Odd integer powers are
typically observed for the strain-amplitude (or strain-rate
amplitude) scaling, α = 3, β = 5 etc. (Onogi et al. 1970;
Pearson and Rochefort 1982; Helfand and Pearson 1982;
Fan and Bird 1984; Nam et al. 2008; Liu et al. 2009;
Giacomin et al. 2011; Stickel et al. 2013; Gurnon and Wag-
ner 2012; Ewoldt and Bharadwaj 2013; Bharadwaj and
Ewoldt 2014, 2015), but we have encountered other pos-
sibilities. For some thixotropic models, even - harmonic
strain amplitude scaling in the MAOS regime is observed,
i.e. α = 2 (Blackwell and Ewoldt 2014). We have also
observed the potential for non-integer strain-amplitude scal-
ing for some models, such as the Cross model (Cross 1965;
Bird et al. 1987; Macosko 1994). Material functions can
be defined from the framework in Eq. 12: the two linear
material functions G′ (ω) and G′′ (ω) at O (γ0), followed
by the four asymptotically nonlinear material functions
[e1] (ω), [v1] (ω), [e3] (ω), and [v3] (ω) at O

(
γ α

0

)
(Ewoldt

and Bharadwaj 2013; Blackwell and Ewoldt 2014).
The experimentally determined stress coefficients in

Eq. 8 can be related to the material functions in Eq. 12 as

A1 (γ0, ω) = G′ (ω) γ0 + [e1] (ω) γ α
0 + O

(
γ

β

0

)
(13)

B1 (γ0, ω) = G′′ (ω) γ0 + [v1] (ω) ωγ α
0 + O

(
γ

β

0

)
(14)

A3 (γ0, ω) = −[e3] (ω) γ α
0 + O

(
γ

β

0

)
(15)

B3 (γ0, ω) = [v3] (ω) ωγ α
0 + O

(
γ

β

0

)
. (16)

Material functions are defined in the limits of small
strains (using Eqs. 13–16) and can be related to the Fourier
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moduli in Eqs. 9–10 and the power series expansion coef-
ficients in Eq. 11. The two linear material functions are
defined as

G′ (ω) ≡ lim
γ0→0

A1 (γ0, ω)

γ0
= A

(1)
1 (γ0, ω)

γ0
, (17)

G′′ (ω) ≡ lim
γ0→0

B1 (γ0, ω)

γ0
= B

(1)
1 (γ0, ω)

γ0
, (18)

and the four asymptotically nonlinear material functions are
defined as

[e1] (ω) ≡ lim
γ0→0

A1 (γ0, ω) − G′ (ω)

γ α
0

= A
(3)
1 (γ0, ω)

γ α
0

, (19)

[v1] (ω) ≡ lim
γ0→0

B1 (γ0, ω) − G′′ (ω)

ωγ α
0

= B
(3)
1 (γ0, ω)

ωγ α
0

,

(20)

[e3] (ω) ≡ lim
γ0→0

−A3 (γ0, ω)

γ α
0

= −A
(3)
3 (γ0, ω)

γ α
0

, (21)

[v3] (ω) ≡ lim
γ0→0

B3 (γ0, ω)

ωγ α
0

= B
(3)
3 (γ0, ω)

ωγ α
0

. (22)

These material functions are based on the assumption of
asymptotically nonlinear stress scaling. Single-point correc-
tions can now be obtained for these material functions for
measurements with a parallel disk fixture.

The framework in Eqs. 11–12 can be used to represent
both the apparent and the true shear stress response. To
relate the apparent to the real shear stress, we use Eq. 5 in
Eq. 7 and obtain

σp-corr (t; γ0, ω) = 3

4
σp (t; γ0, ω) + γ0

4

∂

∂γ0
σp (t; γ0, ω) ,

(23)

where the right-hand side involving the apparent stress
σp (t; γ0, ω) can be expanded in the form of Eq. 11

involving apparent stress coefficients A
(3)
1,p (ω), A

(3)
3,p (ω),

B
(3)
1,p (ω), and B

(3)
3,p (ω) . Similarly, the left-hand side can

expand σp-corr (t; γ0, ω) in the form of Eq. 11 to involve the
corrected stress coefficients (subscript p-corr). The opera-
tor ∂/∂γ0 acts on all terms of the expanded σp (t; γ0, ω),
and the resultant expression will have the sin ωt, sin 3ωt,
cos ωt, and cos 3ωt terms. One can then equate coefficients
of the trigonometric terms on each side of the expanded
Eq. 23. This obtains single-point corrections for all four

stress coefficients through the same multiplicative front
factor f (α)

A
(3)
1,p−corr (ω) = f (α) A

(3)
1,p (ω) ,

A
(3)
3,p−corr (ω) = f (α) A

(3)
3,p (ω) ,

B
(3)
1,p−corr (ω) = f (α) B

(3)
1,p (ω) ,

B
(3)
3,p−corr (ω) = f (α) B

(3)
3,p (ω) .

(24)

where the multiplicative correction is

f (α) = α + 3

4
(25)

which depends on the asymptotic strain-amplitude scaling
exponent α in the power series expansion in Eq. 11. For the
typically observed case of α = 3,

f (α = 3) = 3

2
(26)

indicating that a 50 % increase is required to correct all four
asymptotically nonlinear apparent stress signals, i.e., the
first-harmonic deviations and the third-harmonic appear-
ances.

One can also find corrections for the material functions if
the apparent stress σp (t; γ0, ω) in Eq. 23 is expanded in the
form of Eq. 12 with apparent material function coefficients
[e1]p (ω), [e3]p (ω), [v1]p (ω), and [v3]p (ω). The corrected
material functions have a similar form to Eq. 24,

[e1]p-corr (ω) = f (α) [e1]p (ω) , (27)

[e3]p-corr (ω) = f (α) [e3]p (ω) ,

[v1]p-corr (ω) = f (α) [v1]p (ω) ,

[v3]p-corr (ω) = f (α) [v3]p (ω) .

where f (α) is given in Eq. 25.
Equations 24–27 are the main analytical results of

this work. These single-point corrections for strain-
controlled MAOS allow for a variable strain ampli-
tude scaling α, which can be measured and which is
by definition constant in the asymptotically-nonlinear
regime. These corrections are general in that strong
assumptions of a particular constitutive theory are not
required. That is, the corrections apply for any vis-
coelastic fluid or viscoelastic solid that has a linear vis-
coelastic regime followed by O

(
γ α

0

)
effects to the shear

stress.
A subset of our results can be compared to previously

obtained theoretical and experimental results in the MAOS
regime. Hyun and Wilhelm (2009) defined a lumped intrin-
sic coefficient Q0 that has been shown to be related to the
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decoupled stress coefficients of Eq. 11 through the relation
(Hyun and Wilhelm 2009; Bharadwaj and Ewoldt 2014)

Q0 = 1

γ 2
0

√(
A

(3)
3

)2 +
(
B

(3)
3

)2

√(
A

(1)
1

)2 +
(
B

(1)
1

)2
. (28)

Using our results, an apparent Q0,p measured with a parallel
plate can be corrected by using Eq. 24 in Eq. 28, resulting
in the true coefficient

Q0,p-corr = f (α) Q0,p (29)

where f (α) = α+3
4 as obtained in Eq. 25. The result

in Eq. 29, for the typical case α = 3 with f (α) = 3
2 ,

matches the earlier obtained result of Wagner et al. (2011).
There, the lumped third-harmonic parameter correction was
implemented in MAOS experiments on monodisperse poly-
mer melts (Wagner et al 2011; Merger and Wilhelm 2014).
As yet, there has been no experimental use or verifica-
tion of a parallel disk correction for decomposed third-
harmonic asymptotic measures, let alone the acknowledg-
ment of needing to measure and correct first-harmonic
asymptotic nonlinearities. This is pursued in the following
section.

Experiments

We now demonstrate experimentally the general correction
of Eqs. 24–27 applied to all four shear stress material func-
tion in strain-controlled MAOS, across a range of frequen-
cies. Measurements on cis-1,4-polyisoprene are conducted
with both parallel disk and cone-plate fixtures. We will
show that α = 3 for all four asymptotically nonlinear sig-
nals of this material system, implement the theoretically
predicted 50 % amplification for the four apparent stress
signals with a parallel-disk setup, and show that they match
the cone-plate measurements.

Material and methods

Experiments are performed on a linear, well-entangled
homopolymer melt of cis-1,4-polyisoprene with a molec-
ular weight of 54,000, as supplied by Kuraray America
Corporation. This material has been shown by Bharadwaj
and Ewoldt (2014) to exhibit all four shear nonlinearities
in MAOS and is therefore a suitable material choice for
our experiments here. Bharadwaj and Ewoldt (2014) stud-
ied the terminal asymptotically nonlinear regime, but we
will expand upon that work with measurements beyond the
terminal regime.

A separated motor transducer ARES-G2 rheometer (TA
Instruments) is used for experiments. The polymer melt is
subjected to oscillatory shear deformation using a 25-mm
diameter cone with a 0.1 radian cone angle, and a 25-mm
diameter parallel-disk fixture at a gap of 1 mm. All experi-
ments were performed at 25 ◦C regulated by a Peltier system
at the bottom plate. Near isothermal conditions were main-
tained with the use of heat break tools (both the cone and
parallel-disk fixtures).

Experimental results

Linear viscoelasticity for the polymer melt is shown as a
frequency sweep at γ0 = 1 % (Fig. 2). Measurements with
the cone (triangles) and parallel-disk (squares) fixtures over-
lap reasonably well over the entire range of frequency. The
overlap shows consistency between the two measurement
geometries and reinforces the idea that, in the linear vis-
coelastic regime, no corrections are needed for parallel-disk
measurements using apparent stress in Eq. 5.

Low-frequency measurements are affected by the torque
resolution of the instrument. The minimum resolvable mod-
ulus Gmin is governed by a criterion involving the instru-
ment torque resolution Tmin (Bharadwaj and Ewoldt 2014)

Gmin = σmin

γ0
= Fσ Tmin

γ0
(30)

where Fσ = 2
πR3 is the stress conversion factor for the

parallel-disk geometry with radius R. We use the manufac-
turer specified low-torque limit Tmin = 0.05μNm, calculate
Gmin ≈ 1.6 Pa, and show this limit in Fig. 2. The subdomi-
nant storage modulus G′ (ω) is affected by this limit at low
frequency.
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Fig. 2 Apparent linear viscoelastic measurements are identical for
cone-plate (triangles) and parallel disk (squares), shown here through
a frequency sweep at γ0 = 1 %. Experimental limitations are shown
for the low-torque limit (Eq. 30) and sample inertia which causes
viscoelastic shear wave effects (Eq 31)
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Fig. 3 The four apparent
asymptotic nonlinearities for the
parallel disk (squares) and
cone-plate (triangles) geometries
at ω = 1 rad/s. Plateaus at small
strain indicate the asymptotically
nonlinear (MAOS) regime. Error
bars are calculated using Eq. 32
from torques 100 times Tnoise
(identified from Fig. 4), those
with first harmonics include
error in fitting linear measures.
(see Appendix for uncertainty
propagation equations). Data is
truncated to show the fit region

The experimental limit of sample inertia (viscoelastic
shear waves) is avoided. At large frequency, viscoelastic
shear wave propagation can violate the assumption of homo-
geneous deformation and result in sample inertia effects
(Schrag 1977) (as a subset, the combination of viscous dis-
sipation with fluid inertia also causes shear waves (Ding et
al. 1999)). Using the criterion that the wavelength of the
shear wave is at least 10 times the gap height h (Ewoldt
et al. 2015), we estimate a sample inertia limit for the linear
viscoelastic moduli, involving the density ρ and the phase
angle δ,

G >

(
10

2π

)2

cos2 (δ/2) ρh2ω2. (31)

Using the density of the polymer melt ρ ≈ 910 kg/m3

(as reported by the supplier) and cos2 (δ/2) ≈ 1, we
identify the sample inertia limit in Fig. 2. Even at the high-
est frequency tested, the limit line is orders of magnitude
below the data. This gives us confidence that our kine-
matics are negligibly influenced by transient shear wave
effects.

Figure 1 shows that measurements of nonlinear appar-
ent properties differ with geometry, probed experimentally
by gradually increasing the strain amplitude at a fixed
frequency. At ω = 1 rad/s, Fig. 1a, b shows the strain ampli-
tude dependence of the apparent, normalized first harmonic
Fourier moduli (defined by Eqs. 9–10 with direct mapping
to the total torque, Eqs. 3–4) measured with the cone (trian-
gles) and parallel-disk (squares) fixtures. In the small-strain
limit of linear viscoelasticity (γ0 → 0), measurements

with either geometry are identical. In the nonlinear regime,
apparent parallel-disk measurements exhibit a weaker non-
linear response compared to cone measurements and require
corrections.

Apparent third-harmonic stress coefficients (defined by
Eq. 8) are shown in Fig. 1c, d; the apparent plate non-
linearities are smaller than the cone measurements. The
experimental boundary defined by the minimum resolvable
stress is shown for Tmin = 0.05 μNm using σmin in Eq. 30.
In the limits of γ0 → 0, but above the torque noise limit, the
asymptotically nonlinear strain amplitude scaling of stress
coefficients is observed to be A3 ∼ γ 3

0 and B3 ∼ γ 3
0 , as seen

with both geometries. This indicates α = 3 for this mate-
rial in the MAOS regime (12), as typically assumed. For
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Fig. 4 The torque noise floor is identified from a power spectrum of
the torque signal from oscillatory shear of cis-1,4-polyisoprene; shown
here for ω = 1 rad/s, γ0 = 125 %, and 15 sampling cycles
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Table 1 Ratio of cone to apparent parallel-disk nonlinearities calcu-
lated from fits to plateaus in Fig. 3. Theory predicts a ratio of 3

2 ,
Eqs. 26–27

Quantity Value

[e1]c/[e1]p 1.2 ± 0.4

[v1]c/[v1]p 1.6 ± 0.1

[e3]c/[e3]p 1.6 ± 0.5

[v3]c/[v3]p 1.5 ± 0.1

α = 3, the parallel disk correction factor is f (α = 3) = 3
2 ,

from Eq. 25, which is a 50 % amplification of the appar-
ent parallel-disk measurements. The 50 % increase of the
apparent parallel plate third harmonics would then match
the cone measurements in Fig. 1c, d.

Figure 3 identifies the asymptotically nonlinear mate-
rial functions from the data in Fig. 1 by scaling the
measured stress coefficients by γ 3

0 . The cone nonlin-
ear measurements (triangles) are always larger than the
apparent parallel disk measurements (squares), as expected
for LAOS. Plateaus in the limit of small strain iden-
tify the asymptotically nonlinear MAOS measures. For
all four signals, a plateau region of constant asymp-
totic nonlinearity can be observed in the limits of small
strain, but with an uncertainty associated with resolving
the torque due to the torque noise �Tnoise. Using the
observed asymptotic scaling of γ 3

0 and �Tnoise, we deter-
mine the uncertainty �ε in calculating normalized stress
coefficients as

�ε (γ0) = Fσ �Tnoise

γ 3
0

, (32)

where Fσ is the stress conversion factor. Error bars in
Fig. 3a, d show this uncertainty �ε, calculated from a torque
100 times the torque noise floor identified in Fig. 4, i.e., we
use �Tnoise = 100Tnoise = 0.2 μNm in Eq. 32. The uncer-
tainty bars with the first harmonic coefficients (Fig. 3a, b)

also include uncertainty in fitting the linear viscoelastic
moduli G′ and G′′ from strain sweeps of the first-harmonic
moduli G′

1 and G′′
1. For a constant �Tnoise in Eq. 32, the

uncertainty in calculating the moduli is consistently smaller
at larger strains, as shown in Fig. 3. These uncertainties
are propagated to the fitting of a plateau (mean) asymptotic
nonlinearity at small strains in Fig. 3a–d (see Appendix for
details of uncertainty propagation).

To assess the plate correction, we evaluate the
ratio of cone versus apparent plate measurements, e.g.,
[e3]c

/[e3]p , and compare this to the theoretical predic-
tion [e3]p-corr / [e3]p = f (α = 3) = 3

2 , from Eq. 27.
The measured ratios are shown in Table 1 along with the
uncertainty in determining the ratio (see Appendix). Within
expected measurement uncertainty, the ratios are consis-
tent with the theoretically predicted value of 3

2 . The viscous
nonlinearities are determined with better accuracy owing
to larger viscous torques at this frequency, evident from
smaller error bars with the viscous measures in Fig. 3b,
d. The subdominant elastic contributions are resolved with
less precision (larger error bars in Fig. 3a, c) and carry
more uncertainty. The comparatively large uncertainty for
the ratio of [e1]c

/[e1]p can be attributed to the diffi-
culty in resolving the asymptotically nonlinear contribution
from the subdominant first-harmonic elastic modulus G′

1
at this frequency. This asymptotically-nonlinear plateau fit-
ting procedure can be repeated for a range of frequencies
to generate a frequency-dependent asymptotic nonlinear
fingerprint.

The frequency-dependent asymptotic nonlinear finger-
prints are shown in Fig. 5 for the cone (triangles) and
the parallel-disk (squares) geometries. The third harmon-
ics are a pure nonlinearity; their measurements require that
they are above the noise floor, in contrast to the first-
harmonic nonlinearities that require subtraction of two large
numbers G′

1 and G′. Thus, the third-harmonic intrinsic non-
linearities carry less uncertainty, and for clarity, we show
only the third-harmonic nonlinearities in Fig. 5 (the error

Fig. 5 Parallel disk data are
shifted up by an exact
single-point correction factor for
asymptotic nonlinearities
(Eq. 27). Experimental data for
cis-1,4-polyisoprene melt
confirms agreement between
cone-plate and corrected parallel
disk measurements
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bars are less than or equal to the symbol size). For the
frequencies considered, the apparent nonlinearities mea-
sured with the parallel disk fixture are smaller than the
true nonlinearities reported with a cone (as mentioned, this
is always expected for LAOS with parallel disks (Ewoldt
et al. 2009)). Using the theoretically predicted shift factor
f (α) = 3

2 in Eq. 27, the apparent parallel-disk non-
linearities are amplified to match the cone measurements
(circles matching triangles in Fig. 5). Mismatches occur
at the location of a sign change in [v3], where the asso-
ciated torque magnitude is small and difficult to resolve
from noise.

Conclusions

A single-point correction is derived and experimentally
demonstrated for parallel disk measurements in strain-
controlled asymptotically-nonlinear oscillatory shear. This
is an exact correction, not an approximation. Unlike pre-
vious corrections that have been shown only for the third-
harmonic intensity, the corrections derived here apply to all
four shear stress nonlinearities in the asymptotically nonlin-
ear MAOS regime, i.e., the appearance of third harmonics
and the deviation of first harmonics from linear viscoelastic
moduli.

The corrections derived here allow for the possibil-
ity of non-cubic strain amplitude appearance of intrinsic
nonlinearities. By assuming a general strain amplitude scal-
ing α, each of the four apparent asymptotically nonlinear
stress coefficients require a multiplicative correction factor
f (α) = α+3

4 , where typically f (α = 3) = 3
2 . This correc-

tion is universal in that strong assumptions of a particular
constitutive theory are not required. That is, the correction
applies for any viscoelastic fluid or viscoelastic solid that
has a linear viscoelastic regime followed by O

(
γ α

0

)
effects

to the shear stress.
Theoretical predictions are validated with strain-

controlled MAOS experiments on an entangled linear poly-
mer melt of cis-1,4-polyisoprene, using both parallel disk
and cone geometries. The polymer shows the typical strain
amplitude scaling of α = 3 in the MAOS regime, indi-
cating f (α) = 3

2 , a 50 % amplification of the apparent
asymptotically nonlinear stress coefficients. After amplifi-
cation, the corrected stress coefficients match the true stress
coefficients measured with a cone-plate fixture.

The predictions here are restricted to strain-controlled
oscillatory shear. There is growing interest in stress-
controlled oscillations (Läuger and Stettin 2010; Dimitriou
et al. 2013; de Souza Mendes et al. 2014). A theoretical
framework exists for stress-controlled MAOS (Ewoldt and
Bharadwaj 2013), although stress-controlled MAOS mate-
rial functions have not yet been reported in the literature. We

expect parallel disk corrections for the stress-control proto-
col will also be useful and can be derived with an approach
similar to that used here, but this is beyond the scope of the
work here.

The corrections proposed here will facilitate asymp-
totically-nonlinear experiments with several material sys-
tems that benefit from the parallel disk geometry, since it
facilitates sample loading, minimizes slip with roughened
surfaces, and better maintains the continuum assumptions.
This includes biopolymers, large-mesh gel networks, col-
loidal suspensions, foams, and dense emulsions. Experi-
ments combining rheometry and visualization often use par-
allel disk geometries to facilitate simultaneous velocimetry,
optical microscopy, confocal imaging, and light scattering
experiments, and these experiments will also benefit from
the single-point corrections described here.
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Appendix: Uncertainty propagation

Assuming small uncertainties �Gn for a measured quan-
tity Gn, a first-order Taylor expansion provides a reasonable
approximation for uncertainties associated with a calculated
parameter y = y (G1, G2, ..., Gn). The uncertainty in cal-
culating y in its own dimensions is then given by (Beckwith
et al. 1993)

�y =
√(

∂y

∂G1
�G1

)2

+
(

∂y

∂G2
�G2

)2

+ ... +
(

∂y

∂GN

�GN

)2

.

(A1)

For the case where the mean of the N data points of Gn is
sought, the parameter y can be calculated as

y =

N∑
n=1

Gn

N
. (A2)

The partial derivatives in Eq. A1 can be calculated as

∂y

∂G1
= ∂y

∂G2
= ∂y

∂GN

= 1

N
(A3)

to give the uncertainty in determining the mean of quantities
Gn with their own uncertainties �Gn

�y = 1

N

√
(�G1)

2 + (�G2)
2 + ... + (�GN)2. (A4)
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The uncertainties in the four asymptotically nonlinear mod-
uli for the cone and parallel disk are calculated using Eq. A4
and propagated to calculate their respective ratios.

For determining the uncertainties in evaluating the ratio
of the cone measurements to the apparent plate measure-
ments shown in Table 1, we start with

y = G1

G2
, (A5)

and evaluate the partial derivatives in Eq. A1 as

∂y

∂G1
= 1

G2
, (A6)

∂y

∂G2
= −G1

G2
2

. (A7)

Using Eqs. A6 and A7 in Eq. A1, we evaluate the
uncertainty in calculating the ratio of the two quantities as

�y =
√√√√(

1

G2
�G1

)2

+
(

−G1

G2
2

�G2

)2

. (A8)
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