
Rheol Acta (2015) 54:9–18
DOI 10.1007/s00397-014-0816-9

ORIGINAL CONTRIBUTION

Interchain tube pressure effect in the flow dynamics
of bi-disperse polymer melts

Henrik Koblitz Rasmussen

Received: 20 June 2014 / Revised: 29 October 2014 / Accepted: 30 October 2014 / Published online: 16 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The constitutive equation as reported by
Rasmussen and Huang (Rheologica Acta 53:199–208,
2014b), explaining the flow dynamics of oligomer (con-
taining a least two Kuhn step)-diluted narrow molecular
weight-distributed polymers were extended to general
bi-disperse polymer melt system. It was assumed that the
Rouse time of a particular polymer chain is dependent on
the total number of Kuhn steps of the polymers in direct
contact with the considered polymer chain. This number of
Kuhn steps is proportional to the weight average molecular
weight, Mw , replacing the involved molecular weight in
the equation as reported by Rasmussen and Huang (Rhe-
ologica Acta 53:199–208, 2014b). Two separate stretch
evolution equations for the long and the short polymer
respectively, were introduced to handle the two involved
Rouse times. Experimentally, the bi-disperse polystyrene
systems of Nielsen et al. (J Rheol 50:453–476, 2006)
and polyisoprene systems as reported by Read et al. (J
Rheol 56:823–873, 2012) were within quantitatively agree-
ment with the derived model. This included both startup
of extension as well as shear flow. One exception was
observed. In the most diluted polyisoprene blend, the mea-
sured extensional viscosities were under predicted by the
model.
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Introduction

The development of an accurate theory for the flow dynam-
ics of polymer melts is the key to predict their processing
and shaping into plastic products. Traditionally, the flow
of nearly monodisperse polymer melts (Vinogradov et al.
1975; Bach et al. 2003) has been seen as the ideal system
to gain insight into melt flow. Extensional flows, commonly
of the uniaxial type, are particularly important as they are
very sensitive to changes in flow dynamics and material
properties, whereas shear flow is not. Ideally consisting of
two monodisperse polymers (Nielsen et al. 2006; Auhl et al.
2009) bi-disperse systems are considered the step towards a
general understanding of the interaction between polymers
of different length in flow (Wagner et al. 2008; Dhole et al.
2009; Khaliullin and Schieber 2010; van Ruymbeke et al.
2010; Read et al. 2012).

All of the experimental works by Vinogradov et al.
(1975), Bach et al. (2003), Nielsen et al. (2006), Auhl
et al. (2009) and Read et al. (2012) consider polymer
melt systems meaning that solvents are not involved.
Classic assumption about the flow dynamics of polymers
is that polymer melts and solutions thereof have iden-
tical flow physics with the same entanglement number.
With exceptions (van Ruymbeke et al. 2010; Desai and
Larson 2014) this assumption has been the main guideline
for the evolution (Dhole et al. 2009; Park et al. 2012) of
the original tube model (Doi and Edwards 1986) to cope
with the experimental findings. Experimentally, it is less
complicated to measure on dissolved monodisperse poly-
mers (Bhattacharjee et al. 2002) than undissolved ones,
as these in most cases require temperatures differentiat-
ing from room temperature, typically elevated ones. Recent
extensional experiments on oligomer-diluted narrow molec-
ular weight distributed (narrow molar mass distribution,
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NMMD) polystyrene (PS) melts by Huang et al. (2013a, b),
show that the assumptions of a unified flow physics for
melts and solutions with the same entanglement numbers,
are unlikely to be correct (Rasmussen and Huang 2014a).
The flow physics of entangled polymer systems seems to
be more complex than expected. Preceding the experimen-
tal studies by Huang et al. (2013a, b), Yaoita et al. (2012)
explained this difference between solvent-diluted and pure
monodisperse melt as a result of chain-chain interaction
of nematic character, consequently changing the segmen-
tal friction. The effect of nematic solvent-chain interactions
was originally studied theoretically by Doi et al. (1989)
expecting the effect on flow to be unimportant in linear
flow, whereas its role in on nonlinear flow is more unclear
(Doi and Watanabe 1991). Whether or not nematic interac-
tions have an effect on chain-chain interaction in the flow
of melt systems, as discussed in Huang et al. (2013b), is to
be seen.

Rasmussen and Huang (2014a) also concluded that there
seems to be a fundamental difference between bi-disperse
and monodisperse polymer melts. Likewise, this is as
important as the difference between solutions and melts.
Rasmussen and Huang (2014a) defined a bi-disperse blend
as a system consisting of an entangled ideally monodisperse
polymer diluted in a shorter polymer, containing at least two
Kuhn steps. The short polymers need to be a chain in terms
of Kuhn step. Naturally, this definition of a bi-disperse sys-
tem also includes the blends in the work of Nielsen et al.
(2006), Auhl et al. (2009), and Read et al. (2012). Here,
the blends consist of NMMD polymers all being consid-
erably larger than the entanglement length. The length of
the short polymers used in Huang et al. (2013a, b) was
less than the entanglement length and stayed in a random
state at all experimental conditions. These dilutions from
Huang et al. (2013a, b) are theoretically ideal materials that
seem to provide the basis for gaining basic insight into melt
flow. Rasmussen and Huang (2014a) derived a constitutive
equation indicating an identical flow dynamics of these sys-
tems independent of the length of the short polymer. This
independency is valid if the short polymer is a chain in
term of Kuhn step, e.g. it should contain at least two Kuhn
steps.

This paper will extend the ideas from Rasmussen and
Huang (2014a) to general bi-disperse systems, as they still
seem to be the direction toward an general understand-
ing of polymer melt flow. Constitutive ideas still struggle
with attempts to integrate monodisperse melts and solu-
tions into a unified theoretical framework (Desai and Larson
2014). The increased complexity due to the difference
between these fluids and diluted systems, where the dilu-
ent should contain at least two Kuhn step, has not yet
been addressed theoretically except by Rasmussen and
Huang (2014a, b).

Linear dynamics

The linear viscoelastic dynamics of bi-disperse polymer
melts Struglinski and Graessley (1985) has been stud-
ied in a series of papers. Particularly, des Cloizeaux
(1988) presented mixing rules for blends of monodis-
perse polymers, and the understanding has continued to
evolve (Park and Larson 2004; Khaliullin and Schieber
2010; Read et al. 2012). Here, to obtain the most accu-
rate description of measured mechanical spectroscopic data,
the semi empirical method by Baumgaertel, Schausberg and
Winter (BSW) (Baumgaertel et al. 1990) is applied. The
BSW method was initially developed to handle monodis-
perse polymers (Baumgaertel et al. 1990). The corre-
sponding method for bi-disperse blends of monodisperse
polymers was developed by Jackson and Winter (1995).
Although it is a very accurate method, it should not
be interpreted as a blend rule, as all involved parame-
ters cannot be predicted based on the composition of the
blend.

The BSW memory function containing the linear dynam-
ics is

M(t− t ′) = M1(t − t ′) + M2(t − t ′), (1)

Mi(t− t ′) =
∫ ∞

0

Hi(τ)

τ 2
e(−(t−t ′)/τ )dτ, (2)

Hi(τ) = neG
0
N,i

[(
τ

τmax,i

)ne

+
(

τ

τc

)−ng
]

h(1−τ/τmax,i ). (3)

t is the time and h(x) is the Heaviside step function. ne,
ng and τc are parameters with a unique value for each
type of polymer. τc is the time scale for the transition to
the glassy regime. The values obtained in Rasmussen and
Huang (2014a, b) of ne = 0.2, ng = 0.7 and τc = 0.4s (at
130 ◦C) are used for the PS blends. These seem to be the
optimal choice for the involved NMMD polystyrene melts
and should be used for the corresponding bi-disperse sys-
tems as well (Jackson and Winter 1995). G0

N is the plateau
modulus for the particular polymer given as G0

N = 250 kPa
at 130 ◦C (Bach et al. 2003) for the polystyrene (PS) melts
and G0

N = 476 kPa at 25 ◦C (Auhl et al. 2009) for the
polyisoprene (PI) melts are used.

Table 1 lists the relevant molecular weights for the
involved NMMD PS and PI with reference to their origin.
Mw and Mn are the weight and number average molecu-
lar weight, respectively. These NMMD polymer melts are
blended into bi-disperse systems where the composition
can be found in Table 2 which includes the necessary ref-
erences. The long and short chains are the same type of
polymer where θ is the weight fraction of the long chain
in the blend. The references in Table 2 refer to the sample
preparation as well as the corresponding measured mechan-
ical spectroscopic data. The actual BSW fittings are shown
in Figs. 1, 2 and 3, where the values ne = 0.25, ng =
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Table 1 Molecular weights for
the involved NMMD PS and PI Name Reference Material Mw (kg/mol) Mw/Mn

PS52 (Nielsen et al. 2006) PS 51.7 1.026

PS103 (Nielsen et al. 2006) PS 102.8 1.022

PS390 (Bach et al. 2003) PS 390 1.06

PI23 (Auhl et al. 2008) PI 23.4 1.03

PI34 (Auhl et al. 2008) PI 33.6 1.03

PI226 (Auhl et al. 2008) PI 225.9 1.03

PI483 (Auhl et al. 2008) PI 483.1 1.03

0.65 and λc = 11 μs at 25 ◦C have been obtained as the
optimal values for all the involved PI blends. All remain-
ing BSW parameters are calculated by data fittings using
the method from Rasmussen et al. (2000). The remain-
ing unknown parameters to be least square fitted to the
mechanical spectroscopic data are the two maximal time
constants (τmax,1 and τmax,2) and one of the G0

N,i . The
methodology outlined here is identical to the one used in
Nielsen et al. (2006), actually on the same polystyrenes
as used here. A more detailed discussion can be found in
Nielsen et al. (2006).

Constant interchain pressure

To explain the extensional dynamics of oligomer-diluted
NMMD polystyrene melts, (Rasmussen and Huang 2014b)
suggested a tube-based reptation model based on the idea of
a constant interchain pressure (CIP). The nonlinear dynam-
ics was explained as a consequence of a constant ther-
mal interchain pressure originating from the short polymer
chains on the wall of the tube containing the long chains.
The short polymer chain should have a length of at least
two Kuhn steps as it needs to be a chain in term of Kuhn
step. It is the random motion of the chain which imposes
the constant thermal pressure (Doi and Edwards 1986). The
tube changes the diameter both affinely and by convec-
tive constraint release (Marrucci 1996) in the model by
Rasmussen and Huang (2014b). They incorporated the CIP
into the molecular stress function (MSF), following the

method of Wagner et al (2005). In the MSF approach, the
components of the stress tensor, σij, are given as

σ =
t∫

−∞

[
M∑
i=1

Mi(t − t ′)fi(x, t, t ′)2

]
(4)

5

〈 [E(x, t, t ′) · u][E(x, t, t ′) · u]
|E(x, t, t ′) · u|2

〉
dt ′,

where fi(x, t, t ′) is a stretch evolution with an initial
value fi(x, t ′, t ′) = 1. All the angular brackets are a unit
sphere integral defined as 〈. . . 〉 = 1/(4π)

∫
|u|=1 . . . du

where u is a unit vector. The components of the displace-
ment gradient tensor E(x, t, t ′) are Eij(x, t, t ′) = ∂xi/∂xj′ ,
i = 1, 2, 3 and j = 1, 2, 3 in Cartesian coordinates.
(x ′

1, x ′
2, x ′

3) are the coordinates of a particle in the reference
state at time t ′ displaced to the coordinates (x1, x2, x3) in
the present time t .

In this constitutive (5), the original MSF equation is
extended to include multiple stretch evolution functions
(Huang et al. 2012), similarly to the approach introduced
by Wagner et al. (2008) for bi-disperse systems. They intro-
duced separate stretch evolution functions for the long and
the short polymer. In the original CIP method presented
in Rasmussen and Huang (2014b), the constitutive equa-
tion was independent of the theoretical choice for the linear
dynamics, as long as it was an accurate prediction of the
measures data. Here, it requires that it is possible to distin-
guish between the linear dynamics of the long and the short
polymer.

Table 2 Composition and
molecular weights for the
involved bi-disperse PS and PI
blends

Name Reference Long (1)/short (2) θ Mw (kg/mol)

Blend 1 (Nielsen et al. 2006) PS390/PS52 0.0402 65.3

Blend 2 (Nielsen et al. 2006) PS390/PS52 0.1437 100.3

Blend 3 (Nielsen et al. 2006) PS390/PS103 0.1402 143.1

PI226 23 40 (Read et al. 2012) PI226/PI23 0.4 104.4

PI226 23 20 (Auhl et al. 2009) PI483/PI34 0.4 213.4

PI483 34 20 (Auhl et al. 2009) PI483/PI34 0.2 123.5

PI483 34 10 (Auhl et al. 2009) PI483/PI34 0.1 78.6

PI483 34 04 (Auhl et al. 2009) PI483/PI34 0.04 51.6
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Fig. 1 Loss, G′′ (open circles) and storage moduli, G′ (closed cir-
cles), both as a function of the angular frequency ω at 25 ◦C, for the
PI483 34 XX data series (from Read et al. (2012) its Fig. 5) where
XX = 40, 20, 10 and 04 for the left/top to the right/bottom series. The
solid lines are the least-square fittings to the BSW model in Eq. 3

The stretch evolution of the CIP type, omitting the depen-
dence of x, t and t ′ in the notation,was

dfi

dt
= fi

∂

∂t
〈ln |E · u|〉 − c(fi, λmax,i) · fi

(fi − 1)

τR,i

(5)

where τR,i is the Rouse time. This is an extension of the
original CIP approach to a multimode form where M = 1
is the original equation. The relative Padé inverse Langevin
function (Ye and Sridhar 2005) was used to represent the
maximum extensibility of the long polymer as

c(f, λmax) = (3 − f 2/λ2
max)(1 − 1/λ2

max)

(3 − 1/λ2
max)(1 − f 2/λ2

max)
. (6)

The square of the maximal relative stretch, λ2
max, of a

polymer chain is given as the number of Kuhn steps between

Fig. 2 Loss, G′′ (open circles) and storage moduli, G′ (closed cir-
cles), both as a function of the angular frequency ω at 25 ◦C, for the
PI226 23 XX data series (from Read et al. (2012) its Fig. 4) where
XX = 40 and 20 for the left/top and the right/bottom series, respec-
tively. The solid lines are the least-square fittings to the BSW model in
Eq. 3

Fig. 3 Loss, G′′ (open circles) and storage moduli, G′ (closed circles),
both as a function of the angular frequency ω at 130 ◦C, for the PS
Blend X data series (from Nielsen et al. 2006) where X = 1, 2 and 3
for the right/bottom and left/top series, respectively. The solid lines are
the least-square fittings to the BSW model in Eq. 3

entanglements. In Rasmussen and Huang (2014b), this was
given as λ2

max = 22/θ for the long polystyrene chains. The
relation between the molecular weight and the Rouse time
was found as

τR/τmax = 4050 · (kg/mol/Mw)2, (7)

valid for both the NMMD polystyrene melts and the
oligomer diluted ones.

The use of this MSF constitutive concept in Eq. 5 is
not an exclusive approach. The CIP idea can be incorpo-
rated in other constitutive concepts (Dhole et al. 2009; van
Ruymbeke et al. 2010).

Bi-disperse polystyrene blends

The oligomers diluent in Huang et al. (2013a, b) is
in random configuration at all experimental conditions.
The length of the short chains in Nielsen et al. (2006) is
at least 12 times larger than the short ones in Huang et al.
(2013a, b). Consequently, one difference between the bi-
disperse blends from Huang et al. (2013a, b) and Nielsen
et al. (2006) is the presence of a significant time constant
of the short polymer in the blends in Nielsen et al. (2006).
The maximal time constants connected to the dynamics of
the short ones (τmax,2) is about two decades lower than the
corresponding time constants of the long polymers (τmax,1)
as it appears in Table 3. The value of τmax,2 related to the
dynamics of the short polymer has been added on Figs. 4,
5 and 6. Of course, these two decades ensure that the short
polymer will stay in a virtually random configuration for a
time scale in-between one to two decades from the maxi-
mal time constant of the large polymer. Here, the nonlinear
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Table 3 Fitted BSW
parameters in Eq. 3 based on
the method by Rasmussen et al.
(2000) containing the linear
dynamics of the blend. The
values of ne = 0.2, ng = 0.7
and τc = 0.4 s for the PS blends
and ne = 0.25, ng = 0.65 and
λc = 11 μs for the PI blends

Name T0 (◦C) G0
N,1 (kPa) G0

N,2 (kPA) τmax,1 (s) τmax,2 (s)

Blend 1 130 1.8 248.2 1800 19

Blend 2 130 9 241 3200 19

Blend 3 130 9 241 6000 140

PI226 23 40 25 65 411 2.3 0.004

PI226 23 20 25 23.5 452.5 1.1 0.0023

PI483 34 40 25 58 418 38 0.01

PI483 34 20 25 18 458 20 0.008

PI483 34 10 25 5.2 470.8 10 0.0065

PI483 34 04 25 1.5 474.5 4 0.005

dynamics would be expected to be controlled solely by the
time scale of the large polymer.

Figures 4, 5 and 6 show the startup of exten-
sional viscosities, η̄+, with a constant extension rate,
ε̇ from Nielsen et al. (2006). This extensional viscosity is
defined as η̄+ = (σ33 − σ11)/ε̇ where x3 represents
the direction of the extension. The strain is here given
as ε(t) = ε̇ · t , where the extension is initiated at
time t = 0. The extension measurements in Figs. 4, 5
and 6 were performed using the filament stretching rheome-
ter (FSR). Using the FSR, a shear contribution, may add to
the measured elongational viscosity during the initiation of
the extension (Spiegelberg et al. 1996; Szabo 1997;

Fig. 4 Corrected extensional viscosity, η̄+ for the PS blend 1 at
130 ◦C as a function of the time t from Nielsen et al. (2006). The exten-
sion rates are 0.3, 0.1, 0.03, 0.01 and 0.003 s−1 from the left to the
right data series. The dotted lines are the linear viscoelastic predictions
based on the parameters listed in Table 3 using (3). The dashed lines
are the corresponding predictions to the data from Eqs. 5 based on the
Rouse time in Eq. 9. The solid lines are the corresponding predictions
to the data from the Eqs. 5 based on the Rouse time in Eq. 7

Kolte et al. 1997; Rasmussen et al. 2010). Here, the
correction formula from Rasmussen et al. (2010) has
been applied. It ensures a maximal 3 % deviation
from the correct evaluation of the initial extensional
stress. The formula from Spiegelberg et al. (1996) was
applied in the original paper from Nielsen et al. (2006).
The deviation may be as large as 13 % using this
approach.

For oligomer chain-diluted systems, the constant
thermal interchain pressure on the wall of the tube con-
taining the long chains originates from the short chains
in a random configuration (Rasmussen and Huang 2014b).
It is a consequence of the random motion of the chains

Fig. 5 Corrected extensional viscosity, η̄+ for the PS blend 2 at
130 ◦C as a function of the time t from Wagner et al. 2008. The exten-
sion rates are 0.1, 0.03, 0.01, 0.003 and 0.001 s−1 from the left to the
right data series. The dotted lines are the linear viscoelastic predic-
tions based on the parameters listed in Table 3 using Eq. 3. The dashed
lines are the corresponding predictions to the data from the Eqs. 5
based on the Rouse time in Eq. 9. The solid lines are the corresponding
predictions to the data from the Eq. 5 based on the Rouse time in Eq. 7
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Fig. 6 Corrected extensional viscosity, η̄+ for the PS blend 3 at
130 ◦C as a function of the time t from Nielsen et al. (2006). The
extension rates are 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003 and
0.00015 s−1from the left to the right data series. The dotted lines are
the linear viscoelastic predictions based on the parameters listed in
Table 3 using Eq. 3. The dashed lines are the corresponding predic-
tions to the data from the Eq. 5 based on the Rouse time in Eq. 9. The
solid lines are the corresponding predictions to the data from Eq. 5
based on the Rouse time in Eq. 7. The dotted-dashed lines are the cor-
responding predictions to the data from the Eq. 5 with a maximum
extensibility of λ2

max = 22. This is the value expected for undiluted
NMMD polystyrenes melts

imposing a thermal pressure on the tube wall of the
larger molecule. According to Doi and Edwards (1986),
the relation for the thermal pressure on the tube wall is

p = π2

3

Nb2

L2
V

kT

V
. (8)

where T is the temperature and k is the Boltzmann con-
stant, where kT represents the thermal energy. N is the
number of Kuhn segments in the short chain, where b is
the length of one Kuhn segment. V is the volume, where
LV is its length dimension, containing a chain. Notice that
this thermal pressure is not dependent on entanglements.
It is a consequence of the random motion from a polymer
chain physically consisting of Kuhn segments, e.g. at least
two of these, on the tube wall. Assuming the surrounding
short chains are in a random configuration, a constant ther-
mal pressure is imposed orthogonal to the tube interface.
As derived in details in Rasmussen and Huang (2014b), this
leads to the constitutive equation presented in the section
“Constant interchain pressure”.

All blends should have identical flow physics if the
length (in term of Kuhn step) of the short polymers does not
have an effect on the flow dynamics, as long as they stay in

a random configuration. In this case, a Rouse time would be
expected to be of the type

τR,i/τmax,i = 4050 · (kg/mol/(θMlong))
2, (9)

where Mlong is the (weight based) molecular weight of
the long NMMD polystyrene. The value of τmax,2 relates
to the dynamics of the short polymer. This time constant
should not contribute to the constitutive equation except
as Newtonian dynamics. The time scale of any experiment
should be several times larger than τmax,2 to ensure that the
short polymer stays in a random configuration.

The calculated extensional viscosities, corresponding to
the experiments based on the CIP (5) using the above
Rouse time (9), have been inserted in Figs. 4, 5 and 6.
These are the dashed lines. All the corresponding viscosi-
ties are inserted, although comparison should only be made
at the lowest extensional rates. The deviation from the mea-
sured values are on a scale of several hundred percent.
This is the case even before the transition to the steady
extensional viscosities, where the viscosity is controlled
by the maximal extensibility. As a result of a too large
Rouse time, the calculated initial strain hardening is too
severe. The presence of the short chains at least changes the
Rouse time.

The semi-empirical relation of the Rouse time in Eq. 7 is
based on a MSF framework. The relation in Eq. 7 is valid
as long as the dilutions (or the lack of it) are ideal. It can
be seen as monodisperse polymers diluted in the same poly-
mer. The constitutive nonlinearity changes depending on the
character of blend, e.g. whether it is a solution, a dilution
or a pure melt, according to Rasmussen and Huang (2014a).
The particular values of the Rouse time (e.g. τR/τmax)
depend somewhat on the used concept (Larson et al. 2003;
Osaki et al. 2000, 2001; Likthman and McLeish 2002;
Menezes and Graessley 1982). Theoretically, these concepts
imply a unique dependence of the entanglement number
on the Rouse time. In the concepts, the tube basically con-
sists of the entanglements surrounding the polymer. Based
on published extensional experiments, the dynamics of any
ideal dilution of a polymer can be explained as a conse-
quence of the change of entanglements. It is clear from the
above discussion involving Figs. 4, 5 and 6 that the random
configuration of the short polymer changes the value of the
Rouse time if the short polymer is sufficiently large. This
does not necessarily imply that the polymer is entangled,
but the short polymer in the work of Nielsen et al. (2006)
is so. Interpreted within the entanglement idea, it is clear
from the above discussion that the random configuration of
the short polymer does not remove the entanglements. An
extension of the entanglement idea is cumbersome (Read
et al. 2012), whereas the basic ideas of Doi and Edwards,
represented by Eq. 8, constitute a more straightforward



Rheol Acta (2015) 54:9–18 15

explanation. Here, the tube consists of the motion of the
polymer chains, physically represented by Kuhn chains,
in direct contact with the (long) polymer. Opposite of the
entanglements, the Kuhn steps in a polymer chain do not
change with any kind of dilution effect, considering an ideal
diluent. Inspecting the Eq. 7 for the Rouse time, which is
semi-empirically based but confirmed experimentally, the
Rouse time depends on the total number of Kuhn steps of the
polymers in direct contact with the (long) polymer. Extend-
ing this idea to general bi-disperse system, the relation in
Eq. 7 should still be valid. The total number of Kuhn steps
is proportional to Mw , independently of the composition
of the melt.

Based on the Rouse time in Eq. 7 inserted into the
CIP (5), the calculated elongational viscosities corre-
sponding to the experiments are showed in Figs. 4, 5
and 6, as the solid lines. The expected agreement with
the experiments is obtained at the lowest rate, confirm-
ing the idea of a tube consisting of the Kuhn steps of
the polymers in direct contact with the (long) polymer.
More surprisingly, the agreement seems to extend past
the time constant of the short polymer. This indicates a
more general application of the idea of a tube consist-
ing of the Kuhn chains which are independent of the rate,
where the Rouse time should be evaluated relatively to the
characteristic time constant of the particular polymer inside
the tube. One particular exception is observed in Fig. 6. This
happens in the extension at high extensional rates. Here,
the maximal extensibility seems to be too high, particu-
larly at the highest rate, as the steady extensional viscosities
are over predicted by the solid lines. The used definition
of the maximal extensibility is the same as in Figs. 4
and 5. It is the number of Kuhn steps between entan-
glements where the short polymer is assumed to be in
a random state, effectively removing entanglements. This
increases the entanglement length. This assumption is
expected to lose its validity considerably beyond the inverse
time constant of the short polymer. This will reduce
the entanglement length and as a consequence the max-
imal extensibility as well. A model prediction based
on a maximal extensibility for an undiluted polystyrene
melt, λ2

max = 22, has been inserted in Fig. 6
as the dotted-dashed lines. The entanglements from
the short polymers seem to be reinstated at the fastest
elongational rate and the maximal extensibility changes
accordingly, predicting the correct steady extensional
viscosity. Below this rate, the measure-steady exten-
sional viscosity is in between the solid and dashed
line. Actually, blend 3 represents the smallest difference
between the short and the long polymer, for all the
involved bi-disperse melts presented here, and it seems
to have a consequence for the value of the maximal
extensibility.

Bi-disperse polyisoprene blends

The lowest value of the maximal extensability should be
the number of Kuhn steps between entanglements, Ne, in
an undiluted state. Ne is defined as the number of Kuhn
steps in an entanglement strand. Due to the different possi-
ble structural configurations in polyisoprene, the Ne value
highly depends on the particular composition of the sam-
ple. Its various structural composition changes the value of
Ne and according to Fetters et al. (2007), it may at least
be between 14 and 54. This value would be expected to be
about 50 (Krishnamoorti et al. 2002; Fetters et al. 2007)
for the melts in the work by Auhl et al. (2008). The exten-
sional experiments by Auhl et al. (2009) and Read et al.
(2012) are all performed on the (SER) Sentmanat Exten-
sion Rheometer equipment (Sentmanat 2004). The SER has
a limit on the maximal strain of 3.8 on all experiments.
Due to this limit and the value of Ne it is not necessary to
include the maximal extensibility in the theoretical analysis.
It only has a minor effect of a few percent and only at the
highest strain values. Most of the experiments are actually
performed considerably below the maximal strain of 3.8.

Extensional measurements on bi-disperse polymer melt
systems using the SER equipment have been presented sub-
sequent to the work by Auhl et al. (2009). Wang et al. (2011)
measured on styrene-butadiene random (SBR) copolymer
bi-disperse systems. Here, only the polyisoprene measure-
ments from Auhl et al. (2009) and Read et al. (2012) are
considered, as all the applied extensional rates in Wang
et al. (2011) were considerably higher than the inverse time
constant of the short polymer. Actually, most of the pre-
sented extensions were at rates where the measurements
were affected by the glassy regime.

The constitutive (5) for bi-disperse blends without max-
imal extensibility only depends on the values of the Rouse
time. Although the idea of a unified flow physics of melts
and dilutions with the same entanglement numbers has been
shown to be incorrect, all available experimental evidence
still confirms the unique relation between entanglement
numbers and the Rouse time. Of course, this only consid-
ers NMMD melts and ideal dilutions thereof. Although the
original work by Vinogradov et al. (1975) considered exten-
sion of NMMD polyisoprene, necessary data to establish an
accurate relation between monodisperse polyisoprene and
the Rouse time seem to be unavailable. Start-up of shear
flow has been studied experimentally (Boukany et al. 2009)
by Auhl et al. (2008); Schweizer et al. (2004) but shear flow
is not sufficiently sensitive to the value of the Rouse time to
enable the development of an accurate relation.

Equation 7 can be applied using the classical assumption
where the Rouse time solely depends on the entanglement
number. It needs the establishment of the entanglement
number of both the polystyrene and isoprene. Values of the
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Fig. 7 The startup of extensional viscosity, η̄+ (top data series) and
startup of shear viscosity η+ (bottom data series) for the PI226 23
blend at 25 ◦C as a function of the time t from Read et al. (2012). The
extension rates are 2190, 225.5, 67.64, 22.65, 6.796 and 0.2321 s−1

from the left to the right data series. The shear rates are 679.6, 226.5,
67.96, 22.65, 9.676, 2.903, 0.9676, 0.2903 and 0.02903 s−1 from the
left to the right data series. The dotted lines are the linear viscoelastic
predictions based on the parameters listed in Table 3 using Eq. 3. The
are the corresponding predictions to the data from Eq. 5 based on the
Rouse time in Eq. 10

Fig. 8 The startup of shear viscosity η+for the PI226 23 20 blend at
25 ◦C as a function of the time t from Read et al. (2012). The shear
rates are 222, 132.5, 66.61, 44.16, 22.2, 13.25, 6.661, 4.416, 2.22,
1.164, 0.4416 and 0.03493 s−1 from the left to the right data series.
The dotted lines are the linear viscoelastic predictions based on the
parameters listed in Table 3 using Eq. 3. The solid lines are the cor-
responding predictions to the data from the Eq. 5 based on the Rouse
time in Eq. 10

Fig. 9 The startup of extensional viscosity, η̄+ at 25 ◦C as a func-
tion of the time t from Read et al. (2012). The top data series are the
PI483 34 40 blend where the extension rates are 100.4, 10.4, 1.2 and
0.12 s−1 from the left to the right data series. The bottom data series
are the PI483 34 10 blend where the extension rates are 9.85, 2, 1 and
0.1 s−1 from the left to the right data series. The dotted lines are the
linear viscoelastic predictions based on the parameters listed in Table 3
using Eq. 3. The solid lines are the corresponding predictions to the
data from the Eq. 5 based on the Rouse time in Eq. 10

Fig. 10 The startup of extensional viscosity, η̄+ at 25 ◦C as a func-
tion of the time t from Read et al. (2012). The top data series are the
PI483 34 20 blend where the extension rates are 101.6, 9.91, 1.24, and
0.1 s−1 from the left to the right data series. The bottom data series are
the PI483 34 04 blend where the extension rates are 224, 46.7, 9.81,
2, 0.5 and 0.1 s−1 from the left to the right data series. The dotted lines
are the linear viscoelastic predictions based on the parameters listed in
Table 3 using Eq. 3. The solid lines are the corresponding predictions
to the data from the Eq. 5 based on the Rouse time in Eq. 10
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entanglement molecular weight have been reported within
the range of 3.25 to 6.4 kg/mol for the polyisoprene and
from 13.3 to 18.1 kg/mol for the polystyrene (Fetters et al.
2007). The ratio between these Rouse times is needed to
extend (7) to polyisoprenes. Here, the entanglement molec-
ular weights used in Read et al. (2012) of 4.816 kg/mol
for polyisoprene and 18.1 kg/mol polystyrene, that actually
represents an intermediate value of the ratio. Therefore, a
relation for the Rouse time for polyisoprenes is expected to
follow a relation of

τR,i/τmax,i = 4050 · ((4.816/18.1)kg/mol/Mw)2. (10)

It is very important that the used constitutive approach
represents an appropriate description of the flow physics,
not only in extension but also in shear. Read et al. (2012)
also measured the startup of shear for two of the polyiso-
prene blends. Particularly, the PI226 23 40 blend is mea-
sured in both shear and extension. Both of these sets of
startup data from Read et al. (2012) are shown in Fig. 7
where η+ is the startup of the shear viscosity. The corre-
sponding start-up of extension (left curves) and shear (right
curves) flow to the experiments based on the CIP model
in Eq. 5 and Eq. 10 are the solid lines in Fig. 7. The
expected agreement with these experiments is found. As for
the polystyrene blend, the agreement extends past the time
constant of the short polymer. Further, the start-up of shear
flow confirms that (5) is accurate in both shear and exten-
sion. In Fig. 8, the start-up of shear for the PI226 23 20
blend from Read et al. (2012) with the CIP model predic-
tion is shown as well. Notice that the maximal extensibility
is not needed in shear, as the (square of the) molecular stress
function stays considerably below this value.

The extensional data from Read et al. (2012) for the
remaining four blends are shown in Figs. 9 and 10. In
three of these, the expected agreement with the experi-
ments in extension flow is observed. An exception is the
most diluted polyisoprene blend (PI483 34 04) where the
calculated extensional viscosities are severely below mea-
surements at all extensional rates. This is inexplainable
within this CIP concept.

Summary and conclusion

A tube-based constitutive equation to predict the flow
dynamics of bi-disperse polymer melts has been derived.
It was based on the idea of a tube consisting of a con-
stant interchain pressure (CIP). This was originally sug-
gested to explain the nonlinearity of extensional flow
of oligomer diluted NMMD polystyrene (Rasmussen and
Huang 2014b), if the oligomers consist of at least two Kuhn
steps. The oligomer needs to be a chain in term of Kuhn
step. An assumption of a tube consisting of (the Kuhn chains

of) the polymers in direct contact with the polymer have
been suggested. It seems to be a valid extension of the
CIP idea to general bi-disperse system. This assumption
allows a calculation of the involved Rouse times depending
on Mw , and at the same time, sustains the original nonlin-
earity. It therefore contains the original CIP model. Here,
the CIP model was incorporated into the molecular stress
function method as in Rasmussen and Huang (2014b). The
methodology was similar to the approach introduced by
Wagner et al. (2008) for bi-disperse systems. Experimen-
tally, the dynamics of the bi-disperse polystyrene systems
of Nielsen et al. (2006) and polyisoprene systems by Read
et al. (2012)—with one exception—were within quantita-
tive agreement with the derived model. This included both
startup of extension as well as shear flow.

The startup of extension continued to its steady exten-
sional viscosity in the data from Nielsen et al. (2006). A
model prediction based on a maximal extensibility, pro-
portional to the Kuhn steps between entanglements was
applied here. It accurately described the viscosity at the
steady flow, where the short chains are in a random state
and therefore effectively act as a diluent. Further maximal
extensibility comprises that of an undiluted melt at the high-
est elongational rate, where all polymers are in a structured
state.
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