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Abstract This study is concerned with the finite element/finite
volume (fe/fv) simulation of thixotropic and viscoelastoplastic
material systems through two model approaches: (i) a new
micellar thixotropic constitutive model for wormlike micellar
systems (that introduces viscoelasticity into the network struc-
ture construction/destruction kinetic equation) and (ii) adopting
a Bingham–Papanastasioumodel. The computational approach
is based on a hybrid parent/subcell scheme, which is cast about
a semi-implicit incremental pressure correction (ipc) scheme.
The appearance of plastic behaviour arises through the micellar
polymeric viscosity, by increasing the zero-shear viscosity
(low solvent fractions), whilst the Bingham–Papanastasiou
introduces plastic features through the solvent viscosity. The
characteristics of thixotropic wormlike micellar systems are
represented through the class of Bautista–Manero models.
Correction is incorporated, based on physical arguments for
fluidity, in which absolute values of the dissipation function
are adopted in complex flow, thereby accessing low-solvent
fractions and high-elasticity levels. Considering elastic and
plastic influences separately, solutions are compared and
contrasted for contraction–expansion flow, identifying such
flow field features as vortex dynamics, stress field structure,
yield front patterns and enhanced pressure drop. Particular
attention is paid to the influence of enhanced strain hardening
that is introduced through stronger thixotropic structural fea-
tures. Vortex activity decreases as either We is increased at a
fixed τ0 or τ0 is increased at a fixed We. Exaggerated strain-
hardening properties are observed to have a major impact on

vortex activity. Patterns and trends in normal stress difference
fields reflect those in re-entrant corner vortex patterns. Yield
front patterns are significantly influenced with yield stress τ0
variation and more so than elevation in elasticity. Findings on
excess pressure drop (epd) versus increased yield stress (τ0)
follow a linear trend. Consistently, it is evident that any
variation that leads to a more solid-like behaviour produces
epd enhancement. In addition, relatively more structured
fluids display distinctly larger epd values throughout the τ0
range covered.
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Bautista–Maneromodels . Hybrid finite element/volume
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Introduction

This study addresses the topic of modelling complex
flow of micellar yield stress fluids in the 4:1:4 contrac-
tion–expansion benchmark flow problem. Here, two
sources of plastic behaviour are considered: (i) through the
solvent viscosity, offered by Bingham–Papanastasiou model
(Papanastasiou 1987; Mitsoulis 2007; Belblidia et al. 2011;
Al-Muslimawi et al. 2013), and (ii) through the polymeric
viscoelastic contribution, introduced via Bautista–Manero
models (Bautista et al. 1999; Manero et al. 2002; Boek et al.
2005; López-Aguilar et al. 2014a, b). The class of Bautista–
Manero models has been derived to represent the characteris-
tics of thixotropic wormlike micellar systems. Herein,
low-solvent fractions and high-elasticity levels are ac-
cessible. This is achieved through a correction to the con-
stitutive equation for these polymeric Bautista–Manero
models, based on physical arguments for fluidity, in which
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absolute values of the dissipation function are adopted in
complex flow (López-Aguilar et al. 2014b).

Yield stress concept Although the concept of viscoplastic
materials was first introduced by Bingham over nine decades
ago (Bingham 1922), still this topic remains one of the most
controversial in rheology today (Bingham 1922; Barnes 1999;
Renardy 2010; Belblidia et al. 2011). Viscoplastic materials
exhibit solid-like behaviour when the applied tension is ‘low’
and liquid-like behaviour at ‘high’ imposed stress. They are
also termed yield stress materials, since it is common in
engineering applications to model them by introducing a yield
stress, τ0, above which the material strains continuously,
without recovery of strain upon removal of the applied
tension. Under flow, these materials develop plastic
plug-like flow zones, due to elastic resistance from the
microstructure, in which any deformation essentially
disappears. The controversy surrounding yield stress is
associated with its existence, representation, experimen-
tal measurement and data interpretation. Note that, in
practice, most materials weakly yield or creep in the limit of
zero shear rate.

Barnes and Walters (1985) demonstrated that, through
experimental data gathered from a constant stress rheometer,
in this context, the yield stress concept was a pure idealisation.
Thereby, given sufficiently accurate measurement, no ‘actual’
yield stress truly existed. Subsequently, the non-existence of
yield stress, claimed by Barnes and Walters, was challenged
by Hartnett and Hu (1989). These authors used a falling ball
viscometer to demonstrate unambiguously that an aqueous
Carbopol solution exhibited a yield stress—to an engineering
approximation. To further complicate the situation, Møller
et al. (2006) related the uncertainty in interpretation of some
rheometrical measurement to material time dependency, that
is, to thixotropic behaviour and time scale. Conspicuously, no
single method has been universally accepted as the standard
for measuring yield stress, and it is not unusual to find large
variations in results obtained from different methods with the
same material (Bonn 2006).

Theoretical and numerical modelling of viscoelastoplastic
material The so-called Bingham fluids display a distinct finite
stress level (yield stress) at vanishingly low shear rates. In
areas of intense deformation, above the yield stress limit, the
material is observed to flow and behave as a Newtonian fluid.
The presence of these unyielded and yielded regions across
the flow domain provides a corresponding interface between
them, or yield front, as an intrinsic discontinuity to the
representation. Then, more complex shear viscous re-
sponse may be included through power law-type rate
dependency (Herschel–Bulkley or Casson models). A draw-
back to using these models is their discontinuous stress rep-
resentation. This necessitates, using robust numerical

techniques for discretisation, to accurately describe the
yielded–unyielded regions and their corresponding interface
(Belblidia et al. 2011).

To date, one successful approach proposed to deal with this
discontinuous representation is the regularisation method of
Papanastasiou (1987). As such, the resulting Papanastasiou
viscoplastic model consists of a single unified, modified con-
stitutive relation—applicable to both yielded and unyielded
regions alike. Such an approach proffers the advantage that it
eliminates the need for explicit tracking of the yield surface.
Here, an exponential stress growth parameter is introduced to
access numerical solutions, which, in limiting terms, may
practically replicate ideal model results. This model has been
successfully applied in a plethora of studies, to describe
viscoplastic and viscoelastoplastic flows, in simple ideal and
complex flow scenarios (Mitsoulis 2007). This would include
a constitutive viscoelastoplastic model (as a combination of
the Bingham viscoplastic and the Oldroyd viscoelastic
models), which theoretically satisfies the second law of ther-
modynamics (Saramito 2007), entry–exit flows from dies,
flow past objects and squeeze flows, steady Oldroyd-B 4:1:4
contraction–expansion flow (Belblidia et al. 2011), and steady
die-swell flow for exponential Phan–Thien–Tanner models
(EPTT, viscoelastic, shear thinning, strain hardening/
softening; Al-Muslimawi et al. 2013). Here, the conventional
yielded–unyielded regions across the flow domain were stud-
ied. Additionally, in Belblidia et al. (2011), vortex dynamics,
excess pressure drop versus yield stress and enhancement with
viscoelasticitywere all reported, whilst in Al-Muslimawi et al.
(2013), swelling ratio and excess pressure loss received
attention.

Frigaard and Nouar (2005) presented a detailed analysis of
the limitations of various regularisation schemes, including
the Papanastasiou form. The challenge posed to predictive
simulation is to depict the ‘appropriate’ level of exponential
growth for the deformation in question. Undoubtedly, the
subject matter of viscoplasticity/viscoelastoplasticity re-
mains a hotly debated and challenging topic, which has
provoked more than a thousand papers prior to 2005
(see Mitsoulis 2007). In addition, some authors have
employed the augmented Lagrangian approach and ap-
plied it to problems of viscoplasticity (see, for example,
Roquet and Saramito 2001, Huilgol and You 2005 and
Muravleva et al. 2010). These authors have demonstrated
the effectiveness of the augmented Lagrangian method for
this type of problem.

Wormlike micelle solution systems Wormlike micelle solution
systems are a versatile family of fluids composed of mixtures
of surfactants—typically of cetyltrimethylamonium bromide
(CTAB) or cetylpyridinium chloride (CPyCl)—salts and so-
dium salicylate (NaSal), in water (López-Aguilar et al. 2014a;
Yang 2002). These components interact physically, depending
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on concentration, temperature and pressure conditions, to
form elongated micelles. These micelle networks entangle
and provoke interactions of viscosity, elasticity and break-
down formation of internal structure (López-Aguilar et al.
2014a and b). Such complex system constitution generates
highly complex rheological phenomena, which manifest fea-
tures associated with thixotropy (Bautista et al. 1999), pseudo
plasticity (Bautista et al. 1999; Manero et al. 2002; Boek et al.
2005; López-Aguilar et al. 2014a, b), shear banding
(Bautista et al. 2000) and yield stress (Calderas et al.
2013). Advantage may be taken of these features to
render micelle solutions as ‘smart fluids’ for varied
processing and present-day applications, as in drilling
fluids for enhanced oil reservoir (EOR) recovery
(López-Aguilar et al. 2014a), and additives in household
products, paints, cosmetics, health care products and
drag reducing agents (López-Aguilar et al. 2014a;
Yang 2002).

Micellar constitutive models Many approaches have been
pursued to model wormlike micelle flow behaviour. A family
of models, coming from the original Bautista–Manero–Puig
(BMP) model (Bautista et al. 1999; Manero et al. 2002),
consists of a upper-convected Maxwell constitutive equation
for stress evolution, coupled to a kinetic equation for structural
flow-induced change (based on the rate of energy dissipation).
This model can represent viscoelastoplastic characteristics in
the limiting ideal state of infinite zero-shear viscosity
(Calderas et al. 2013). Moreover, a variant micellar model
has been proposed recently that interconnects viscoelasticity
with the mechanical structure construction–destruction mech-
anism (López-Aguilar et al. 2014a, b). This model deals with
modified Bautista–Manero (MBM) solution anomalies (Boek
et al. 2005) for enhanced pressure drop (epd) estimation in
contraction–expansion flow in the Stokesian limit (López-
Aguilar et al. 2014a) and viscosity estimation across the flow
field. Most significantly, this model is also able to capture
highly elastic solutions in complex flow (López-Aguilar et al.
2014b). In addition, two variants for this model have been
proposed, with energy dissipation given by as follows: (i) the
polymer contribution exclusively (NM_τp model) and (ii)
polymer and solvent contributions combined (NM_T model).
Such considerations introduce novel physics into the
representation, by explicitly coupling the thixotropic
and elastic nature of these fluids, alongside new key
rheological characteristics, viz. declining first normal stress
difference in simple shear flow (López-Aguilar et al. 2014a).
De Souza (2009, 2011) has proposed an alternative thixotropic
viscoelastoplastic model, based on a structure equation de-
fined on the second invariant of the stress tensor τp to drive the
structure destruction mechanics. Then, the differential
equation for their ‘structure parameter’ is introduced
within and to form a generalised viscoelastic differential

constitutive equation. In contrast, the family of Bautista–
Manero models uses the dissipation function τp :D (i.e.
NM_τp) to this same end (López-Aguilar et al. 2014a, b).
The De Souza model has been used in ideal simple and
complex flow situations to represent thixotropic and
viscoelastoplastic characteristics (see, for example, an over-
view for models representing viscoelastoplasticity (De Souza
and Thompson 2012) and flow in an contraction–expansion
setting (Hermany et al. 2013)).

The current contraction–expansion flow problem under
study is now an accepted standard benchmark in experimental
and computational rheology (Binding et al. 2006; Aguayo
et al. 2008; Walters and Webster 2003; Rothstein and
McKinley 2001). Its commending features relate to its
vortex dynamics (re-entrant/salient), stress fields, flow
kinematics and pressure drop measurement (López-Aguilar
et al. 2014a). Here, diverse flow responsemay be found, relating
to vortex dynamics and stress field evolution (extensional vis-
cosity,N2 effects), structure formation and numerical tractability
(sharp-rounded corners) (Aboubacar et al. 2002a, b). One notes
that pressure drop, which reflects the energy expended in a flow,
is often studied through an epd measure (Binding et al. 2006;
Aguayo et al. 2008) that itself offers a significant challenge to
computational prediction (Binding et al. 2006).

Governing equations, constitutive modelling and problem
specification

The governing equations under transient, incompressible and
isothermal flow conditions may be expressed through those
for mass conservation and momentum transport, coupled to a
viscoelastic constitutive law for stress. Such a space–time
partial differential equation set may be expressed in non-
dimensional form as:

∇ ⋅ u ¼ 0; ð1Þ

Re
∂u
∂t

¼ ∇ ⋅ T − Reu ⋅ ∇u − ∇p: ð2Þ

Here, field dependent variables u, p and T represent fluid
velocity, hydrodynamic pressure and stress contributions, re-
spectively, (t, x) represents space–time independent variables,
and the gradient and divergence operators apply over the
spatial domain. Then, stress is split into a solvent contribution
τs (viscous inelastic; plastic) and a polymeric contribution τp
(viscoelastic thixotropic; plastic) T=τs+τp. In addition,
D=(lu+lu†)/2 is the rate of deformation tensor, with ten-
sor transpose superscript notation †.
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Dimensionless variables are defined through the following
scaling choices:

x� ¼ x
L
; u� ¼ u

U
; t� ¼ U

L
t; D� ¼ L

U
D;

τ�
p ¼

τp

ηp0 þ ηs
� � U

L

; p� ¼ p

ηp0 þ ηs
� � U

L

:

Note that in all governing Eqs. (1)–(5), the * notation on
dimensionless variable is discarded for concise form represen-
tation, retained by implication only. The Reynolds group
number may be defined as Re=ρUL/(ηp0+ηs), with U a char-
acteristic velocity scale (mean velocity, based on volume flow
rate) and L a spatial scale (based on minimum contraction gap
width). Then, ρ represents material density, and the zero-
shear-rate viscosity (η0=ηp0+ηs) is the reference viscosity,

whence
ηp0

ηp0þηs
þ ηs

ηp0þηs
¼ 1:0 . Here, ηp0 is the zero-rate poly-

meric viscosity and ηs is the solvent viscosity; the definition of
solvent fraction is then β=ηs/(ηp0+ηs).

The schematic representations of the 4:1:4 axisymmetric,
rounded-corner contraction/expansion flow problem, alongside
its corresponding mesh data, are reported elsewhere (López-
Aguilar et al. 2014a; Aguayo et al. 2008) (see Aguayo et al.
2008 for further detail on this problem, which provides a full
mesh refinement analysis for some typical case studies). Here,
the lengths of the inlet and outlet regions are taken as 19.5H,
whereH is the upstream geometry radius divided by a factor of
4. Symmetry is enforced at the centreline. No-slip boundary
conditions are enforced on the bounding wall. Entry flow
kinematics is determined computationally for the equivalent
entry-channel problem. These may be imposed through the
time-stepping procedure, either as steady state or via a smooth
transient build-up. Then, fully developed outflow conditions
are established ensuring no change in streamwise and
vanishing cross-stream kinematics. Once fully developed entry
flow kinematics are known, stress may be determined
pointwise through the derived corresponding ODE system.

Viscoelastoplastic Bingham–Papanastasiou model—solvent
contribution form

In this study, non-Newtonian viscoplastic properties are intro-
duced via a regularisation approach adopting the Bingham–
Papanastasiou model (Papanastasiou 1987). Hence, yield
stress contributions are recognised as entering through the
solvent viscosity functionality alone. Note, there are other
alternative formulation choices to embrace plastic behaviour
via Papanastasiou regularisation (Papanastasiou 1987), name-
ly (a) within polymeric viscosity functionality alone and (b)
via both solvent and polymeric viscosity contributions.

Studies illustrating the consequences of applying these vari-
ous options have already been conducted and reported upon
elsewhere, with polymeric representations under Oldroyd-B
(Belblidia et al. 2011) and EPTT (Al-Muslimawi et al. 2013)
models.

A general differential statement of the viscoelastic
Bingham–Papanastasiou model employed here, with only
solvent yield stress contribution, may be expressed in dimen-
sionless form as follows:

T ¼ τ s þ τp ð3Þ

τ s ¼ 2βϕ IID;mp; τ0
� �

D ð4Þ

Weτ ∇
p ¼ 2 1−βð ÞD − f ττp; ð5Þ

where the upper-convected derivative of the extra-stress
tensor is τ ∇

p ¼ ∂τp

∂t þ u⋅∇τp−∇uT ⋅τp−τp⋅∇u . Here, an elas-
tic Weissenberg number, (We=λ1U/L), is introduced as a
second dimensionless group number, arising as a product of
a characteristic material relaxation time, λ1, and a character-
istic rate, U/L.

The Papanastasiou regularisation specifies an exponential
functional form in its solvent viscosity contribution, based on

the second invariant, I ID ¼ 1
2 trD

2 , of the rate of deformation
tensor, viz

ϕ I ID;mp; τ0
� �¼η0 þ

τ0 1−e−mp IIDj j1=2
� �
2 IIDj j1=2

; ð6Þ

where parameters of {τ0, mp} represent, τ0 as the base cut-off
yield stress factor and mp as the regularisation stress growth
exponent (with scale of time). The τ0 parameter expresses the
stress level below which plastic behaviour is observed and is
equivalent to a Bingham number, Bn, as expressed in
Mitsoulis (2007).

Micellar NM_τp_ABS Bingham–Papanastasiou model

To proceed to the micellar viscoelastoplastic representation,
one needs to specify the generalised functional fτ, in
Eqs. (3)–(5), imbuing a thixotropic networked nature to the
fluid system. Recently, a new constitutive equation, based on
the Bautista–Manero model class, has been proposed for
modelling wormlike micellar systems that proposes the novel
inclusion of viscoelasticity within the destruction mechanics
of the fluid network structure (López-Aguilar et al. 2014a;
corrects for epd undershoot at low deformation rates).
Moreover, this formulation has been further developed to
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capture highly non-linear solutions in complex flows, of large
We or low polymer concentration β forms (López-Aguilar
et al. 2014b). This constitutes the base-level constitutive back-
ground upon which the present study is founded.

Using the Bautista–Manero–Puig (BMP) model (Bautista
et al. 1999; Manero et al. 2002), with its MBM model coun-
terpart (Boek et al. 2005), as the starting point, a non-linear
dimensional differential structure equation for the fluidity
(ϕp=ηp

−1) is formed. Then, the polymeric viscosity function
ηp may be gathered. The evolving space–time fluidity pro-
vides the construction–destruction dynamics of the fluid net-
work structure. Using the energy dissipated by the polymer
under flow, this network structure may start from a fully
structured state before being transformed into a completely
unstructured state. The present investigation appeals to a
version of this class of models, NM_τp_ABS in Eqs. (3)–(5),
which combines viscoelasticity into the thixotropic dependen-
cy and uses the absolute value of the dissipation function
(guaranteeing accurate viscosity estimation; López-Aguilar
et al. 2014b). As such, dependency on fluidity (ϕp=ηp

−1) arises
through its equivalent dimensionless structure functional fτ, of
generalised differential form defined on the stress ζ variable
(López-Aguilar et al. 2014a, b), viz.

∂ f τ
∂t

¼ 1

ω
1� f τð Þ þ ξG0

We ζ : Dj j: ð7Þ

Here, the dimensionless functional fτ is defined as
fτ=(ηp0/ηp), using ηp0 as a viscous scaling factor on fluidity.
Two distinct ζ versions of Eq. (7) arise and are documented
elsewhere (López-Aguilar et al. 2014a), in one, considering
the energy dissipated by the polymer constituent only to break
the structure of the fluid (ζ=τp, NM_τp_ABS model),
whilst, in the other, involving the polymer plus the
solvent contributions to perform this same function
(ζ=Τ, NM_T_ABS model). The dimensionless micellar
parameters, which account for structural construction

(ω=λsU/L) and destruction ξG0
¼ k=η∞ð ÞG0 ηp0 þ ηs

� �h i
,

appear in the corresponding terms for these dynamic mecha-
nisms. Under steady-state conditions, the dynamic differential
Eq. (7) reverts to its equivalent algebraic form,

f τ ¼ 1þ ωξG0
We ζ : Dj j: ð8Þ

Importantly, the dissipation function is the driving source
of influence in departure from Oldroyd behaviour (fτ=1),
which is modulated by the product of the construction and
destruction parameters (thixotropy) with the Weissenberg
number. Here, this expression for the fτ functional links di-
rectly with the viscosity, which is a positive physical quantity
that should remain finite and above (or equal to) unity, under

present scaling (ζ:D≥0). As such, negative values (and less
than unity) of this fτ functional are inadmissible. To avoid this
eventuality arising (as previously exposed; López-Aguilar
et al. 2014b) and consistent with the underlying ideal shear
and extensional flow derivation theory, the ABS correction is
utilised henceforth. This correction has the consequential ef-
fect of increasing the levels of non-linearity attained in nu-
merical solutions, either via the relaxation time (high We;
López-Aguilar et al. 2014b) or via the solvent fraction
(low β) (present study).

Under such a description, the NM_τp_ABS-Papanastasiou
(named NM_τp_ABS-Pap) dimensionless material functions
for viscometric flow may be extracted as follows:

ηShear ¼ βϕ IID;mp; τ0
� �þ 1−βð Þ

f τ
ð9Þ

ηE ¼ 3βϕ IID;mp; τ0
� �þ 3 1� βð Þ f τ

f � 2Weε̇
� �

f þWeε̇
� � ð10Þ

N1 ¼ 2 1� βð ÞWeγ̇2

f τ
2 ð11Þ

These material functions in Eqs. (9)–(11) provide the vital
background and model reference against which to interpret
anticipated complex flow response. One notes the extremely
low levels of β-solvent fraction attained practically, those of
β={10−2, 10−3}; chosen to enhance the viscoelastoplastic
characteristics inherent to these yield stress polymeric micellar
fluids, under NM_τp_ABS-pap modelling. Moreover, the mi-
cellar construction and destruction parameters are ω=4.0 and
ξG0={1, 0.1125}. Here, at each solvent fraction level, fluids
with {ω, ξG0}={4, 1} (relatively larger structure destruction
parameter) display weaker strain-hardening characteristics
(smaller peak in extensional viscosity) relative to those with
{ω, ξG0}={4, 0.1125} (relatively reduced structure destruc-
tion parameter) (see Fig. 1). Consideration of the solvent
viscoplastic Papanastasiou features is evaluated through vari-
ation of yield stress parameter τ0={0.01, 0.1, 0.5, 1} and the
regularisation stress growth exponent mp={10, 10

2, 103, 105,
107}. Also, viscoelastoplastic behaviour is pursued through
β-variation for NM_τp_ABS, with decreasing β={0.9,
0.5, 1/9, 10−2, 10−2, 10−3, 10−4, 10−5} (Calderas et al.
2013). The special cases for which either τ0 ormp attains null
values characterise absence of viscoplasticity and thus col-
lapse the fluid representation to that of the NM_τp_ABS
model. In Figs. 1, 2 and 3, dimensionless plots are provided
of the material function against deformation rates in simple
shear and uniaxial extension deformations.

Yield stress mp variation {10s; s=1,2,…,7} Under {β, τ0, ω,
ξG0}={10

−2, 1, 4, 1}, the shear stress against shear rate plot
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illustrates the influence of mp variation and also the effect of
this low solvent fraction regime on the apparent polymeric
plastic fluid characteristics (Fig. 1, top). Firstly, and as a
consequence of the solvent viscoplastic characteristics at rel-
atively low rates, the linear slope is gradually reduced asmp is
increased, shifts of ~1 decade in rate for one decade increase in
mp, once mp≥102. This shift leads to the appearance of a
plateau (τxy=10

−2) at low rates, which is extended further into
even lower-order rates asmp is increased, to the point in which
the linear low-rate slope is practically lost. This position
corresponds to the theoretical Papanastasiou prediction, in
which mp →∞ leads to an ideal yield stress viscoplastic
response. The shear and extensional viscosities behave as
expected, with shear thinning features, and strain hardening–
softening (only at ξG0=0.1125) features, as the deformation
rate is increased. As mp is increased, the η0 plateau value is
incremented and thinning features onset at relatively low shear
rates. Extensional viscosity curves reflect similar behaviour at
low deformation rates, preserving the viscous factor of three
units involved at each comparable mp level. Interestingly, the
shear and extensional viscosity data curves ∀ mp converge at

deformation rates of 10−1, before encountering either
onset of shear thinning or onset of strain hardening–
softening phenomena. Then, as the deformation rate is
increased, these data curves appear to overlap, irrespec-
tive of their corresponding mp level. The first normal stress
difference in shear (N1) reflects invariance with mp change, as
predicted by Eq. (11). Here, the quadratic slope at low shear
rates is lost at a deformation rate of unity, evolving to a plateau
of N1~0.4.

As the thixotropic structure destruction parameter is de-
creased from ξG0=1 to 0.1125, the upper-limiting plateau
becomes N1~4 units; extensional strain hardening–softening
characteristics are exaggerated, with extensional viscosity
peaks of ~6 units; both such effects apply irrespective of mp

level. Moreover, as a consequence of this more structured
fluid state at ξG0=0.1125, the second viscoelastic plateau in
τxy is shifted to relatively larger shear rates (5<λ1γ̇ <102) and
higher levels of shear stress (~1 units).

Yield stress τ0 variation {0.01, 0.1, 0.5, 1} Alternatively,
under {β, mp, ω, ξG0}={10

−2, 102, 4, 1}, the shear stress

Fig. 1 Material functions against dimensionless rate; shear (ηShear) and extensional (ηExt) viscosities, N1 and τxy; mp variation mp={10
s; s=1,2,…,7};

{β, τ0, ω}={10
−2, 1, 4}; ξG0=1 (top), ξG0=0.1125 (bottom)
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against shear rate plot (Fig. 2, top) illustrates the influence of
yield stress τ0 variation. In contrast tomp variation, the effects
of varying τ0 on the shear stress are relatively milder. In
particular, as τ0 is elevated and at relatively low shear rate
levels, the slope of linear dependency decreases. These data
curves show united patterns at λ1γ̇ ~10−1 units. In this
moderate-to-high shear rate range, τxy data curves follow the
polymeric micellar behaviour described above: a plateau is
attributed to non-linear thixotropic viscoelastoplasticity
that extends into 1<λ1γ̇ <102 range with further rise
beyond λ1γ̇ >102. Shear and extensional viscosity are
affected in their corresponding zero-rate plateaux as τ0
is increased, whilst preserving their 3:1 extensional to
shear viscosity ratio. Here, for low-rate shear viscosity,
η0 levels elevate from ~1 units for τ0=0.01 to ~1.5
units at τ0=1. Accordingly, this increase is reflected in
extensional viscosity curves, for which the zero extension
rate plateaux elevate from ~3 units for τ0=0.01 to ~4.5 units at
τ0=1. As true for mp variation, the shear and extensional
viscosity data curves ∀ τ0 converge at deformation rates of
10−1, before encountering either decline due to shear thinning
or strain hardening–softening phenomena.

Solvent fraction β-variation {0.9, 0.5, 1/9, 10−2, 10−3, 10−4,
10−5} Finally, under {τ0, mp, ω, ξG0}={0, 0, 4, 1}, the
solvent fraction β-variation is analysed in Fig. 3 (top)
that accounts for variation in polymer concentration.
Here, the shear stress data curves illustrate the thixotro-
pic NM_τp_ABS property to generate a level τxy plateau
(value ~4.5) that applies over an ever wider shear rate
range as the β-factor declines (at β=10−5, plateau over

3 < λ1γ̇ < 104 ). Signs of plateau onset are observed at
low solvent fractions, β≤10−2 at λ1γ̇ ~3 units. At larger
rates and beyond the plateau period, the data curves
return to a linear rise. One notes that the appearance
of this thixotropic τxy plateau, located in the moderate-
to-high shear rate range, conforms to the current viscos-
ity scale chosen under non-dimensionalisation ηp0. It is de-
sirable to shift such a polymeric feature to still lower
shear rates and, henceforth, account for a realistic
viscoelastoplastic plateau, as with the solvent viscoplastic
Papanastasiou contribution. To achieve this, the char-
acteristic viscosity scale should be fixed at the second
Newtonian plateau η∞ instead. This adjustment re-
scales the fτ functional, and hence viscosity, to the

Fig. 2 Material functions against dimensionless rate; shear (ηShear) and extensional (ηExt) viscosities, N1 and τxy; τ0 variation τ0={0.01, 0.1, 0.5, 1}; {β,
mp, ω}={10

−2, 1, 4}; ξG0=1 (top), ξG0=0.1125 (bottom)
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range η∞
ηp0
≤ f τ ≤1 . Computational analysis to bear this out is

due to appear subsequently. Analysis on N1 reflects that, at
low deformation rates (in the linear elastic regime), such β-
variation provokes data curve translation by one-half decade
for β-change from 0.9 to 1/9. At λ1γ̇ ~6, these N1 data curves
unite, plateauing at N1~0.4, independently of polymer con-
centration. The shear and extensional viscosity properties are
also affected, with proportional decline in second Newtonian
plateaux as β decreases. The Newtonian ratio of three is
upheld between limiting extensional (dashed lines) and shear
(continuous lines) viscosity plateaux.

Thixotropic ξG0 variation As the micellar structure destruc-
tion parameter is decreased from ξG0=1 to 0.1125, again, the
strain hardening–softening property is exaggerated, with peak
values reaching ~6 units (Figs. 1, 2 and 3, bottom). Here, as
the solvent fraction is decreased from β=0.9 to 10−4, the
appearance of an extensional viscosity peak is shifted to
slightly lower deformation rates and reduces in size.
Moreover, the plateaux in {τxy, N1} at ξG0=0.1125 are
shifted to larger levels of ~{1, 4}, relative to the less

structured ξG0=1 representation. These properties are
unaffected by τ0 or mp variation.

Numerical algorithm

The full detail of the hybrid finite element/finite volume nu-
merical scheme used has appeared elsewhere, but for the sake
of self-completeness and relevance to the present-yield stress–
micellar implementation, a brief overview only is included.

Hybrid finite element/finite volume scheme The hybrid finite
element/volume scheme is a semi-implicit, time-splitting,
fractional three-stage formulation, which draws upon finite
element discretisation for velocity–pressure approximation
and finite volume discretisation for stress. This combines the
advantages and benefits offered by each approach, locally and
to each component in the subsystem approximation (Matallah
et al. 1998; Belblidia et al. 2008; Webster et al. 2005).
Galerkin fe discretisation is imposed on the embedded
Navier–Stokes system components, the momentum equation

Fig. 3 Material functions against dimensionless rate; shear (ηShear) and extensional (ηExt) viscosities,N1 and τxy; β-variation β={0.9, 0.5, 1/9, 10
−2, 10−3,

10−4, 10−5}; {τ0, mp, ω}={0, 0, 4}; ξG0=1 (top), ξG0=0.1125 (bottom)
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at stage 1, the pressure correction equation at stage 2 and the
incompressibility satisfaction constraint at stage 3 (to ensure
higher order precision). The subcell fv triangular tessellation is
then constructed from the parent fe triangular grid by
connecting the mid-side nodes. Such a tessellation is struc-
tured in nature. Stress variables are located at the vertices of fv
subcells (cell vertex method, equivalent to linear interpola-
tion). In contrast, quadratic velocity interpolation is enforced
on the parent fe cell, alongside linear pressure interpolation. A
direct Choleski solution method is utilised for the fe pressure
correction stage 2, whilst for velocity stages (1, 3) under fe
components, a space-efficient element-by-element Jacobi
iteration is chosen.

Stress-finite volume cell vertex scheme A cell vertex fv
scheme is implemented for extra-stress, founded upon fluctu-
ation distribution for fluxes (upwinding) and median-dual-cell
treatment for source terms. Both provide nodal solution up-
dates by distributing control volume residuals. Concisely, by
rewriting the extra-stress equation in non-conservative form,
with flux (R=u.∇τ,) and absorbing remaining terms under the
source (Q), one may obtain the following:

∂τ
∂t

þ R ¼ Q : ð12Þ

Here, each scalar stress component, τ, is considered as
acting on an arbitrary volume Ω ¼ ∑

l
Ωl . Its variation is then

controlled through corresponding fluctuation components of
flux vector (R) and source term (Q),

∂
∂t

Z
Ωl

τdΩ ¼
Z
Ωl

RdΩ þ
Z
Ωl

QdΩ : ð13Þ

According to the preferred strategy, the requirement is to
evaluate the flux and source variations over each finite volume
triangle (Ωl) and construe their distribution to the three verti-
ces ofΩl. The resulting nodal update for a particular node (l) is
then obtained by accumulating the individual-cell contribu-
tions from its control volume Ωl, composed of all such fv
triangles surrounding node (l). The flux and source residuals
are evaluated over those control volumes associated with a
given node (l) within the fv cell T, namely, the contribution
governed over the fv triangle T, (RT, QT) from fluctuation
distribution and that subtended over its counterpart median-
dual-cell zone, (Rmdc, Qmdc) from median dual cell approxi-
mation (Wapperom and Webster 1998). This procedure de-
mands appropriate area weighting to maintain consistency,
which for temporal accuracy has been extended to time terms

likewise. First, the candidate stress equation is considered as
split into three term groupings—those of time derivative, flux
and source terms. Second, these are integrated over associated
control volumes, for which the concise generalised fv nodal
update equation per stress component may be expressed, viz.

X
∀Tl

δTα
T
l ΩT þ

X
∀MDCl

1−δTð ÞbΩT

l

" #
Δτnþ1

l

Δ t

¼
X
∀Tl

δTα
T
l b

Tþ
X
∀MDCl

1−δTð ÞbMDC
l ;

ð14Þ

where bT=(−RT+QT),bl
MDC=(−RMDC+QMDC)

l. Here, ΩT is
the area of the fv triangle T, whilst bΩT

l is that of its associated
median dual cell (MDC). The parameter δT, 0≤δT≤1, governs
the balance allotted between the segregated contributions from
the MDC and those from the fv triangle T (fluctuation distri-
bution) (Webster et al. 2005). Hence, consistently and togeth-
er, this formulation embeds fluctuation distribution/median-
dual-cell contributions, area weighting and upwinding factors
(αl

T scheme dependent).

Vortex dynamics—τ0 and We variation

As Weissenberg number (We) and yield stress (τ0) are in-
creased, and the kinematic nature of this complex flow is
illustrated through the streamline patterns and graphs of vor-
tex intensity of Fig. 4 and Table 1. Here, and basically if the
flow rate is scaled to a value of unity, then the stream function
is a variable flow rate, defined positively in the flow direction
taking values between zero and unity, and where negative
values may be meaningfully associated with recircula-
tion (back-flow). Clearly, all results may be translated to
percentage values of the flow rate. Concerning these
streamline patterns, contours are plotted in core flow
at equal increments of 0.05, covering contour levels of
0≤Ψ≤0.5; within vortices, the Ψmin peak value is recorded
and there are six contour levels, covering the range 10−4≤Ψ≤
10−4 in increments of 0.15×10−3. These data are generated
under solvent Papanastasiou parameters of mp=10

2 and
τ0={0, 0.01, 0.05, 0.1}, which enforces the solvent plastic
characteristics. In addition, the polymeric NM_τp_ABS pa-
rameters used are ω=4 and ξ=1, with solvent fraction of
β=10−2. Conspicuously, vortex activity (size and intensity)
decreases as either We is increased at a fixed τ0 or τ0 is
increased at a fixed We.

At We=0.1 and τ0=0 (viscoelastic NM_τp_ABS, no sol-
vent yield stress), the upstream and downstream vortex struc-
tures appear relatively symmetric in structure about the con-
traction. Here, the upstream vortex is slightly larger and more
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intense (Ψmin=−Ψ*
min×10

−4=12) than the downstream vortex
(Ψmin=9.05). Larger yield stress levels under NM_τp_ABS-
Pap representation lead to vortex intensity suppression. In
particular, at τ0=0.01, both upstream (Ψmin=5.88) and down-
stream (Ψmin=4.35) vortex intensities drop by some 50 %
away from the {NM_τp_ABS, τ0=0} reference solution.
Notably, additional incrementation of τ0={0.05, 0.1} gener-
ates even further vortex suppression of {96 %, 99 %}.

As We rises through {1, 10} at τ0=0.01, this declining
vortex behaviour is still further exaggerated, with percentage

drop in intensity from each corresponding NM_τp_ABS so-
lution of {60 %, 65 %}.

At larger τ0 values of {0.05, 0.1} at We={1, 10}, this
vortex suppression response from NM_τp_ABS solution,
and at each fixed We level, is even more marked, O (95 %),
with the downstream vortex almost completely disappearing
at {τ0=0.1, We=10}.

These trends are clearly illustrated in the graphical plots of
Fig. 5 (top; mp=10

2), upstream–downstream vortex intensity
versus τ0 at each fixed We level (negative exponential form).

Fig. 4 Streamlines against τ0 and We; {mp, β, ω, ξG0}={10
2, 10−2, 4, 1}

Table 1 Vortex intensity (Ψmin=−Ψmin
*×10−4) against τ0 and We; {mp, β, ω, ξG0}={10

2, 10−2, 4, 1}

Ψmin=−Ψmin
*×10−4

We=0.1 We=5 We=10

τ0 Upstream Downstream Upstream Downstream Upstream Downstream

0a 12.0 9.05 8.59 2.51 1.28 0.727

0.01 5.88 4.35 3.76 1.02 0.442 0.385

0.05 0.543 0.358 0.356 0.156 0.136 0.048

0.1 0.147 0.117 0.106 0.017 0.043 ~0

a Solutions reduced to NM_τp_ABS (NM_τp_ABS-Pap τ0=0)
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The common trend across all threeWe={0.1, 1, 10} curves is
the drop in intensity to around the same intensity level by τ0=
0.05. Since the starting intensity at τ0=0 for each We level
rises with fall inWe, this leads to ever increasing intensity drop
rates as We rises. The upstream (left) trend graph versus the
downstream (right) graph illustrates that the more marked
intensity goes with the upstream vortex activity. Such trend
adjustment is non-linear in change with We level, the largest
being around We=1.

Regularisation stress growth exponent mp variation The up-
per graphs for mp=10

2 versus the lower graphs for mp=10
3 of

Fig. 5 illustrate the influence of increased yield stress charac-
teristics and enhancement of plastic behaviour through the
solvent (see material functions, Fig. 2). Here, there is steeper
early decline in intensity, from τ0=0.0 to τ0=0.01, that is
apparent in all instances ofWe. Asymptotic larger τ0 behaviour

is rather more rapidly assumed under mp=10
3 response, and

this being quite evident even at the τ0=0.01 level.

Solvent fraction β-variation As above, polymeric concentra-
tion effects on vortex dynamics are illustrated in Fig. 6
through β={10−2, 10−3} comparison. At such low solvent
fraction levels, there are no significant differences in vortex
dynamics to observe, only manifesting a slight increase in the
vortex intensity for τ0<0.05, which is larger with smaller We
level.

Normal stress differences—τ0 and We variation

Adopting the parametric study approach as above and under
the setting {β, mp}={10

−2, 103}, the influence of plasticity
and elasticity on normal stress difference is gathered through

Fig. 5 Vortex intensity (Ψmin=−Ψmin
*×10−4) against τ0 and We; {β, ω, ξG0}={10

−2, 4, 1}; mp=10
2 (top), mp=10

3 (bottom)
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N1 data fields of Fig. 7 and Table 2 and {τ0, We} increase.
Then, τ0 incrementation at any fixed We={0.1, 1, 10} level
reveals little adjustment in N1 magnitude or distribution. In
contrast, at any fixed τ0={0, 0.01, 0.1} level, N1 extrema
suffer a drop as We is elevated. This feature can be tied to
the wall shear zones, and as such is a manifestation of shear
thinning. In the extreme case of {τ0=0.1, We=1}, then
{N1max, N1min}={1.06, −0.94} are 62 % less intense relative

toWe=0.1 data of {N1max, N1min}={2.76,−2.50}. At We=10,
this trend is more abrupt, with We=10 data of {N1max,
N1min}={0.59−0.46}, which represents a drop of 80 % rela-
tive to the same We=0.1 extrema. Here, the red-positive and
blue-negative regions, both upstream and downstream of the
contraction, become less intense as We is elevated (as a con-
sequence of shear thinning/strain softening, enhanced by
low-β solvent fraction levels). Nevertheless, the domain

Fig. 6 Vortex intensity (Ψmin=
−Ψmin

*×10−4) against τ0 and We;
{mp, ω, ξG0}={10

3, 4, 1}; β=
10−2 (continuous lines), β=103

(dashed lines)

Fig. 7 N1 against τ0 and We; {mp, β, ω, ξG0}={10
3, 10−2, 4, 1}
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occupation of the red-positive region grows in size,
whilst the blue-negative zone contracts. Moreover, as
We rises, the blue-negative zone at the centreline (and its
local maxima) is convected downstream, as observed else-
where (López-Aguilar et al. 2014b).

In the upstream and downstream salient corner zones, N1

data fields of Fig. 7 and Table 2 provide vortex-like structures,
essentially identifying N2 contributions to N1, that evolve in
the same fashion as do the true kinematic vortex structures
(see Vortex dynamics—τ0 and We variation section above).
Hence, these vortex-likeN2 structures shrink as τ0 andWe rise.
One notes with look ahead that these structures are exagger-
ated when the effects of extensional viscosity are introduced
via ξG0 variation.

Yield fronts—yielded and unyielded regions, τ0 and We
variation

Figure 8 conveys the solution perimeter and division between
yielded (red) and unyielded (blue) regions at {β, mp}={10

−2,
103} for the NM_τp_ABS-Pap model. Once more, the effects
of plasticity are analysed, via τ0={0.01, 0.05, 0.1} and those
due to elasticity, via We={0.1, 1, 5, 10}. The cut-off criterion
for these fields is based on the magnitude of stress (through its
second invariant, seeMitsoulis 2007; Belblidia et al. 2011; Al-
Muslimawi et al. 2013) exceeding τ0 in each instance. The
dominant and most interesting features to report here are those
given in terms of τ0 incrementation at fixed We level. For
instance, at τ0=0.01 and We=0.1, red yielded regions are
found near the tube wall, where the shear rates are relatively
large. Approaching the geometry centreline, blue relatively
slender unyielded regions appear around and along the
centreline, upstream and downstream of the contraction. In
shape, this unyielded centreline zone resembles a necking
filament, with bulbous zones either side of the contraction.
This structure pattern tapers to a sharp end that is directed

towards the contraction, connected by a slender column-like
thread that passes through the contraction along the centreline.
In the recess zones (geometry salient corners), concave-
shaped unyielded regions are also present.

As yield stress level is raised to τ0=0.05, the unyielded
regions in the core flow have considerably expanded out-
wards, towards the tube walls; also, those in the recess zones
have elongated upstream and downstream. This defines the
perimeter of the yielded regions, which appear connected and
are pinched by the expanding unyielded zones.

Finally, at even higher τ0=0.1, the unyielded salient corner/
core flow regions have now merged, surrounding and isolat-
ing the yielded zone, which is now restricted to a domain lying
across and on either side of the contraction plane (shamrock
shape). For {τ0=0.1, We≤1}, these regions preserve their
characteristic sharp cusp tip at the centreline, a feature that is
gradually being suppressed with rise in We (almost non-
existent at We=10). A significant new feature to note is the
birth and growth of a half-moon-shaped unyielded region, just
downstream of the contraction, emerging about the centreline.
This feature is apparent in {τ0=0.1, We≥1} and {τ0=0.05,
We≥5} solutions; subsequent to its appearance, it expands
downstream, as either τ0 or We rise.

Thixotropic destruction parameter ξG0
variation—extensional viscosity effects

As illustrated in Figs. 1, 2 and 3, reduction of the ξG0 destruc-
tion parameter (of polymeric NM_τp_ABS model; López-
Aguilar et al. 2014b) leads to the consideration of additional
extensional viscosity features in this viscoelastoplastic con-
text. Here, solutions generated under ξG0=1 are contrasted
against the relatively more strain-hardening configuration of
ξG0=0.1125.

Vortex dynamics In Fig. 9 and Table 3, the streamline patterns
reveal provocative results, when contrasting the two levels of
strain hardening, ξG0={1, 0.1125}, and elasticity levels,
We={0.1, 5}. At We=0.1, ξG0 solutions are graphically invari-
ant to vortex structure adjustment, with ξG0 change at each fixed
τ0 value. Here, under ξG0=0.1125, larger upstream and down-
streamminimum vortex intensity values (Table 3) are predicted
(vortex enhancement) relative to the solutions at ξG0=1.

In contrast, at We=5 and ξG0=0.1125, notably larger up-
stream minimum vortex intensity values are obtained with
respect to those under ξG0=1. Here, the change in strain-
hardening characteristics with ξG0=0.1125 is now so dramatic
that the downstream vortex structure is visually lost for τ0≥
0.01 and the upstream vortex takes on a convex shape.
Moreover, the minimum upstream vortex intensity values for
ξG0=0.1125 solutions are conspicuously larger (by at least two
orders of magnitude) than those under ξG0=1.

Table 2 First normal stress difference (N1) against τ0 andWe; {mp, β, ω,
ξG0}={10

3, 10−2, 4, 1}

N1

τ0 We=0.1 We=5 We=10

0 Max. 2.75 1.06 0.581

Min. −2.48 −0.924 −0.453
0.01 Max. 2.75 1.07 0.582

Min. −2.48 −0.926 −0.450
0.05 Max. 2.75 1.05 0.584

Min. −2.49 −0.932 −0.449
0.1 Max. 2.76 1.06 0.587

Min. −2.50 −0.938 −0.459
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Fig. 8 Yield fronts against τ0 and We; {mp, β, ω, ξG0}={10
3, 10−2, 4, 1}

Fig. 9 Streamlines against τ0 and We={0.1, 5}; {mp, β, ω}={10
3, 10−2, 4}; ξG0={1, 0.1125}
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Upstream vortex and the normal stress differences N1 and
N2 In Fig. 10, comparisons of streamlines N1 and N2 data
fields are provided under the strain-hardening setting of ξG0=
0.1125. Here, particular attention is paid to the close signature
relationship between the kinematic upstream vortex structures
and the vortex-like structures in N2 fields (with its reflection/

counterpart on N1 data). Correspondence in shape and declin-
ing trends is identified amongst these structures, as the yield
stress τ0 is increased. This close relationship between vortex
dynamics and N2–N1 data fields has already been commented
upon elsewhere (López-Aguilar et al. 2014a; Tamaddon-
Jahromi and Webster 2011).

Table 3 Vortex intensity (Ψmin=−Ψmin
*×10−4) against τ0, ξG0 andWe; {mp, β, ω}={10

3, 10−2, 4}

Ψmin=−Ψmin
*×10−4

We=0.1 We=5

ξG0=1 ξG0=0.1125 ξG0=1 ξG0=0.1125

τ0 Upstream Downstream Upstream Downstream Upstream Downstream Upstream Downstream

0a 12.0 9.05 14.5 9.91 3.39 0.629 202.4 0.188

0.01 1.26 0.797 1.81 1.05 0.199 0.055 119.2 ~0

0.05 0.032 0.023 0.039 0.025 0.004 ~0 28.7 ~0

0.1 ~0 ~0 ~0 ~0 ~0 ~0 2.89 ~0

a Solutions reduced to NM_τp_ABS (NM_τp_ABS-Pap τ0=0)

Fig. 10 Streamlines, N1 and N2, against τ0; We=5; {mp, β, ω, ξG0}={10
3, 10−2, 4, 0.1125}

Rheol Acta (2015) 54:307–325 321



Excess pressure drop In Fig. 11, the effects of mp and ξG0
variation on epd are evaluated as the yield stress τ0 is elevated
and at three elasticity parameter levels, We={0.1, 1, 5}.
Consistently, it is evident from these data that any variation
that leads to solid-like behaviour produces epd enhancement.
Furthermore, these epd data curves adopt a linear trend
with change in τ0 (Belblidia et al. 2011). One notes
here that the presence of viscoelasticity and pronounced
strain-hardening characteristic does not change this trend
in signature. The positive slope in the data curves for
all We values reveals an increase in epd as τ0 is elevat-
ed. Interestingly, the same effect is observed with mp

variation; a growth in slope is observed when passing
from mp=10

2 to 103. Amongst this epd enhancement
evidence, the most prominent feature is that due to variation
in ξG0 (with its corresponding strain-hardening effects). For
this parameter, shifting from ξG0=1 to the relatively
more strain-hardening level of 0.1125 translates into an
increase of ~0.25 units in epd, covering the entire range
of τ0 examined. In contrast, rise through We provides
smaller epd values, likely caused by marked shear thinning
and strong N1 characteristics of the viscoelastoplastic
fluids analysed (see Figs. 1 and 2). One must also note,
however, that the present model is constructed around
the constant viscosity Maxwell/Oldroyd foundation, no-
torious for producing negative pressures in contraction
flows. The present model variant has its deficiency of
minimal strain-hardening response in elongation (see
Figs. 1, 2 and 3), and it is the boosting of this feature that
would be associated with high epd evaluation.

Yield fronts The effects of ξG0 variation on yield fronts
are provided in Fig. 12. This illustrates the division
between yielded (red) and unyielded (blue) regions at
{β, mp}={10

−2, 103} for NM_τp_ABS-Pap solutions.
Here, at {τ0=0.01, We=0.1} and ξG0=0.1125, the
unyielded regions at the centre of the flow field appear larger
than those for ξG0=1. Such disparity is minimised with further
rise in yield stress level, τ0≥0.05.

At the higher elasticity level of We=0.5, stronger
strain-hardening characteristics through ξG0 variation
begin to influence yield front shape. Here, taking
We=0.5 solutions in comparison to We=0.1 solutions,
the unyielded {τ0=0.01} regions at the centreline
would appear wider in the radial direction, and their
tip changes more abruptly. These characteristics are
simply stretched out radially with further rise in τ0.
Strictly at We=0.5 and in comparison across ξG0={1,
0.1125} solutions, there are notable asymmetries in salient
corner vortex zones. Moreover, at τ0=0.1, the additional
strain-hardening ξG0=0.1125 solution is observed to suppress
the half-moon-shaped unyielded region, present in the ξG0=1
solution. Fig. 11 Epd against τ0; We={0.1, 1, 5}; {β, ω}={10

−2, 4}
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Conclusions

Yield stress elastic thixotropic solutions have been obtained
through two different constitutive routes (and models
thereby): (i) in the solvent contribution, via Papanastasiou
regularisation, and (ii) in the polymeric contribution, via mi-
cellar thixotropic (NM_τp_ABS-Pap) models. Numerical
solutions have been reported whilst varying elastic and
plastic contributions through parametric variation of
yield stress cut-off τ0={0.01, 0.05, 0.1}, regularisation
stress growth exponent mp={10

2, 103}, polymeric con-
centration β={10−2, 10−3} and thixotropic destruction
parameter ξG0={1, 0.1125}.

Numerical solutions under NM_τp_ABS-Pap model
reveal new and provocative findings on vortex dynam-
ics, N1 fields, yield front patterns and excess pressure
drop, according to yield stress {τ0, mp} parameter var-
iation, strain-hardening (ξG0) and polymeric concentra-
tion incrementation (β). Vortex intensity and size are ob-
served to sharply reduce with increasing {τ0,mp} (yield stress)
and elasticity levels (strain softening). There is reduction in
the initial negative slope of the vortex intensity curve versus
τ0, noted asWe is elevated at the base-levelmp=10

2. From this
position, consideringmp elevation at each fixedWe level, there
is an increased drop in vortex intensity with τ0 rise. Clearly,
enhancing solid-like features dampens the mobility of the
material (vortex dynamics).

On structural influence In contrast to these yield stress con-
sequences above where ξG0=1, now considering each fixed τ0
level, the exaggerated strain-hardening properties observed
when decreasing the thixotropic ξG0 destruction parameter
(from unity to 0.1125, characterisingmoremobile fluids) have
a major impact on vortex activity. This is encapsulated
through upstream vortex enhancement and downstream vor-
tex suppression. The influence of change with elasticity (We
rise, from 0.1 to 5) appears as a contra effect to that due to
strain-hardening, with upstream vortex reduction for ξG0=1
and enhancement for ξG0=0.1125. This is true ∀ τ0 solutions,
thoughmost emphasised at τ0=0. Appealing to corresponding
viscometric properties, this observation may be attributed to
the influence of strain softening. It is particularly conspicuous
that We rise promotes asymmetry in the streamline patterns
about the contraction.

Patterns and trends in the normal stress difference
fields reflect those in re-entrant corner vortex patterns,
with elevation in yield stress, elasticity and strain hard-
ening. Hence, these N2 vortex-like features, in the up-
stream and downstream recess corner zones, contract as
the yield stress τ0 and the elasticity levels are increased.
Interestingly, at the extreme setting {τ0, We}={0.1, 10},
downstream vortex activity practically disappears.
Consistently, these trends are more exaggerated when
strain hardening is enhanced through ξG0 reduction,
which represents more structured fluid states.

Fig. 12 Yield fronts against τ0 and We={0.1, 5}; {mp, β, ω}={10
3, 10−2, 4}; ξG0={1, 0.1125}
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On yield front patterns These reveal significant influence with
yield stress τ0 variation. Here, symmetric unyielded regions
first appear at τ0=0.01, with upstream and downstream slen-
der core regions at the centreline and concave unyielded
regions confined to recess zones.When the cut-off yield stress
level (τ0 value) is increased, the core region expands outwards
towards the wall and approaches the recess unyielded zones,
which now have elongated away from the corner. Further
increase of the yield stress provokes unification, of core and
recess yielded zones, to define a central single shamrock-
shaped yielded region about the contraction gap. In contrast,
elevation in elasticity through We provokes asymmetry in the
recess unyielded zones. This is illustrated in the middle-to-
high yield stress range (τ0≥0.05) and for elasticity levels
(We≥5), when there is also formation of a new half-moon-
shaped unyielded region, about the centreline just beyond the
contraction plane. ξG0 reduction (thixotropic structural influ-
ence) suppresses the formation of this half-moon-shaped
unyielded region.

On epd Here, findings versus increased yield stress (τ0) fol-
low linear functionality. The epd slopes slightly rise with
elevation inmp. The epd intersection point at τ0=0 (coinciding
with NM_τp_ABS solutions) is shifted to lower levels as We
levels are increased. One associates this epd lowering for
NM_τp_ABS thixotropic solutions with its marked shear thin-
ning and strong N1 properties. One must acknowledge, how-
ever, that the present model variant has its deficiency of only
minimal strain-hardening response in elongation, and it is the
boosting of this feature that would be associated with high epd
evaluation. Moreover, relatively more structured fluids,
characterised with smaller ξG0, display distinctly larger epd
values throughout the τ0 range covered.
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