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Abstract We present a critical assessment of the range of
validity of the empirical Cox-Merz rule for a wide range of
model entangled polymer samples with a well-defined molec-
ular structure, from linear monodisperse and polydisperse
polymers, to branched model polymers (i.e. stars, H-poly-
mers, and combs) and blends of linear polymers of the same
chemistry. We focus on melts and concentrated solutions.
Overall, we find that the simple empirical rule is obeyed rather
well for the investigated cases. As often reported in the liter-
ature, relatively small systematic failures occur with the steady
viscosity being below the complex one at high rates for most
polymers, with linear polydisperse polymers (with a polydis-
persity index of about 2) being a notable exception. For the
latter polymers, the rule is obeyed identically within experi-
mental error. More unusual failures, with the steady shear
viscosity being higher than the complex viscosity, are found
for branched polymers with more than one branch point. More
specifically, these unusual failures are observed at very high
branching levels, when the backbone of the polymer is being
stretched at low rates due to the motion of the branch points.
The extra stress coming for the stretch renders the steady
viscosity higher than the complex one. Due to the well-
characterized nature of the combs, we can state that failures
of the latter type are only apparent when the branches com-
prise more than 70 % of the molecular structure of the comb.
This estimation could serve as a rough guideline in

applications, although it is only a necessary and not sufficient
condition for these failures to occur.

Keywords Cox-Merz rule . Shear viscosity . Linear polymer
melts . Branched polymer

Introduction

The rheological behavior of polymer melts remains a topic of
great scientific and technological interest. The big break-
through in the understanding of polymer dynamics came with
the pioneering works in the 1970s of de Gennes (de Gennes
1971) and Doi and Edwards (Doi and Edwards 1978a; Doi
and Edwards 1978b; Doi and Edwards 1978c; Doi and
Edwards 1979; Doi and Edwards 1986). The resulting “tube
model” in which the description of a single polymer chain
diffusing in a tube was postulated to be representative for the
whole dynamics of the melt has proven to be extremely
successful. The curvilinear diffusion of the chain in the tube
was termed “reptation”. Next to reptation, other relaxation
mechanisms were later included, mainly contour-length fluc-
tuations (Doi 1983) and thermal constraint release (Marrucci
1985) for linear polymers and, for branched polymers, the
coupling of these relaxationmechanisms to different segments
of the molecules in a hierarchical fashion (McLeish 1988).
Currently, we can state that the modern versions of this pop-
ular model, such as the combinatorial hierarchical model of
Larson (Larson 2001), branch-on-branch model of Das et al.
(Das et al. 2006), and the time-marching algorithm of van
Ruymbeke et al. (van Ruymbeke et al. 2006), are able to
describe the linear dynamics of a wide variety of polymers,
from the simplest linear, monodisperse polymers to more
complex linear, polydisperse ones, to branched model poly-
mers (McLeish 2002) and more recently even the most com-
plex commercial samples (Read et al. 2011). Although still
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many issues are outstanding, as e.g. for branched polymers,
the exact value for the so-called dynamic dilution exponent α
(van Ruymbeke et al. 2012) or the exact amount of branch-
point hopping as incorporated via the p2 parameter (e.g.
(McLeish 2002)), and the connection between the polymer
synthesis mechanism (Read et al. 2011), the resulting molec-
ular structures, the architectural dispersity in a sample, and the
viscoelasticity are still topics of active research; we can state
that the (linear) dynamics of polymers is a mature scientific
field, and it is relatively well-understood.

Besides linear viscoelasticity, there is great interest in the
nonlinear flow behavior of polymers, which is often much
more relevant in industry. With the above-mentioned deep
understanding of the linear dynamics, nonlinear behavior
naturally comes more and more on the forefront of current
investigations, with some examples of experimental work on
model polymers being studies of the nonlinear shear stress
relaxation behavior (Archer and Juliani 2004; Lee et al.
2009; Kapnistos et al. 2009; Kirkwood et al. 2009), the
nonlinear start-up shear flow behavior (Menezes and
Graessley 1982; Schweizer et al. 2004; Auhl et al. 2008;
Liu et al. 2013; Snijkers et al. 2013a; Snijkers et al. 2013b;
Snijkers et al. 2013c; Tezel et al. 2009), and the start-up
uniaxial extensional flow behavior (Huang et al. 2013;
Lentzakis et al. 2013). From an experimental point of view,
nonlinear flows are much harder to study compared to the
linear dynamics due to a variety of issues with the most
important two being (i) the susceptibility of polymer melts
to exhibit instabilities in nonlinear deformations (Wang et al.
2011) and (ii) the inherent interest to study well-defined
model polymers obtained via controlled polymerization
methods for which generally only very small sample quan-
tities are available (Hajichristidis et al. 2000). The small
sample quantities pose limits on the applicability of certain
techniques. Model polymers are important, as a clear relation
between structure and deformation behavior can generally
only be established with the help of well-defined molecular
structures (McLeish 2002; Graessley 2008). In terms of
theory and modeling, the tube model has been extended to
describe nonlinear flows as well, although comparisons are
generally less successful and the fits not completely param-
eter free at this time (e.g. (Marrucci 1996; Mead et al. 1998;
Mead 2007; Ianniruberto and Marrucci 2002; Ianniruberto
and Marrucci 2014; Graham et al. 2003) for linear polymers
and e.g. (McLeish and Larson 1998; Das et al. 2014) for
branched polymers).

Recently, there have been theoretical efforts to develop
alternative frameworks, next to the tube model, that allow
one to describe the linear and nonlinear dynamics of poly-
mers. Especially worth mentioning are the so-called “slip-
link” models pioneered by Hua and Schieber (Hua and
Schieber 1998), which offer comparable predictions to the tube
model. Some recent key references on the prediction of the

viscoelasticity and nonlinear flow behavior “using slip-link
models are (Doi and Takimoto 2003; Andreev et al. 2014;
Yaoita et al. 2012; Masubuchi et al. 2014).

In this paper, we would like to focus very specifically on the
validity or possible failure of the well-known Cox-Merz rule
(Cox and Merz 1958), which is often used, especially in indus-
try, to predict the hard-to-measure nonlinear shear viscosity
from the much more-easily-accessible linear viscoelasticity.
The Cox-Merz rule has been examined in the past with com-
mercial linear and branched polymers (see e.g. the discussion in
the recent book of Dealy and Larson (Dealy and Larson 2006)),
but not with structurally well-defined model polymers. The
investigation of the rheological behavior of model polymers
with an extremely well-defined molecular structure is important
as it allows for an accurate and unambiguous identification of
the exact molecular parameters responsible for the observations
in general or in this specific case for the validity or failure of the
Cox-Merz rule. We present experimental results considering a
large variety of different, well-defined polymers (linear mono-
disperse and polydisperse polymers, star polymers, model
branched polymers with more than one branch point, and
blends of linear polymers of the same chemistry) and assess
the validity of the Cox-Merz rule. Some of the presented
nonlinear data were discussed in a different context in earlier
works (Snijkers and Vlassopoulos 2011; Snijkers et al. 2013a;
Snijkers et al. 2013b; Snijkers et al. 2013c), and some is
presented here for the first time. In the next section, we first
discuss the empirical Cox-Merz rule in some detail.
Subsequently, we discuss the molecular structure of the mate-
rials (details of their synthesis can be found elsewhere) and the
employed method to investigate their linear and nonlinear
rheology. After that, the experimental results are presented to
assess the validity of the Cox-Merz rule for a range of different
molecular architectures. Finally, we draw conclusions and pro-
vide a future perspective for the nonlinear rheology of model
polymers.

The Cox-Merz rule: historical perspective

The exact relationship between the complex viscosity η*
and the steady-state viscosity η in the lower limits of
frequency and shear rate is well-known and can be
expressed as limγ̇→0 η γ˙Þ ¼ limω→0 η� ωð Þð (see e.g. (Barnes
et al. 1989) and (Macosko 1994)). However, in 1958, Cox and
Merz reported that the curve of apparent viscosity ηA as function
of shear rate γ˙ , as determined using a capillary rheometer, lay
very close to the curve of the complex viscosity η* versus
angular frequencyω over the entire range of frequencies or shear
rates. Since that time, the simple “Cox-Merz rule” found wide-
spread use in industry with great success, as linear oscillatory
shear measurements are relatively easy to perform even on small
sample quantities while the (often more relevant) nonlinear
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shear measurements are more difficult and prone to instabilities
and slip. As nicely explained in the recent book of Dealy and
Larson (Dealy and Larson 2006), the rule has changed face to
some extent and the term Cox-Merz rule now generally refers to
the (near) equality between the shear rate γ˙ dependence of
the nonlinear steady-state shear viscosity η and the angular
frequency ω dependence of the linear complex viscosity η*, or
η γ˙Þ ¼ η� ωð Þð for γ˙ ¼ ω (see e.g. (Barnes et al. 1989) and
(Macosko 1994)). The difference with the originally proposed
rule being that the apparent viscosity, as measured in a capillary
rheometer, and the steady shear viscosity are not identical due to
the inhomogeneous nature of the flow in a capillary rheometer.
We further note two alternative views of the Cox-Merz rule that
simply differ in the choice of variables and follow directly from
the previous one, σ γ˙Þ ¼ G� ωð Þð and η(σ)=η*(G*) with σ the
(nonlinear) steady-state shear stress andG* the (linear) complex
modulus. They were proposed byWinter (Winter 2009) and can
be useful as they provide additional insight into the viscoelas-
ticity and can allow for alternative, more clear comparisons of
different materials. In this work, we mainly adhere to the most
common interpretation and representation of the rule: η
γ˙Þ ¼ η� ωð Þð , although we do present the data also in the form
σ γ˙Þ ¼ G� ωð Þð for two cases.

Since its original publication over half a century ago, the
Cox-Merz relationship has been applied to a large variety of
systems with varying degrees of success, from polymer melts
and solutions to colloidal dispersions (e.g. (Al-Hadithi et al.
1992)). Especially for flexible polymers, the rule seems to
work well, and although a clear explanation has now been put
forward as to why the rule works for linear polymers (see
further), its general applicability remains elusive up to this
day. Focusing now on flexible polymers, while linear oscilla-
tory measurements probe the restricted diffusion of the chains
(restricted due to entanglements), in nonlinear deformations,
additional physics come into play: The polymers can orient
and stretch due to the flow; furthermore, in shear flow, the so-
called convective constraint release (CCR) of entanglements
due to differences in velocity of different sections of the
polymer affects the state of stress in the system (Pearson
et al. 1991; Marrucci 1996; Ianniruberto and Marrucci
1996). With the additional complexities in nonlinear deforma-
tions, there appears to be no reason for a direct connection,
let alone equality, between the linear and nonlinear properties
apart from their limiting behavior at low frequencies/rates.
Hence, it is indeed astonishing that the Cox-Merz rule has
any merit at all. Early approaches to explain the rule from
Booij et al. (Booij et al. 1983) and Larson (Larson 1985)
utilized integral constitutive equations and hence exploited
the relationship between the damping and viscosity function.
A first truly coherent, molecular explanation for the Cox-Merz
rule for linear, monodisperse polymers was given later in 1996
by Marrucci and Ianniruberto and Marrucci; it seems some-
how incidental because the CCRmechanism leads to a scaling

of (about) −1 for the steady shear viscosity at high rates, while
the entanglement plateau due to rubber-like behavior of the
polymers leads to a scaling of (about) −1 as well for the
complex viscosity at intermediate to high frequencies.
Hence, albeit from a completely different physical origin,
incidentally, one arrives at very similar functions for the
steady and complex viscosities. More recently, based on the
same CCR mechanism but incorporated in a more complete
model, Mead (Mead 2011) derived the Cox-Merz rule analyt-
ically based on the mixed logical dynamical (MLD) “toy”
model for polydisperse linear polymers. The Cox-Merz rule
has become such a powerful tool in polymer rheology that
when failures are observed, usually with η γ˙Þ < η� ωð Þð , they
are often attributed to instabilities such as secondary flow, slip
of the polymer on the walls of the geometry, or edge fracture
of the sample rather than a disobedience of this purely empir-
ical rule! Failures with η γ˙Þ > η� ωð Þð are much less common
but have nevertheless been observed for commercial, branched
low-density polyethylene LDPE (Schulken et al. 1980; Booij
et al. 1983), and for random branched polystyrenes (Ferri and
Lomellini 1999). In the following sections, wewill report data for
the linear complex and nonlinear steady shear viscosity formodel
polymers with extremely well-defined molecular architectures:
linearmonodisperse and polydisperse polymers, model star poly-
mers, model branched polymers with well-defined comb or H-
polymer structures, and blends of linear polymers of the same
chemistry. The use of model polymers allows us to systematical-
ly assess the effects of the molecular architecture on the validity
of the Cox-Merz rule.

Materials

We studied different polymers with different molecular struc-
tures, as schematically shown in Fig. 1. Two linear, monodis-
perse polymers of polyisoprene (PI) and polystyrene (PS). The
PS was purchased from Polymer Laboratories (UK) and has a
weight-averaged molar mass Mw of 182,100 g/mol and a
polydispersity index (PDI) of 1.03. Further on, we refer to
this polymer as PS182k. The PI was kindly provided by N.
Hadjichristidis (University of Athens) and synthesized by
high-vacuum anionic polymerization. It has an Mw of
60,000 g/mol and a PDI of 1.10. It has a predominantly 1,4
microstructure (∼83 %). We labeled this polymer as PI60k.
The molecular characteristics are summarized in Table 1, with
the reported molar masses being weight averages.

Two linear, polydisperse polymers of PS were obtained
from Versalis (Italy). They are commercial polymers used
for a large variety of applications, among them are packaging
and insulating layers. They are synthesized by radical poly-
merization. They have a controlled molar mass distribution,
and hence, in that sense, we consider them here to be “model”
polymers as they allow for an assessment of the effects of
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(controlled) polydispersity on the validity of the Cox-Merz
rule. The PS124k has an Mw of 124,000 g/mol and a PDI of
1.92, and the PS275k has anMw of 274,600 g/mol and a PDI
of 2.11 (see also Table 1).

Monodisperse, symmetric (i.e. all arms have the same
length) star polymers of “low” functionality (Fig. 1c) were
synthesized by high-vacuum anionic polymerization as de-
scribed previously (Snijkers et al. 2013c). They are all PI. The
PI4a-56k has four arms with a weight-averaged molar mass of
the arms MBr of 56,000 g/mol; the PI8a-56k has eight arms
with MBr=56,000 g/mol; the PI4a-103k has four arms of
103,000 g/mol. The polydispersity index was in all cases
below 1.10. Next to the melts, we also report on data for
two solutions of the PI4a-103k in the good solvent squalene
(Sigma-Aldrich). They were labeled PI4a-103k86% and PI4a-
103k62% with the percentage indicating the volume percent-
age of polymer in the solution. Their molecular characteristics

are again summarized in Table 1 with q the functionality (i.e.
the number of arms) of the star.

The studied H-polymer is a PS; it was synthesized by high-
vacuum anionic synthesis by Roovers; and details of its syn-
thesis and viscoelasticity were reported in (Roovers and
Toporowski 1981) and (Roovers 1984), respectively. The H-
polymer is the most simple and most well-defined molecular
structure with more than one branch point (i.e. it has exactly
two branches on each end point of the backbone, see Fig. 1c)
and with a hierarchy in its relaxation (i.e. first, the branches
relax; only after that, the backbone can relax). Its coding is
H3A1A, and its molecular details are shown in the last line of
Table 1. Columns 3 to 5 in Table 1 contain the weight-
averaged molar masses of the complete structure MTOT, the
backboneMBB, and an individual branchMBr, respectively. In
column 6, q, the average number of branches per backbone, is
reported (for the case of an ideal H-polymer, q=4). Column 7

Table 1 Molecular characteristics of the different polymers

Sample MTOT 10
−3 [g/mol] MBB 10

−3 [g/mol] MBr 10
−3 [g/mol] q [−] xc [%] φBB [%] PDI [−]

Linear (PI, PS) PI60k 60 – – – – – 1.10

PS182k 182 – – – – – 1.03

PS124k 124 – – – – – 1.92

PS275k 275 – – – – – 2.11

Stars (PI) PI4a-56k 224 – 56 4 – – <1.10

PI8a-56k 448 – 56 8 – – <1.10

PI4a-103k 412 – 103 4 – – <1.10

PI4a-103k86% 412 – 103 4 – – <1.10

PI4a-103k62% 412 – 103 4 – – <1.10

Combs (PI) PI119k 119 93.5 5.1 5 33 70 1.02

PI132k 132 85.1 10.2 4.6 67 49 1.03

PI164k 164 89.3 14.1 5.3 100 37 1.04

PI254k 254 120.5 18.8 7.1 100 36 1.05

PI472k40% 472 370 5.8 17.6 29 76 1.02

Combs (PS) PSc612 477 275 6.5 31 76 55 1.02

PSc622 626 275 11.7 30 100 41 1.004

PSc632 918 275 25.7 25 100 28 1.01

PSc642 1640 275 47 29 100 16 1.003

PSc652 3120 275 98 29 100 8 1.03

H (PS) H3A1A 674 123 132 4 0 20 1.004
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Fig. 1 Different well-defined polymer architectures: a linear polymers, b
low-functionality stars, c H-polymers and d combs. Note that all poly-
mers of interest here are homopolymers, and hence, the different colors

are simply used to discern between different hierarchical levels in the
structures (branches versus backbone)



reports xc, the fractional length of backbone ends that relax on
the timescale of the branches as discussed in the next para-
graph. Column 8 reports the relative amount (or volume

fraction) of the backbone in the total structure, φBB ¼ MBB
MTOT

Note that the simple addition MTOT=4MBr+MBB is not an
identity here due to the addition of reactants to obtain the final
H-polymer from the linear backbone and branches and due to
experimental errors in the determination of the molar mass as
discussed in some detail by Roovers and Toporowski
(Roovers and Toporowski 1981). And, the final column con-
tains the PDI as before. A new investigation of the molar mass
and its distribution by size-exclusion chromatography (SEC)
led to an 8 % lower value of 619,000 g/mol for the weight-
averaged molar mass of the total structure.

The model combs (Fig. 1d) are so-called random-branched
combs, meaning that the molar masses of backbone and
branches are accurately known, as is the average number of
branches per backbone but not the exact placement of the
branches on the backbone. The combs are either PI or PS.
The PS samples were obtained by high-vacuum anionic syn-
thesis (Roovers 1979) and studies of their linear rheology
(Roovers and Graessley 1981) and tube-based modeling
(Kapnistos et al. 2005) were performed in the past. The PI
combs were also synthesized by high-vacuum anionic poly-
merization (Lee et al. 2009; Kirkwood et al. 2009) and their
linear viscoelasticity was investigated for different samples in
different publications (Lee et al. 2009; Kirkwood et al. 2009;
Snijkers et al. 2013a). An overview of their key structural
characteristics can be found in Table 1. The volume fraction of

the backbone φBB is here calculated as φBB ¼ MBB−2xcMBB;end

MTOT

with xc the fractional length of backbone ends that relax on the
timescale of the branches assuming an equidistant distribution
of the branches (Kapnistos et al. 2005; Kirkwood et al. 2009).
The PDIs of all the combs are in all cases better than 1.05 as
determined by SEC, highlighting the very well-defined nature
of the polymers. Also, the newly obtained absolute weight-
averaged molar masses of the total structures were always within
10 % of the older values reported in Table 1 (see e.g. (Snijkers
et al. 2013a)). Furthermore, these polymers have been investi-
gated with a more advanced chromatography technique, so-
called temperature gradient interaction chromatography (TGIC)
(Chang 2005), and this technique confirmed the excellent quality,
meaning low dispersity of the samples (Snijkers et al. 2013a;
Snijkers et al. 2013b). Next to the melts, we also report on data
for a solution of PI combs, PI472k40%, in the good solvent
squalene (Sigma-Aldrich). Also here, the percentage indicates
the volume percentage of polymer in the solution.

With the molecular weights between entanglementsMe for
PS and PI being 17,000 g/mol (Roovers and Graessley 1981)
and 4,700 g/mol (Kirkwood et al. 2009), respectively, we can

note that all the before-mentioned polymers are in the
entangled regime; only for some of the combs, the branches
can be relatively small ranging from entanglement densities
(in the molten state) of about 0.4 to 6.

Methods

Rheological measurements were performed using the Advanced
Rheometric Expansion System (ARES, TA-Instruments, USA)
equipped with a convection oven. Measurements were per-
formed in a controlled environment (under nitrogen) with a
temperature control of ±0.1 °C. The linear viscoelastic properties
of the polymers were measured using strain-controlled small-
amplitude oscillatory measurements using parallel plate geome-
tries made of Invar (a copper-nickel alloy with small thermal
expansion coefficient). Measurements were performed at a fixed
(small) strain for varying angular frequencies and at different
temperatures. Upon changing temperature, appropriate changes
in gap spacing were made, thereby taking the thermal expansion
of the plates into account. Finally, measurements of the elasticG′
and loss G″moduli as function of angular frequency ω obtained
at different temperatures were combined with the help of the RSI
Orchestrator software following the well-known time-tempera-
ture superposition principle with the horizontal shift factors
following the WLF equation and the vertical shift factors calcu-
lated from the temperature T [in °C] and the temperature-

dependent density ρ as ρ TREFð Þ: TREFþ273:15ð Þ
ρ Tð Þ: Tþ273:15ð Þ (Ferry 1980). The

obtained master curves of G′ and G″ can then be converted

directly in the complex viscosity η* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G’2þG’’2
p

ω as function of
angular frequency ω.

In one case, for the PI4a-103k, we were not able to reach the
terminal flow regime using linear dynamic oscillatory measure-
ments and the accessed frequency range needed to be extended to
lower values without using higher temperatures at which the
polymer degraded. In that case, long-time constant-stress creep
measurements were performed using the stress-controlled
Physica MCR 501 rheometer (Anton Paar, Austria) equipped
with a homemade aluminum parallel plate geometry with diam-
eter 8 mm as top plate. Temperature control of ±0.01 °C was
achieved with a Peltier system, under nitrogen atmosphere.
However, the actual overall temperature control in the sample
was not as good (closer to ±0.1 °C) due to variations in the
nitrogen flow in the top part of the Peltier over long times.
Linearity of the creep measurements was ensured by performing
tests at different stresses. Converting creep compliance versus
time curves to the moduli as a function of frequency is well
known to be problematic as it is a mathematically ill-conditioned
problem.Here, we have followed the the approach of Pasquino et
al. (Pasquino et al. 2012).

In addition to linear viscoelasticity, one needs to perform
measurements of the nonlinear steady shear viscosity to check
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the Cox-Merz rule. We employed a homemade cone-
partitioned plate (CPP) geometry (made of stainless steel) on
the ARES rheometer following the pioneering designs of
Meissner et al. (Meissner et al. 1989) and later works
(Schweizer 2002; Schweizer 2003; Schweizer et al. 2004) to
measure the nonlinear steady shear flow properties of the
polymers in a controlled environment (under nitrogen) and
with a temperature control of ±0.1 °C. The CPP renders
measurements of nonlinear shear properties for highly elastic
samples more reliable as the influence of edge fracture; the
key flow instability for polymers upon entering the nonlinear
flow regime is delayed to higher rates and or higher strains (at
a fixed rate). A thorough discussion of our specific setup can
be found in (Snijkers and Vlassopoulos 2011). In all reported
measurements, the angle of the cone was 0.1 rad; the diameter
of the active plate is different in different data sets, either 6 or
8 mm.

Figure 2 shows a typical data set of the start-up shear
viscosity η+ as function of time t for different shear rates γ˙

as obtained with the CPP at 169.5 °C. The shear rates are
indicated in s−1 next to the lines. The data shown here are for
the H-polymer H3A1A (Table 1). One data set (black lines)
was obtained directly at 169.5 °C; the other one (light gray)
was obtained at 200 °C and subsequently shifted to 169.5 °C
using the horizontal aT and vertical bT shift factors from the
linear viscoelastic data as indicated in the axes of the graph.
The linear viscoelastic (LVE) limiting line is shown in dark gray.
It is obtained from the linear viscoelastic data as described
previously (Snijkers et al. 2013a). The nonlinear data should
follow the LVE limit at low rates and times. Qualitatively, the
observations are identical to those reported by Menezes and
Graessley (Menezes and Graessley 1982) for solutions of linear
and star polymers: The progressive deviation of the transient
viscosity data from the LVE envelope as the shear rate increases,
marked by a steady-state viscosity value below the LVE one and
the occurrence of an overshoot in the time-dependent viscosity

with increasing shear rate before eventually dropping to its
steady-state value. Additionally, at the highest rates, we can
observe mild undershoots (i.e. minima in the transient viscosity)
before the steady viscosities are reached (see also (Snijkers et al.
2013a)). Note that the nonlinear data does not show any signa-
ture of edge fracture for the range of rates and the corresponding
time windows as, if the sample was fracturing, the start-up shear
viscosity would not reach a steady-state value but would grad-
ually and continuously decrease. Further on in this paper, we
only report on the steady-state shear viscosity ηSTEADY or η γ˙Þð
as function of shear rate γ˙ and the complex viscosity η* as
function of angular frequency ω; discussion of the start-up
behavior (i.e. the architectural dependence of the position,
breadth, and height of the overshoot) can be found in previous
articles (Snijkers and Vlassopoulos 2011; Snijkers et al. 2013a;
Snijkers et al. 2013b; Snijkers et al. 2013c). The steady-state
shear viscosity is always extracted from the start-up data by
taking an average over the steady-state portion of the curves.
The standard deviations are also calculated and are in all cases
small rendering the error bars obtained in this way smaller than
the size of the symbols. Although it is not specifically indicated
further on, several nonlinear data sets were often obtained on the
same polymer. The different data sets overlap well with errors
smaller than the size of the symbols. Hence, since the size of the
symbols is a conservativemeasure for the experimental error, we
can state that any visible difference between the linear data
(further indicated with lines) and the nonlinear data (indicated
with symbols) beyond the size of the symbols is expected to be
real and not a result of experimental error. Finally, we can
note that we do not further quantify the difference
between the linear and nonlinear data, e.g. by calculat-
ing the difference or the ratio between the complex
viscosity and the steady-state shear viscosity due to the
necessity to interpolate the linear complex viscosity data
to rates (or frequencies) where nonlinear data is present.
Firstly, one has to make a somewhat ambiguous but
important choice about how to perform the interpolation.
Secondly, the interpolation was found to lead to significant
scatter (much larger than the size of the symbols).

Results and discussion

Linear monodisperse and polydisperse polymers

The steady-state shear viscosity ηSTEADY as function of shear
rate γ˙ is plotted in Fig. 3 (symbols) together with the complex
viscosity η* as function of angular frequency ω (lines) for four
different linear polymers. Two of the polymers are monodis-
perse (green for the PI and blue for the PS) (Snijkers and
Vlassopoulos 2011), while the two others are polydisperse PS
(black and red). The data on all the PS polymers is either

Fig. 2 The start-up shear viscosity η+ as function of time t for different
shear rates for the H3A1A at 169.5 °C. The shear rates are indicated next
to the lines in s−1. The light gray data set was obtained at 200 °C and
shifted to 169.5 °C using the shift factors from the linear viscoelastic data.
The black lines were obtained directly at 169.5 °C. The thick dark gray
line is the LVE-limiting line
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obtained or shifted to a reference temperature of 170 °C, and
the data of the PI is shifted to 20 °C. If the data is shifted, it is
done consistently using the shift factors from the linear visco-
elastic data both for the linear data and the nonlinear data.

One can observe that all four polymers obey the Cox-Merz
rule well (compare lines and symbols of the same color). For the
polydisperse polymers (black and red), one cannot discern be-
tween the linear and nonlinear data, while for the monodisperse
polymers, slight deviations from the rule with η γ˙Þ < η� ωð Þð
can be observed systematically for both samples at the highest
rates. Pattamaprom and Larson (Pattamaprom and Larson 2001)
also observed slight deviations of this type for the experimental
data on their solutions of monodisperse high molecular weight
PS. Their MLD model furthermore supported these deviations.
Also, the slip-link model from Hua and Schieber (Hua and
Schieber 1998) yields slight discrepancies of this type as
reported in (Hua 2000). Similarly, small discrepancies were
found for polydisperse PS with PDIs around 1.7 (Ferri and
Lomellini 1999), while perfect overlap was found for
entangled solutions of monodisperse linear PS but unusual
(small) failures with η γ˙Þ > η� ωð Þð (at high rates) for PS with
a broad molecular weight distribution (Yasuda et al. 1981).
The latter observations fit nicely with some of the observa-
tions on bidisperse linear polymers (Wen et al. 2004) as
discussed in the section on “Bidisperse blends of linear poly-
mers”. Wen et al. (Wen et al. 2004) found excellent agreement
of the Cox-Merz rule for their solutions of monodisperse
linear PS.

We now discuss the effects of polydispersity on the thin-
ning slopes: The monodisperse polymers are clearly stronger
thinning than the polydisperse ones (as expected due to their
broader relaxation spectrum), and the slopes of the two mono-
disperse polymers are identical as are the slopes of the two
polydisperse ones which furthermore overlap at high rates. A
clear discussion of the shape similarity of the flow curves, and

consequently the possibility to superimpose the curves by
appropriate scaling factors for viscosity and shear rate, can
be found in Graessley’s recent monograph (Graessley 2008)
for linear monodisperse polymers, monodisperse stars, and
polydisperse linear polymers (with similar, controlled poly-
dispersity) of varying molecular weight and chemistry.

Model low functionality stars

The steady-state shear viscosity ηSTEADY as function of shear
rate γ˙ is plotted in Fig. 4 (symbols) together with the complex
viscosity η* as function of angular frequency ω (lines) for a
number of different star samples. The data was either obtained
directly or shifted to a reference temperature of 20 °C. If the
data is shifted, it is done consistently using the shift factors
from the linear viscoelastic data both for the linear data and the
nonlinear data. A detailed discussion of the nonlinear start-up
shear flow and relaxation upon cessation of steady flow be-
havior of the stars can be found in (Snijkers et al. 2013c). One
can observe that the Cox-Merz rule is obeyed rather well in all
cases with minor deviations of the type η γ˙Þ < η� ωð Þð both
for the melts (red, black, and blue) and the solutions (green
and gray), as for the linear polymers. Note that, also here, at
the highest rates, the data for the different melts overlaps, as
for the linear polymers. Menezes and Graessley (Menezes and
Graessley 1982) already reported on the start-up shear flow
behavior of a well-defined entangled star solution. Because of
the occurrence of instabilities, the nonlinear region they
accessed was very limited, and hence, their data is not really
appropriate to assess the validity of the Cox-Merz rule. On the
other hand, due to the special design of their rheometer
(Menezes and Graessley 1980), they were able to capture the
first normal stress difference reliably. Finally, Tezel et al.
(Tezel et al. 2009) studied the nonlinear steady shear viscosity
of entangled solutions of star polymers using flow birefrin-
gence, and although a direct comparison of linear and nonlin-
ear data was not made, their nonlinear viscosity data is stron-
ger thinning than the data reported in Fig. 4 (as shown in
(Snijkers et al. 2013c)) and hence suggest a strong failure of
the Cox-Merz rule with η γ˙Þ < η� ωð Þð .

Model combs

Figure 5 shows the steady (symbols) and complex (lines)
viscosities as function of shear rate and angular frequency,
respectively, for a whole range of different combs (molecular
structures detailed in Table 1). Figure 5a shows the data for the
PI combs and PI comb solution at 20 °C; Fig. 5b shows the
data for a range of PS combs at 169.5 °C. The data on the PS
polymers is either obtained or shifted to the chosen reference
temperature of 169.5 °C, and the data of the PI combs and the
PI comb solution is either obtained or shifted to 20 °C. If the

Fig. 3 Steady-state shear viscosity ηSTEADY (symbols) as function of
shear rate γ˙ and complex viscosity η* (lines) as function of angular
frequency ω for the four linear polymers. Green, blue, red, and black
represent the data for the monodisperse PI60k, monodisperse PS182k,
polydisperse PS124k, and polydisperse PS275k, respectively. The data of
all the PS samples is shown at a chosen temperature of 170 °C, the data
for the PI at 20 °C
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data is shifted, it is done consistently using the shift factors
from the linear viscoelastic data both for the linear data and the
nonlinear data. A detailed discussion of the nonlinear start-up
flow and relaxation upon cessation of steady flow behavior for
all the PI combs, the PI comb solution, and the PSc612 and
PSc622 can be found in (Snijkers et al. 2013a). For the PI
combs and the comb solution, one can see in Fig. 5a that the
Cox-Merz rule is obeyed very well, with some deviations of
the type η γ˙Þ < η� ωð Þð at high rates, just like for the linear
polymers and stars discussed previously. For the PS combs,
the situation is the same for the PSc612 (gray) and PSc622
(green), but for the PSc632, PSc642, and PSc652, one can
observe the gradual failure of the Cox-Merz rule in an unusual
way with η γ˙Þ > η� ωð Þð at intermediate rates. To further
clarify, the region of interest is enlarged in Fig. 6a where one
can clearly observe the failure (symbols above lines). In
Fig. 6b, we further show an alternative view of the data
following Winter (Winter 2009) by plotting the steady-state
shear stress σSTEADY and complex modulus G* instead of the
steady and complex viscosities. The benefit of this represen-
tation is that the scale of the y-axis is about 1.5 decades

smaller, and hence, the differences between linear and nonlin-
ear data are somewhat enlarged. It is further of interest to note
that, at the highest rates, the data for the PI combs all overlap
very well with each other (apart from the solution), and
although much less convincingly, one can also observe this
for the PS combs. At the highest rates, the shear flow does not
seem to be sensitive to the molecular structure of the polymers
(as for the linear polymers and the stars). As can be deduced
from Table 1, the key differences in the structures of the PS
combs is the increase in the length of the branches when
moving through the series from PSc612 to PSc652; the other
structural parameters, molar mass of the backbone and num-
ber of branches per backbone, remain constant (or nearly so).
The failure starts to become visible for the PSc632 as can be
observed in Fig. 6a. For the PSc612 and PSc622, the men-
tioned failure is absent as for the PI combs. Structurally, we
can state that the PI combs have fewer and smaller branches as
compared to the PS combs for which the failure is observed.
When taken the volume fraction of backbone in the structure
as structural parameter for the combs, thereby combining the
effects of the number of branches and length of the branches in
a single parameter (which is surely a very rough approxima-
tion), we can state that in terms of volume fraction, the PSc612
and PSc622 fall in the same structural group as the PI combs,
while for the other PS combs, the volume fraction of the back-
bone is significantly lower. In their investigation of the linear
viscoelasticity, Roovers and Graessley (Roovers and Graessley
1981) already reported the remarkable transition of the depen-
dence of the recoverable compliance on (in this case) the length
of the branches, a dependency that relates to the increasingly
strong effects of dynamic dilution on the dynamics of the back-
bone with increased length of the branches throughout this series
of combs. Markedly, also Roovers and Graessley found that the
PSc632 was at the point where the transition occurred. Based on
the presented data and the range of molecular structures at our
disposal, we can argue that volume fractions of branches above
70% can be reasonably expected to display the unusual failure of

Fig. 4 Steady-state shear viscosity ηSTEADY (symbols) as function of
shear rate γ˙ and complex viscosity η* (lines) as function of angular
frequency ω for the five different star polymers at a reference temperature
of 20 °C. Red, green, gra, black, and blue correspond to the PI4a-103k,
PI4a-103k86%, PI4a-103k62%, PI4a-56k, and PI8a-56k, respectively.

Fig. 5 Steady-state shear viscosity ηSTEADY (symbols) as function of
shear rate γ˙ and complex viscosity η* (lines) as function of angular
frequency ω for the PI combs and PI comb solution at 20 °C in (a) and
for the PS combs at 169.5 °C in (b). In a, the data for the PI254k, PI164k,

PI132k, PI119k, and PI472k40% are represented by black, blue, green,
red and gray, respectively. In b, the data for the PSc612, PSc622, PSc632,
PSc642, and PSc652 are represented by gray, green, blue, red, and black,
respectively.
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the Cox-Merz rule. Using computer simulations, Snijkers et al.
(Snijkers et al. 2013b) found that, due to the molecular structure
(i.e. the very long branches), the backbone of the comb with
coding PSc642 starts to stretch very early on at rates around its
inverse terminal relaxation time; it is most likely the extra stress
coming from this “enhanced stretching” which results in the
unusual failure of the Cox-Merz rule with higher values for the
steady as compared to the complex viscosity.

Model H-polymer

Figure 7a shows the steady (symbols) and complex (lines)
viscosities as function of shear rate and angular frequency, re-
spectively, for the H-polymer with coding H3A1A (see Table 1)
at a reference temperature of 169.5 °C. The data is either obtained
or shifted to 169.5 °C. If the data is shifted, it is done consistently
using the shift factors from the linear viscoelastic data both for
the linear data and the nonlinear data. In this case, mild failures of
the Cox-Merz rule with η γ˙Þ < η� ωð Þð at very high rates can be
observed, as for the linear polymers, stars, and combs. At inter-
mediate shear rate ranges, one can observe the same unusual
failures of the rule with η γ˙Þ > η� ωð Þð as for the PS combs with
very long branches (PSc632, PSc642, and PSc652). Also here,
we provide the reader with the alternative view of the data in
Fig. 7b (steady-state shear stress and complex modulus as func-
tion of shear rate and angular frequency, respectively, as in
Fig. 6b) to further clarify the difference between the linear and
nonlinear data. In terms of the before-mentioned structural pa-
rameter, the volume fraction of backbone in the structureφBB, we
can note that the value for the H-polymer falls between those of
the PSc632 and PSc642 (see Table 1), while themagnitude of the
failure of the Cox-Merz rule is less severe for the H3A1A as
compared to the PSc642. Most likely, the explanation can be
found in the number of section of the backbone. As shown in
(Snijkers et al. 2013b), the extra stress coming from the stretch of
the backbone increases with the number of segments of the
backbone; for the H-polymer, there is only one, while for the
PSc642, there are (q-1) or 28 (on average). The same idea

concerning the importance of the number of segments was
found to be valid for the behavior of model combs in
uniaxial extensional flow by Lentzakis et al. (Lentzakis
et al. 2013) as also strain hardening is a result of the stretch
of the inner segments of the backbone. This of course also
implies that our key structural parameter, φBB, to classify the
behavior of the polymers, is at best an approximation. An
assessment of the importance of the separate effects of the
number of branches and the length of the branches is at this
moment not possible as a larger library of well-defined
model branched polymers is currently unavailable.

Bidisperse blends of linear polymers

The interesting case of blends of polymers with the same
chemistry but different molecular architecture is an obvious
extension. As of yet, we did not investigate any of these
situations. There are some earlier works in the literature which
address the situation for the Cox-Merz rule for the simplest
case of bidisperse blends of two linear monodisperse poly-
mers of the same chemistry, usually in solution (Pattamaprom
and Larson 2001; Wen et al. 2004). Studies of this type can be
viewed as investigations of the effects of polydispersity (as
discussed in relation to the linear polymers), but bidisperse
blends are specific from several respects. They are structurally
well defined compared to polydisperse polymers. A better
structural understanding is convenient, especially when one
attempts to model the data. Often, bidisperse blends display
phenomena that are qualitatively different from observations
on polydisperse polymers. An interesting example is the ob-
servations of the double overshoot in start-up shear flow
(Osaki et al. 2000). Effects such as the latter are not observed
in polydisperse samples because the continuous molecular
weight distribution smears out the nonlinearities of individual
components over a broad region. Bidispersity hence deserves
separate attention and to be complete, we briefly mention the
key observations here. Pattamaprom and Larson
(Pattamaprom and Larson 2001) found that, for their
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Fig. 6 a Zoom-in on the “interesting region” for the data in Fig. 5b. Note
the unusual failure of the Cox-Merz rule with η γ˙Þ > η� ωð Þð . b Alterna-
tive representation of the data in Fig. 5b: The steady-state shear stress

σSTEADY (symbols) is plotted as function of shear rate γ ˙ and the
complex modulus G* (lines) as function of angular frequency ω. The
legends are identical to the one in Fig. 5b



bidisperse blends of high molecular weight linear monodis-
perse polymers of PS (8.43×106 g/mol (with PDI 1.14) and
2.89×106 g/mol (with PDI 1.09) in 7 vol% solutions in
tricresyl phosphate over the full range of compositions), the
complex viscosity was generally slightly above the steady
viscosity especially at higher rates and at higher concentra-
tions of the long component. As shown in all examples above,
this is the common situation. Wen et al. (Wen et al. 2004)
observed excellent agreement with the Cox-Merz rule in most
cases for a variety of solutions of bidisperse linear PS. In some
cases, in a narrow concentration range around 10 % of long
chains, they observed a mild upturn of the steady viscosities at
the highest rates which resulted in failures of the unusual type
with η γ˙Þ > η� ωð Þð . The phenomenon was attributed to the
stretch of the long chains in a sea of shorter chains, not unlike
our case for branched polymers where also stretch is at the
basis of the reported failure but due to different reasons and
over a different range of rates. Note that these experiments
might also explain the before-mentioned observations of
Yasuda et al. (Yasuda et al. 1981). They found unusual
(small) failures with η γ˙Þ > η� ωð Þð (at high rates) for PS with
a broad molecular weight distribution. The broad distribution
in molecular weight can yield a similar effect when an appro-
priate amount of long chains is stretched. At first glance, the
observations ofWen et al. and Pattamaprom and Larson might
seem incompatible especially because the samples are com-
parable in terms of molar masses and difference between the
molar masses of the long and short chains. Nevertheless, the
latter authors might have missed this slight upturn as they did
not investigate a sample in the narrow concentration range
around 10 %. We are not aware of any studies of blends of
polymer with different architectures in which the Cox-Merz
rule is assessed, surely a topic of interest for future work (not
only in relation to the Cox-Merz rule).

Conclusions and future perspectives

Although the Cox-Merz rule is purely empirical, it
works remarkably well for a large variety of molecular

structures of flexible polymers. If anything, minor devi-
ations of the type η γ˙Þ < η� ωð Þð are commonly ob-
served at the highest accessible shear rates, roughly
independent of molecular structure. Failures of the type
η γ˙Þ > η� ωð Þð are much less common. They do exist, and we
have shown here that they can be systematically observed at
intermediate shear rates for very high levels of branching, as
quantified here by the volume fraction of the backbone in the
structure. Based on earlier work (Snijkers et al. 2013b), we
speculated that the failures relate to the extra stress that arises
from the stretching of the backbone in the combs or, more
generally, the inner layers of the molecule. The real question is
however still opposite: Why does the rule work so well for
such a large variety of molecular structures? While the CCR
mechanism (Marrucci 1996) offers a clear and concise expla-
nation for monodisperse linear polymers (and, upon exten-
sion, also for polydisperse ones (Mead 2012)), for branched
polymers and blends, the situation remains elusive although
also in their case, CCR can be reasonably expected to be the
key mechanism that explains the (approximate) validity. In-
teresting polymer architectures to challenge the validity of the
rule still exist with, e.g. a case of special interest being poly-
mers with a ring architecture. To the best of our knowledge,
only linear, complex viscosity data exists for experimentally
pure rings (Kapnistos et al. 2008; Pasquino et al. 2013), and
nonlinear shear data is completely absent. Also, the validity of
the rule for blends of different architectures and the validity of
the rule at very high shear rates are as of yet unclear.

The investigation of the rheological behavior of polymers
following the outlined approach using structurally well-
defined model samples allows for a clear and unambiguous
identification of the effects of specific details of the molecular
structure of the polymer on the viscoelasticity and flow be-
havior. As the field of polymer rheology is a mature and well-
developed field both experimentally and theoretically, we
believe that this approach is currently becoming more and
more important and allows for further progress, especially for
the further development of existing molecular theories.
Currently, there remains much interest in the further elucida-
tion of the effects of molecular architecture of model polymers
and polydispersity on the nonlinear shear and extensional flow

Fig. 7 Steady-state shear
viscosity ηSTEADY (symbols) as
function of shear rate γ˙ and
complex viscosity η* (line) as
function of angular frequency ω
in (a); steady-state shear stress
σSTEADY (symbols) as function of
shear rate γ˙ and complex
modulus G* (line) as function of
angular frequency ω in (b) for the
H-polymer H3A1A at 169.5 °C
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behavior with many complementary possibilities for future
work, such as further improvement of the techniques for the
characterization of nonlinear flow, e.g. the CPP as currently
designed in our lab needs further improvements to enable
measurements of the first and second normal stress differences
following (Schweizer 2002; Schweizer 2003; Schweizer et al.
2004), future investigations into the flow behavior of heavily
branched model polymers as the nonlinear rheology becomes
more interesting at high branching levels as exemplified here
by the failure of the Cox-Merz rule and in Snijkers et al.
(Snijkers et al. 2013b) by the occurrence of a double overshoot
in start-up shear flow, and investigations of the flow behavior
of (miscible) blends of different model architectures.
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