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Abstract Many metastable complex fluids, when subjected
to oscillatory shear flow of increasing strain amplitude at
constant frequency, are known to show a characteristic non-
linear rheological response which consists of a monotonic
decrease in the elastic modulus and a nonmonotonic change
in the loss modulus. In particular, the loss modulus increases
from its low strain value, crosses the elastic modulus, and
then decreases with further increase in the strain amplitude.
Miyazaki et al. (Europhys Lett 75:915–921, 2006) proposed
a qualitative argument to explain the origin of the nonmono-
tonic nature of the loss modulus and suggested that in fact
this response could be universal to all complex fluids if
they are probed in a certain frequency window in which
the fluid is dominantly elastic in the small strain limit. In
this letter, we confirm their hypothesis by showing that a
wide variety of complex fluids, irrespective of their thermo-
dynamic state under quiescent conditions, indeed show the
aforementioned characteristic nonlinear response. We also
show that the maximum relative dissipation during yield-
ing occurs when the imposed frequency resonates with the
characteristic beta relaxation frequency of the fluid.
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Introduction

The nonlinear mechanical response of many materials,
when subjected to large deformation or stress, changes from
being predominantly elastic (solid-like) to predominantly
plastic (liquid-like) (Stokes et al. 2008). This transition
is called yielding. One of the experimental techniques to
investigate the nonlinear response of soft materials involves
subjecting them to oscillatory shear flow in which the shear
strain γ = γ0 sin (ωt) is varied by ramping its amplitude
γ0 at a constant frequency. For an arbitrary strain ampli-
tude, the measured stress σ(t) can be deconvoluted into
an in-phase response, characterized by the elastic modulus
G′, and an out-of-phase response, characterized by the vis-
cous modulus G′′. An accurate representation of the stress
response would consist of Fourier harmonics of the elastic
and viscous moduli (Ewoldt et al. 2008). However, har-
monics higher than the first can be neglected for moderate
strain amplitudes at which yielding is most often seen in
soft materials. Thus in an amplitude sweep test, the mechan-
ical response of soft materials changes from being elastic
(G′ > G′′) at small strain to viscous (G′ < G′′) at large
strain.

At intermediate strain, many metastable soft materi-
als show a characteristic response in which the viscous
modulus increases from its linear value up to a max-
imum value G′′

max before falling off, while the elastic
modulus decreases monotonically with strain and crosses
below the viscous modulus at the yield point. This non-
monotonic G′′ response, also called the type III LAOS
behavior (Hyun et al. 2002), has been reported earlier
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for carbon composites of butyl rubber (Payne 1963),
soft colloidal glasses (Brader et al. 2010), emulsions
(Mason et al. 1995; Bower et al. 1999), gels (Altmann
et al. 2004), electrorheological fluids (Parthasarathy and
Klingenberg 1999; Sim et al. 2003), associating polymer
solutions (Tirtaatmadja et al. 1997a, b), and weakly struc-
tured materials such as xanthan gum solutions (Song et al.
2006). On the other hand, polymeric fluids such as solu-
tions and melts, which are ergodic, are typically known to
exhibit strain-softening response (Doi and Edwards 1986)
in which chain orientation causes both moduli to decrease
monotonically with increasing shear strain.

Recently, Miyazaki et al. (2006) proposed an elegant
qualitative argument for explaining the origin of the non-
monotonic G′′ response based on the reasoning that yield-
ing involves a strain-induced decrease in the characteristic
relaxation time of the material. The authors proposed that
the nonmonotonic G′′ behavior should be observable in all
complex fluids. In this work, we validate this hypothesis by
demonstrating experimentally the universality of the yield-
ing response. We also extend the argument further to infer
an interesting dynamical feature.

Model

Following Miyazaki et al. (2006), we may represent any
viscoelastic fluid by a parallel combination of N Maxwell
elements, each consists of linear springs1 in series with
nonlinear dashpots so that the relaxation times (λi) of the
Maxwell elements are given by some decreasing function of
the strain amplitude such as

1

λi (γ0)
= 1

λLVE
i

+ k (ωγ0)
m . (1)

In Eq. 1, λLVE
i represents the characteristic relaxation time

for the ith mode in the linear regime, i.e., under small
imposed strain. The validity of Eq. 1 with m ≈ 1 for
nonlinear deformations of metastable materials was demon-
strated by Wyss et al. (2007), Yamamoto and Onuki (1998),
Leonardo et al. (2005), and Kalelkar et al. (2010). Inciden-
tally, Eq. 1 also describes the so-called convective constraint
release mechanism of stress relaxation in entangled polymer
melts subjected to high shear (Marrucci 1996). Thus, the use
of Eq. 1 for describing the strain dependence of relaxation
times of many soft materials in the nonlinear regime appears
justified. Indeed, Eq. 1 is a simplified version of the model

1Nonlinear springs can be used without loss of generality. Strain-
softening springs will cause a reduction in the prediction of the
magnitude of G′′

max.

proposed by Derec et al. (2001) who, in addition to consid-
ering the strain dependence of relaxation times, have also
taken into account the influence of possible aging effects.

The elastic and viscous moduli for the Maxwell model
can be written as

G′ (ω, γ0) =
∑N

i

gi [ωλi (γ0)]2

1 + [ωλi (γ0)]2 ;

G′′ (ω, γ0) =
∑N

i

gi [ωλi (γ0)]

1 + [ωλi (γ0)]2
. (2)

Here, λi(γ0) is given by Eq. 1. Miyazaki et al. (2006)
explained the strain dependence of G′′ by considering a
single mode (N = 1) in Eq. 2. The frequency regime of
interest is one in which the material is predominantly elas-
tic at small strains so that the Deborah number is given by
ωλLVE

C � 1, where λLVE
C is a strain-independent character-

istic time of the material that is experimentally measured as
the inverse of the crossover frequency. At small strain ampli-
tudes, G′ ∼ g and G′′∼g / ωλLVE

C so that G′ > G′′ and both
are independent of the applied strain. At moderate strain
amplitudes, just after the linear regime, the Deborah number
is still ωλc (γ0) > 1 but the relaxation time decreases upon
increasing strain so that G′′ ∼g / ωλc (γ0) is an increasing
function of strain. For large strain amplitudes, the effective
strain rate reduces the relaxation time to the extent where
ωλC (γ0) � 1, so that the moduli in Eq. 2 can be approxi-
mated as G′′ ∼ gi [ωλ (γ0)] ; G′ ∼ gi [ωλ (γ0)]2 indicating
both G′ and G′′ to be decreasing functions of strain, with
G′′ > G′. Further, the model also predicts the crossover
point, i.e., the macroscopic yield point at

ωλC

(
γ0,y

) = 1, where G′ = G′′
max = g / 2. (3)

In Eq. 3, γ0,y is the yield strain, which is unity when
normalized as γ̃0,y = kγ0,y

∼= 1 [cf. Eq. 1].
Since Eq. 1 invokes neither the microstructural details

of soft materials nor their dynamical details, the Miyazaki
argument presented above should be equally valid for all
viscoelastic fluids as long as they are probed in an appropri-
ate frequency window. In what follows, we demonstrate this
experimentally for different complex fluids, which are cho-
sen such that under near-quiescent conditions, some of them
are in equilibrium state (polystyrene melt, surfactant lamel-
lar phase) and some in metastable state (microgel dense
suspension, hair gel, xanthan gum, and gelatin). The chosen
materials also have very different microstructures.



Rheol Acta (2013) 52:859–865 861

Experimental procedures

Sample preparation

Poly(N-isopropylacrylamide) microgels

Poly(N-isopropylacrylamide) (PNIPAm) microgels (Pelton
and Chibante 1986) were synthesized by free radical precip-
itation polymerization as prescribed by Senff and Richtering
(2000). Sodium dodecyl sulfate (0.15 g) was used as a
stabilizer and potassium per sulfate (KPS 0.3 g) as an ini-
tiator, and cross-linking was done by poly(ethylene glycol)
diacrylate (Mw = 700 kg/mol, 0.157 g). Polymerization
was carried out in a double-jacketed glass kettle reactor
connected to a temperature-controlled water circulator and
an overhead stirrer. All reactants except the initiator were
mixed in 480 ml of deionized water at 25 ◦C and stirred at
300 rpm for 30 min under inert atmosphere. The reaction
mixture was heated to 70 ◦C followed by addition of the ini-
tiator (0.3 g of KPS in 20 ml deionized water). The reaction
was allowed to proceed for 4 h under nitrogen. The temper-
ature was then reduced to 25 ◦C, and the reaction mixture
was stirred overnight at 100 rpm. Finally, the dispersion was
dialyzed (using dialysis bags having a molecular weight cut-
off of 10,000 g/mol) against deionized water for 2 weeks.
The dialyzed sample was lyophilized for 8 h and stored in a
desiccator. Concentrated suspension (6 wt %) was then pre-
pared by dispersing a known amount of polymer in deion-
ized water. As these microgels are soft and compressible,
they seldom crystallize at very high concentrations. The
hydrodynamic radius Rh = 137 nm at 25 ◦C was measured
from dynamic light scattering experiments (Brookhaven
Instruments).

Xanthan gum

A 2-wt % aqueous suspension of xanthan gum gives a soft
colloidal glass (Song et al. 2006). Ninety-eight milliliters of
water was taken in a beaker and stirred at ∼ 500 rpm with
the help of an overhead stirrer. Two grams of xanthan gum
powder was added very slowly to the continuously stirred
water. This ensured complete and homogenous mixing of
the powder. Stirring was continued for another 30 min,
and the suspension was stored at 5 ◦C in a screw-capped
container.

Surfactant lamellar phase

A 90-wt % aqueous suspension of a nonionic surfactant
C12E9 (Rylo) was prepared using deionized water. The
suspension was heated above the isotropic temperature
(∼ 40 ◦C) on a water bath. This warm solution was then
mixed vigorously using a vibrato meter. Bubbles trapped
were removed by sonication and multiple cycles of heating

and cooling above the isotropic melting temperature. A
thermodynamically stable homogenous lamellar phase was
formed at room temperature (∼ 25 ◦C) as confirmed by
small-angle X-ray scattering (Kulkarni et al. 2011).

Gelatin

A 14-wt % gelatin solution was prepared in deionized water.
The gel was made in a petri dish. Heating the solution above
40 ◦C helps to homogenize the gelation powder. On cooling
the solution to room temperature, the gel takes the shape of
the container at room temperature (∼25 ◦C).

Hair gel

A commercial hair gel (Park Avenue) was used as received.

Polystyrene melt

Polystyrene (Mw ∼ 550, 000 g/mol, PDI ∼ 1.05) was pur-
chased from Sigma-Aldrich (GPC grade), and disk samples
(25 mm in diameter) were prepared by compression mol-
ding at 170 ◦C.

Rheological measurements

Rheological experiments for all samples except polystyrene
were done on a MCR 301 (Anton Paar) rheometer. The
geometry used was a cone–plate (cone angle 1◦, diame-
ter 25 mm). Polystyrene disks were tested on an ARES-G2
(TA Instruments) rheometer using 25-mm parallel plates.
Oscillatory strain sweep tests were performed at constant
frequency and temperature. Experiments were conducted
at various frequencies and at temperatures so chosen that
the samples exhibited dominantly elastic response at small
strain. Linear viscoelastic frequency response was measured
by performing frequency sweep tests at a constant strain
chosen from the linear viscoelastic (LVE) regime.

Results and discussions

Figure 1(a–f) shows that all materials, including the entan-
gled polystyrene melt and the lamellar surfactant phase,
show a nonmonotonic G′′ response followed by a crossover
of the moduli, which we define as the macroscopic
yielding event. Figure 1(g–l) shows that the LVE fre-
quency response of all these materials, irrespective of their
microstructure and thermodynamic state, is qualitatively
similar: G′

LVE > G′′
LVE, suggesting that in the frequency–

temperature–density window of observation, the fluid is pre-
dominantly elastic at small strain, G′′

LVE increases monoton-
ically but weakly with frequency, whereas the G′′

LVE shows
nonmonotonic frequency dependence with a minimum at
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Fig. 1 Amplitude sweep at frequency where maximum in normalized
G′′ is observed (a–f). Frequency sweep (in LVE) and normalized G′′ at
different frequencies for different materials (g–l). PNIPAm suspension
at 20 ◦C and frequency of 1 rad/s (a, g), lamellar phase of CnH2n+1
surfactant at 25 ◦C and frequency of 1 rad/s (b, h), hair gel at 25 ◦C
and frequency of 0.5 rad/s (c, i), xanthan gum solution at 25 ◦C and

frequency of 1 rad/s (d, j), gelatin at 25 ◦C and frequency of 1.6 rad/s
(e, k), and polystyrene at 170 ◦C and frequency of 16 rad/s (f, l). G′
is represented by open circles, G′′ by filled circles, maximum normal-
ized G′′ (G̃′′

max

)
by filled stars, G′′ (G̃′′

max

)
and dotted lines are guides

to the eye

intermediate frequency. Thus, the data corroborate the sim-
ple arguments presented in the Section “Model” and under-
line the similarity of patterns observed in the yielding
process in complex fluids.

The predictions of the multimode Maxwell model (Eq. 2)
are shown in Fig. 2 for the representative case of the PNI-
PAm microgel suspension. For this calculation, an eight-
mode relaxation spectrum was obtained by fitting the model
to the experimental linear viscoelastic frequency response
shown in Fig. 2a. The prediction of the multimode Maxwell
model for an amplitude sweep experiment carried out at a
representative frequency of 1 rad/s is compared with exper-
imental data in Fig. 2b. Different values of the parameter
m in Eq. 1 were tried, and it was found that m = 1 gave
the best fit to the experimental data. Previous experimental
investigations have also suggested the value of m = 1 (Wyss
et al. 2007; Kalelkar et al. 2010). The model provides only a

qualitative prediction of the nonmonotonic G′′ response.
The poor agreement between model prediction and experi-
mental data in the nonlinear region could be due to contri-
butions from higher harmonics that have not been accounted
for in the model. However, in our earlier work (Kalelkar
et al. 2010), we have shown that for a 14-wt % suspen-
sion of PNIPAm microgels, the ratio of the third harmonic
stress signal to the first harmonic stress signal is small (I3

/ I1 = 0.06). This suggests that the contribution of the
higher harmonics is likely to be small and may not be the
main reason for the observed differences between the model
and experiments. In the present work, our interest is in
seeking broader understanding of the phenomenon rather
than aiming for quantitative predictions, for which more
sophisticated models will be required. Hence, we present
below only qualitative trends predicted by the Maxwell
model.
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Fig. 2 a Frequency sweep data
at low strain amplitude (linear
viscoelastic response) of
PNIPAm microgel suspension
along with fit of the multimode
Maxwell model. b Amplitude
sweep data at 1 rad/s for the
same suspension together with
predictions of the multimode
Maxwell model, for m = 1

a b

While the multimode Maxwell model predicts similar
nonlinear response as the single-mode version of Miyazaki
et al. (2006), it allows us to interrogate what happens to the
dissipation component when the strain sweep experiments
are done at different frequencies. To answer this, we define
the normalized viscous modulus G̃′′

max = G′′
max/G

′′
LVE (ω)

so that the dissipation can be compared for different fre-
quencies relative to the linear limit. Figure 3a shows that
G′′

max has a weaker dependence on frequency relative to
G′′

LVE (ω), which has a frequency dependence shown in
Fig. 2a. Therefore, the normalized viscous modulus G̃′′

max
has a maximum at the characteristic frequency at which
the G′′

LVE (ω) shows a minimum. To illustrate this, Fig. 3b
shows the predictions of G̃′′

max at different frequencies as
calculated from the multimode Maxwell model for the
case of the PNIPAm microgel suspension. Also shown are
experimentally determined values of G̃′′

max and the linear
frequency response for this material. Indeed, the maximum
in G̃′′

max is seen to occur at the frequency where G′′
LVE (ω)

shows a minimum. That this is a common feature of yield-
ing for all soft materials is seen in Fig. 1(g–l), which shows
G̃′′

max at various frequencies for all materials investigated
here. In each case, the maximum in G̃′′

max is seen at the
frequency where G′′

LVE (ω) shows a minimum. It may be
noted that in a LAOS experiment, the energy dissipated
per cycle is Ø = ∫ 2π/ω

0 τ γ̇ dt = πG′′
1γ 2

0 , where G′′
1 is the

first harmonic of the loss modulus (Ganeriwala and Rotz
1987). Thus, the maximum relative dissipation defined as
Ømax = πγ 2

0 G̃′′
max (assuming that G′′ ∼= G′′

1) will have
the same frequency dependence as G̃′′

max. In other words,
the maximum relative dissipation will be the highest at the
frequency where G′′

LVE (ω) shows a minimum.
In order to better understand this phenomenon, we show

in Fig. 3c the predictions of Maxwell model for frequency
dependence of viscoelastic moduli at various strain ampli-
tudes starting from small strain (linear response) to large
strains (nonlinear response). The relaxation spectrum used
here as an example is that for the PNIPAm suspension;
however, similar features will be predicted for any other
complex fluid. The calculations are extrapolated to low

frequencies where the Maxwell model predicts a crossover
of moduli corresponding with the structural relaxation time
λC . For increasing strain amplitude, several features are
worth noticing in the figure: In the low-frequency region
ω < ωLVE

C , the moduli decrease with increasing strain,
suggesting a strain-softening behavior with G′′ > G′. At
higher frequencies ω > ωLVE

C , while G′ decreases with
strain, G′′ increases with strain. This corresponds with the
upturn in G′′ seen in the amplitude sweep predictions. It
can be seen that the ratio G̃′′ = G′′ (ω, γ0)/G

′′
LVE (ω), i.e.,

the normalized loss modulus, is always the highest for
the frequency corresponding to the minimum in G′′

LVE (ω),
indicating the maximum relative dissipation at this fre-
quency. The crossover frequency ωC (γ0) increases with
strain amplitude, indicating a decrease in the structural
relaxation time in accordance with Eq. 1. Thus, the slow
structural relaxation time scale approaches the fast time
scale monotonically with increasing strain amplitude. At
90 % strain for this material, the ωC approaches the fre-
quency at which G′′

LVE (ω) shows a minimum. Above this
strain, G′ decreases below G′′ (indicating yielding), and
G′′ also decreases over the entire frequency range. Thus,
the maximum relative dissipation is obtained at 90 % strain
for this fluid and at frequency close to ωβ , which is the
frequency corresponding to the minimum in G′′

LVE and is
referred to as the beta relaxation frequency of cage dynam-
ics in the framework of the mode-coupling theory (Mason
and Weitz 1995).

The above observations together with Eq. 3 imply that
the maximum relative dissipation

(
G̃′′

max

)
just before macro-

scopic yielding will occur in an amplitude sweep experi-
ment when the imposed frequency satisfies ω = 1/λc =
1/λβ ; here, λC(γ0) is the structural relaxation time (i.e.,
the so-called alpha relaxation time) and λβ = 1/ωβ is the
beta relaxation time. For soft glassy materials consisting of
particles trapped in a local “cage,” λC represents the time
scale over which a trapped particle would escape its cage,
while λβ corresponds to the cooperative motion of the par-
ticles within the cage (Roldan-Vargas et al. 2010). Thus, the
maximum relative dissipation prior to macroscopic yielding
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Fig. 3 a Maxwell model
predictions of the strain
dependence of normalized G′′
for various frequencies. b
Comparison of experimentally
determined normalized
G̃′′

max(filled circles) as a function
of frequency with predictions of
the Maxwell model (dotted line)
for the normalized G̃′′

max. The
dashed–dotted line through the
experimental data only serves as
guide to the eye. The figure also
shows the experimental linear
viscoelastic frequency response
(triangles) and model fit for the
same (bold and dashed lines). c
Prediction of the Maxwell model
for the frequency dependence of
G′ and G′′ at different strains
γ0 = 1 % (LVE), 5 %, 20 %,
40 %, 60 %, and 90 % (arrows
indicate increasing strain
amplitudes). The closed and
open symbols represent the
experimental G′ and G′′,
respectively, for γLVE = 0.6 %

is seen to occur when the dynamics of alpha relaxation
are accelerated by the imposed shear to an extent where
they become equal to the beta relaxation dynamics so that,
effectively, a particle in the fluid does not feel the presence
of topological constraints.

For entangled polymers, whose dynamics may be under-
stood using the tube model, Marrucci (1996) argued that the
tube renewal time scale λC will decrease upon imposition of
large and rapid deformation by the so-called convective con-
straint release process in which neigboring entangled chains
are convected away from the test chain, releasing entangle-
ments locally along its contour. Under sufficiently strong
flows, if the rate of CCR is of the same order as the relax-
ation of a disentangled polymer, then the polymer chain
would not experience the presence of topological constraints
tube in a dynamical sense. The latter is approximately given
by the Rouse reorientation time λR of half the chain in its
tube. Hence, when the imposed frequency of a large ampli-
tude oscillatory flow approaches λR , a complete destruction
of the tube is possible. This is akin to the destruction of
the cage structure in a soft glassy material. It is well known
that the Rouse frequency ωR = 1/λR is slightly lower than
the frequency at which G′′

LVE shows a minimum (Rubinstein
and Colby 2003; Doi and Edwards 1986). If the imposed
frequency equals the Rouse frequency, a polymer chain
would not feel the presence of topological constraints of the
entanglements. Therefore, the criterion ω = 1/λC = 1/λβ

results in the maximum relative dissipation in the case of
entangled polymers as well.

In summary, we have ascertained that soft materials
exhibit universal features of yielding in an oscillatory
shear test when conducted in an appropriate frequency–
temperature–concentration window. Specifically, the linear
frequency response and the nonlinear strain response are
related such that the maximum relative dissipation prior to
macroscopic yielding is obtained when the imposed fre-
quency resonates with the microscopic time scale of the
material. Under this condition of high shear, the micro-
scopic structural entities that make up the material do not
feel topologically constrained any more.
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