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Abstract The non-linear viscoelasticity of concentrated
solutions and glasses of soft starlike micelles has been stud-
ied by large-amplitude oscillatory shear (LAOS). The non-
linear response has been analysed using current schemes of
Fourier transform (FT) rheology, and its character has been
determined by the phase of the third harmonic contribution
to the stress. The limitations of FT rheology and related
analysis methods are discussed, and an alternative method
is presented that takes into account all the higher harmonics.
This method reveals a strain-hardening character of intracy-
cle non-linearities at large strain amplitudes for all volume
fractions. We also show that, although the relation of LAOS
with steady shear measurements works qualitatively, due to
inherent limitations of LAOS, steady shear data cannot be
reproduced quantitatively.

Keywords Non-linear viscoelasticity · Colloids ·
Large-amplitude oscillatory shear · Yielding

Introduction

The non-linear rheological response of concentrated
disordered soft materials (such as colloidal suspensions,
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emulsions, foams) presents many interesting problems of
both fundamental and diverse practical significance (Larson
1999; Mewis and Wagner 2009). Typically, such materials
at high volume fractions and/or strong intermolecular attrac-
tions exhibit strong viscoelasticity and yield stress (Larson
1999; Moller et al. 2006). In general, such behaviour stems
from frozen or very slowly relaxing structures that are due
to strong entropic or enthalpic energy barriers imposed at
a microscopic scale on the constituents of the system, cre-
ating glasses and gels, respectively. These states behave as
weak solids at low stresses but can flow if the imposed stress
or strain exceeds a certain value. By increasing the volume
fraction, hard- or soft-sphere colloids exhibit a diverging
zero-shear viscosity (Shikata and Pearson 1994; Mason and
Weitz 1995) and suppression of long-time out-of-cage dif-
fusion forming a glassy state where individual particles
are kinetically trapped by their neighbours (Pusey and Van
Megen 1987; van Megen et al. 1998; Brambilla et al. 2009).
Under external shear, colloidal glasses and gels yield due
to cage breaking and/or bond breaking, i.e. via a shear-
induced weakening of the entropic barrier allowing particles
to escape from their cage (Petekidis et al. 2002, 2004; Pham
et al. 2008; Laurati et al. 2011; Koumakis and Petekidis
2011; Koumakis et al. 2012a). Such shear-induced solid-
to-liquid transition (yielding) has been studied in a variety
of systems, both under steady and oscillatory shear (Mason
et al. 1996; Cloitre et al. 2003; Petekidis et al. 2003; Carrier
and Petekidis 2009; Helgeson et al. 2007).

A main feature of colloidal glasses and gels (similarly
with other concentrated disordered soft materials) is that
they show pronounced non-linear stress response in steady
or oscillatory shear. Common examples of such behaviour
is the reduction of viscosity at high shear rates (i.e. shear
thinning) (Larson 1999; Mewis and Wagner 2009) and the
anharmonic stress response to large-amplitude oscillatory
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shear (Philippoff 1966; Hyun et al. 2011). Their non-
linear response is quite important in most applications and
processes of biological or industrial significance, where
large deformations and non-unidirectional flows are present.
A straightforward, and thus commonly used, method to
study non-linear viscoelasticity is to extend the linear small-
amplitude oscillatory measurements to large strain ampli-
tudes. Thus, in a large-amplitude oscillatory shear (LAOS)
experiment, the moduli G

′
and G

′′
are measured even at

strain amplitudes where the stress exhibits strong deviations
from simple harmonic response. This approach is very use-
ful in determining the onset of non-linear behaviour, but it
is also fraught with difficulties. The most critical problem
is that G

′
and G

′′
, due to the large anharmonic contribu-

tions in the stress, lack the commonly accepted physical
interpretation that they have in the linear regime.

Here, we extend a previous LAOS study on yielding of
soft colloidal glasses (Renou et al. 2010) presenting experi-
mental data at different volume fractions, above and below
the glass transition. An additional aim of this paper was to
discuss the relative merits of some of the different methods
currently used for the analysis of LAOS experiments and
further suggest a simple approach to look into the non-linear
intracycle response. In this way, we compare the LAOS
response of a concentrated viscoelastic liquid, where shear
thinning (i.e. drop of the complex viscosity) is detected, to
that of a colloidal glass where yielding (i.e. shear-induced
solid-to-liquid transition) takes place when the yield strain
is exceeded leading to a similar drop of G

′
below G

′′
.

Large-amplitude oscillatory shear (LAOS)

In a LAOS experiment, a sinusoidal strain of large ampli-
tude is applied to the sample and the non-sinusoidal stress
response is measured (Philippoff 1966; Onogi et al. 1970;
Gadala-Maria and Acrivos 1980). In the last 10 years, LAOS
has become one of the most common techniques to study
non-linear viscoelasticity since one can change indepen-
dently the oscillation amplitude γ0 and frequency ω, probing
the whole range of rheological behaviour, from steady vis-
cosimetric flow (ω → 0) and linear viscoelasticity (γ 0 →
0) to non-linear viscoelasticity (Dealy and Wissbrun 1999).

Several methods of analysis of LAOS data have been
proposed and recently reviewed in the literature (Hyun
et al. 2011). The most common method is Fourier trans-
form (FT) analysis, where the non-sinusoidal but periodic
stress response to LAOS is expressed as a Fourier series
(Matsumoto et al. 1973; Wilhelm et al. 1998). The magni-
tude of non-linear response can thus be quantified by the
relative amplitudes of higher harmonics with respect to the
fundamental. This approach has been used extensively to
analyse LAOS results on a variety of systems such as linear
polymers (Wilhelm et al. 1999, 2000), branched polymers

(Schlatter et al. 2005; Hyun et al. 2013), cubic phases of
diblock copolymer micelles (Daniel et al. 2001; Nicolai
and Benyahia 2005), lamellar phases of diblock copolymer
melts (Langela et al. 2002) and concentrated colloidal sus-
pensions (Heymann et al. 2002; Le Grand and Petekidis
2008; Carrier and Petekidis 2009). However, although it
quantifies very accurately the magnitude of the non-linear
response, it is not straightforwardly related with the physical
processes that cause it, although the phase of the harmonics
has been used to indicate shear-thinning or shear-thickening
response within a cycle (Neidhofer et al. 2003).

Based on symmetry arguments, a conceptually differ-
ent approach has been suggested where the total stress is
decomposed into an elastic stress and a viscous stress (Cho
et al. 2005). This decomposition is used to construct non-
linear moduli that specifically refer to the elastic stress and
viscous stress separately and hence give an indication of the
character of the non-linear response, without the need for a
Fourier transformation.

Both approaches were combined by Ewoldt et al. who
used Chebyshev polynomials as an orthonormal basis for
the decomposition of the periodic stress signal (Ewoldt
et al. 2008). Crucially though, they have provided a phys-
ical interpretation of higher harmonics by assigning mean-
ing to mainly the third-order Chebyshev polynomials. The
non-linear behaviour of materials was classified into strain-
hardening/softening and shear-thickening/thinning contri-
butions according to whether the maximum non-linear stress
occurs at maximum strain or shear rate and whether it
augments or reduces the linear stress. Of course, the clas-
sification of non-linearity based on the third harmonic is
expected to be valid only when it dominates the non-linear
response, i.e. at small strain amplitudes. It has also been
shown that Chebyshev decomposition is equivalent in all
respects to FT analysis, with the role of the nth Chebyshev
polynomial sign played by the phase of the nth harmonic,
although one has to be careful with the definition of the
oscillatory input (Ewoldt 2013).

On the other hand, some studies have sought to under-
stand LAOS by comparing the response to simpler steady
shear experiments. In the early 1980s, Gadala-Maria and
Acrivos could predict the LAOS response of non-Brownian
concentrated suspensions from their rheological response
to step shear rates of opposite directions (Gadala-Maria
and Acrivos 1980). More specifically for concentrated
suspensions with a yield stress, Doraiswamy et al. (1991)
have constructed a model, also applied to LAOS, that com-
bines perfectly elastic deformation below a yield stress
and viscous shear-thinning behaviour after yielding
(Doraiswamy et al. 1991). More recently, it has been sim-
ilarly suggested that the stress waveform can be viewed as
a succession of elastic and viscous processes (Renou et al.
2010; Rogers et al. 2011). Rogers et al. used this approach
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Fig. 1 Simulated data of arbitrary harmonic viscoelastic response (red
dashed line) to a sinusoidal strain input (black dashed line). A third
stress harmonic of lower amplitude is added with a fixed phase differ-
ence with respect to the strain, and the resulting total stress is shown
(grey line). This phase difference is in (a) δ3 = 0◦, (b) δ3 = 180◦, (c)
δ3 = 90◦ and (d) δ3 = 270◦. The contribution of the third harmonic

to the total stress is examined at two points within the period of oscil-
lation, at maximum shear rate and maximum strain, and the non-linear
response is classified accordingly (the equations used to generate the
figure are σ1 = sin (2πx) + cos (2πx), γ = sin (2πx) and σ3 =
0.25 sin (6πx + δ3))

to quantitatively extract an elastic modulus from the elastic
part of the waveform and further determine the flow curve
(stress versus strain rate in steady shear) from the viscous
part of the oscillatory stress waveform (Rogers et al. 2011).

Fourier transform (FT) rheology

FT rheology decomposes the stress response into a Fourier
series of higher harmonics:

σ(t) = γ 0

{ ∑
n odd

G
′
nsin (nωt) +

∑
n odd

G
′′
ncos (nωt)

}
(1)

or, in the intensity-phase representation, as:

σ(t) =
∑
n odd

Insin (nωt + φn) (2)

A physical interpretation of higher harmonics can be
extracted from the phase difference of the nth harmonic with
respect to the strain, δn(0 − 2π).1 This can be understood
in simple terms by considering the effect of the third har-
monic on an arbitrary linear viscoelastic stress response. In

1Note that there is an alternative interpretation based on the phase dif-
ference of the nth harmonic with respect to the fundamental of the
stress (Neidhofer et al. 2003), which has been used in previous studies
(Le Grand and Petekidis 2008).

Fig. 1(a), a typical linear response is displayed along with a
third harmonic stress response that is in phase (δ3 = 0) with
the strain. It can be clearly seen that the third harmonic is
zero at the point of maximum shear rate and negative at the
point of maximum strain. Thus, the non-linear response,
of mainly elastic character, can be classified as pure
strain softening within the cycle; as the maximum strain
is approached, the total stress falls below the harmonic
stress. Similarly, for δ3 = π , the total stress at maxi-
mum strain is found to be larger than the harmonic stress
(Fig. 1(b)), indicating intracycle strain hardening. In the
same way, δ3 = π/2 is associated with shear thickening
(Fig. 1(c)), since the stress at maximum rate (mainly of
viscous origin) is larger than the harmonic stress, while
δ3 = 3π/2 indicates shear thinning (Fig. 1(d)) along the
same lines.

It is important to realise that in the most general case,
δ3 will be between the phase differences that correspond
to the above pure intracycle non-linear phenomenologies,
suggesting that the material exhibits both strain-hardening
(or softening) and shear-thickening (or thinning) response.
We should also note that the nomenclature above, i.e. shear
thinning/thicknening and strain hardening/softening, in the
context of the phase of the third harmonic strictly describes
a non-linear response within the LAOS cycle (Ewoldt et al.
2008; Hyun et al. 2011). This is not a priori related to the
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decrease or increase of G
′
1 and G

′′
1 at high strain amplitudes

due to shear melting or hydrodynamic effects which are also
usually described as shear thinning and shear thickening,
respectively.

Materials and methods

Starlike micelles from poly(ethylene-alt-propylene)–
poly(ethylene oxide) (PEP-PEO) block copolymers

PEP-PEO block copolymers were prepared by a two-
step anionic polymerization (Allgaier et al. 1997). In this
study, we used PEP1-PEO20 block copolymers where the
hydrophobic PEP part has 1/20 of the molecular volume
of the hydrophilic PEO part. The number average molar
mass (Mn) determined by size-exclusion chromatography in
THF/DMA at 40 ◦C was 1,300 g/mol for the PEP block and
20,300 g/mol for the PEO block corresponding to an overall
Mn = 21,600 g/mol for the block copolymer. Their polydis-
persity indices (Mw/Mn) were 1.04 and 1.08, respectively.

Previous work has demonstrated that PEP-PEO block
copolymers in deuterium oxide (D2O) form micelles with
an aggregation number of 120 and a core where no kinetic
exchange of arms between micelles is possible (Stellbrink
et al. 2004; Lund et al. 2006). The absence of kinetic
exchange ensures that the aggregation number remains con-
stant with varying concentration and temperature. Further-
more, it has been seen that the pair interaction potential
between micelles is similar to the interaction potential of
regular star polymers (Laurati et al. 2005). The micelles
can thus be treated as stable colloidal entities with starlike
pair interactions.

Clear solutions were obtained by dissolving the PEP-
PEO polymer in D2O (99.8 at.% D, purchased from Armar
Chemicals). The solutions were left to equilibrate at room
temperature for at least 1 week before measuring. The
dependence of the micellar hydrodynamic radius Rh on tem-
perature has been established by dynamic light scattering on
dilute solutions. It decreases from Rh = 37.4 nm at 10 ◦C
to Rh = 34.4 nm at 40 ◦C due to the decreasing solvation
of the corona in marginal solvent D2O. The micellar solu-
tions are labelled by their polymer concentration normalised
by the overlap concentration c∗ which was calculated using
the Rh at each specific temperature. At 20 ◦C, the overlap
concentration was found to be c∗ = 3f Mw/

(
4πR3

hNa
) =

21.7 g/l.

Experimental methods

An Anton Paar Physica MCR 501 stress-controlled rheome-
ter was used in strain control mode for the linear viscoelas-
ticity and the LAOS experiments. We used a stainless steel

cone-and-plate geometry, with a cone diameter of 50 mm,
an angle of 0.04 rad and a truncation (gap) of 50 μm. The
temperature was controlled by a Peltier system, and a home-
made solvent trap was used to minimise evaporation during
measurements typically lasting up to 4 h.

The linear viscoelastic data were acquired between 100
and 0.1 rad/s. In the case of glassy solutions, the sam-
ple was rejuvenated by an oscillatory preshear of strain
amplitude 1,000 % at 1 rad/s for 200 s and measurements
were performed after a waiting time of 200 s. A series of
dynamic strain sweeps at different frequencies and tem-
peratures were performed. The strain amplitude was varied
between 1 and 1,000 %. When constant LAOS response
(denoted as alternance by Giacomin et al. (2011)) was
reached, the last full waveform of stress and strain was
recorded and stored. Crucially, the Direct Strain Oscillation
option of the Physica MCR 501 is used to ensure a perfect
sinusoidal strain at all amplitudes. The ability to perform
LAOS experiments with a stress-controlled rheometer has
been recently demonstrated for a variety of different sam-
ples (Laeuger and Stettin 2010). For the present system, no
indication of slip was detected in steady or oscillatory shear
(Ballesta et al. 2008, 2012). The flow curves do not show the
characteristic stress drop at low shear rates, while in oscil-
latory shear, the absence of even harmonics is another indi-
cation of the absence of transient slip (Renou et al. 2010).

The stress signal is Fourier-transformed using a discrete
FFT macro included in the data analysis software IGOR Pro
6 extracting the phase difference, δn, and the G

′
n, G

′′
n coeffi-

cients. For all the samples studied here, the even harmonics
are negligible compared to the odd harmonics. We should
note that the values of G

′
and G

′′
directly provided by the

rheometer software in the non-linear oscillatory regime are
actually the first harmonic coefficients G

′
1 and G

′′
1.

Results

Linear viscoelasticity of starlike micelle system

The linear viscoelastic moduli of four samples measured
at 10 ◦C can be seen in Fig. 2a. The high concentration
sample (3c∗) shows all the characteristics of a soft glass.
The elastic modulus G

′
is constant over a wide range of

frequencies and, with a value of around 1,000 Pa, much
higher than G

′′
. The increase of G

′′
at low frequencies

can be attributed to out-of-cage hopping mechanisms that
might take place at even lower frequencies. Furthermore,
the sample exhibits ultra-slow structural relaxations mea-
sured by multispeckle DLS, with characteristic relaxation
times of more than 100 s that are evolving with time (age-
ing) (Renou et al. 2010). The sample at the immediately
lower concentration (2.6c∗) has G

′
> G

′′
at all frequencies
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Fig. 2 Dynamic frequency sweeps in the linear regime (γ = 0.5 %)
for six different effective volume fractions. G

′
is indicated with filled

symbols and G
′′

with unfilled symbols. a Samples measured at 10 ◦C.
The polymer concentration varies from 3c∗ (red), 2.6c∗ (black), 2.4c∗
(green), to 2.1c∗ (blue). b A single sample at a fixed polymer concen-
tration measured at three different temperatures: 10 ◦C (black) (2.6c∗),
15 ◦C (2.5c∗) (dark grey) and 20 ◦C (2.3c∗) (light grey). The arrow
indicates 1/tα

probed; therefore, it can be termed as glassy. However,
G

′
decreases and G

′′
increases at low frequencies, indi-

cating a slow relaxation with crossover frequency outside
our experimental window. Upon decreasing the concentra-
tion further (2.4c∗), the crossover frequency moves inside
the experimental window at 3 rad/s. The sample is solid-
like above and liquid-like below that frequency, and it can
be termed a concentrated viscoelastic solution. The low-
concentration sample (2.1c∗) has a crossover frequency of
40 rad/s. The terminal liquid-like regime at low frequen-

cies
(
G

′ ∼ ω2, G
′′ ∼ ω

)
is visible; the sample behaves

like a Maxwell fluid at long timescales. The dynamic fre-
quency sweeps of a sample at a fixed polymer concentration
(2.3c∗ at 20 ◦C) and at three different temperatures, 10,
15, and 20 ◦C, are shown in Fig. 2b. The same transi-
tion from a solid-like, non-ergodic solution to a liquid-like
solution can be seen just by increasing the temperature,
with the crossover frequency scaling well with c/c∗ at dif-
ferent temperatures (Koumakis et al. 2012b). In multiarm
star polymers, such transitions are well documented both in
athermal solvents by increasing concentration (Ozon et al.
2006; Laurati et al. 2007) as well as in intermediate qual-
ity solvents by increasing temperature due to the swelling of
the star (Kapnistos et al. 2000).

The samples presented above are at concentrations
greater than two times the overlap concentration. It is
perhaps surprising that strongly interpenetrated micelles
can show terminal liquid-like behaviour. However, this is
a direct manifestation of the softness of the interparticle
potential, where limited interpenetration is not sufficient to
induce a liquid-to-solid transition. In order for the micelles
to be caged and form a glass, one has to reach much
higher number densities compared to hard-sphere colloids
or microgel particles (Koumakis et al. 2012b). In multiarm
star polymers of similar functionalities, the glass transition
was determined at 1.4c∗ (Kapnistos et al. 2000; Helgeson
et al. 2007).

Non-linear rheology

Four micellar solutions at increasing concentrations have
been studied by LAOS experiments. The dynamic strain
sweeps at a fixed frequency of 1 rad/s can be seen in
Fig. 3. All dynamic strain sweeps show some common
features. At small strain amplitudes, both G

′
and G

′′
are

constant. This defines the linear regime for a specific tem-
perature and polymer concentration. At large amplitudes,
both G

′
and G

′′
decrease below their linear values with

G
′′

becoming larger than G
′

for glassy samples, indicat-
ing a liquid-like response. The major qualitative difference
between solid-like (glassy) and liquid-like samples is that
for the former, G

′′
exhibits a maximum and a yield point

as the strain amplitude is increased beyond a critical strain
amplitude. Such non-monotonic behaviour of G

′′
with strain

amplitude is a typical manifestation of yielding and has been
observed in a variety of colloidal glasses and pastes (Mason
et al. 1996; Pham et al. 2008; Helgeson et al. 2007; Renou
et al. 2010). Moreover, different theoretical approaches such
as mode-coupling theory (MCT) (Miyazaki et al. 2006;
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centration varies from 3c∗ (red), 2.6c∗ (black), 2.4c∗ (green), to 2.1c∗
(blue)
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Brader et al. 2010), soft glassy rheology (Sollich 1998)
or other phenomenological models (Craciun et al. 2003;
Derec et al. 2003; Carrier and Petekidis 2009) predict such
behaviour and relate it to a maximum energy dissipation per
unit strain amplitude around the yield point of the material.
In colloidal glasses, this has been related to cage breaking
due to which individual particles are assisted by shear to dif-
fuse out of the cages formed by their neighbours (Petekidis
et al. 2002; Pham et al. 2008). The peak is more pronounced
at higher volume fractions because the initial caging is
stronger and the additional energy dissipated when the cages
are broken higher. The yield strain γy of the solid-like sam-
ples, determined at the strain amplitude where G

′ = G
′′
, is

increasing with c/c∗ acquiring values of γy = 7.9 % at 3c∗,
γy = 5 % at 2.6c∗ and γy = 2.5 % at 2.5c∗.

We may also briefly discuss the decrease of G
′

and G
′′

at large oscillatory strain amplitudes. A common report in
the literature is that both G

′
and G

′′
follow a power law

decrease with strain amplitude, G
′ ∝ γ ν

′
0 , G

′′ ∝ γ ν
′′

0 , with

power law exponents ν
′ � 2ν

′′
. Within Maxwell-type mod-

els, ν
′

and ν
′′

acquire the values of −2 and −1, respectively
(Miyazaki et al. 2006), whereas numerical MCT predic-
tions yield less trivial, lower values in better agreement with
experiments keeping however the ratio ν

′
/ν

′′ = 2 (Brader
et al. 2010; Miyazaki et al. 2006). Such behaviour has been
asserted at least approximately in a variety of systems such
as colloidal glasses of hard spheres (Mason and Weitz 1995;
Derec et al. 2003; Miyazaki et al. 2006), concentrated emul-
sions (Mason et al. 1997), depletion gels (Pham et al. 2006),
multiarm star polymers (Helgeson et al. 2007; Rogers et al.
2011; Christopoulou et al. 2009) and core–shell particles
(Carrier and Petekidis 2009). However, looking carefully at
several of these experiments, one may see deviations from
the ν

′ � 2ν
′′

relation (Koumakis et al. 2012a). Here, the G
′
1

and G
′′
1 power law exponents for the highest concentration

sample shown in Fig. 3 are −1.37 and −0.93, respectively,
with the ratio ν

′
/ν

′′ = 1.47 significantly lower than 2.
Similar ratios of 1.5 are found for different frequencies
between 0.1 and 2 rad/s, indicating that the value of 2
is not universal and therefore calling for better theoretical
predictions beyond the Maxwell-type approximations.

Stress waveforms and Lissajous figures

In LAOS experiments, it is customary to plot the
stress as a function of strain in an elastic Lissajous
figure (or the stress as a function of shear rate in a viscous
Lissajous figure). In the linear regime, since both stress and
strain are sinusoids with the same frequency, the Lissajous
figure is an ellipse. Any deviation from an elliptical shape
signals the existence of higher harmonics in the stress
response, and hence the onset of non-linear behaviour. The

elastic and viscous Lissajous figures for four different con-
centrations measured at 1 rad/s are shown in Fig. 4. Three
strain amplitudes are plotted (1, 10 and 100 %), which cor-
respond roughly to the linear response, yielding and beyond
yielding.

Qualitatively, we can make the following observations: at
γ0 = 1 %, all samples respond linearly; the corresponding
Lissajous figures are ellipses and clearly show the differ-
ence between a liquid-like response at low concentration
and a solid-like response at high concentration. As the strain
amplitude is increased to 10 %, the shapes become pro-
gressively less elliptic. The non-linear behaviour is much
more evident at high concentrations, where the Lissajous
figures develop sharp edges and abrupt changes of stress
with strain. At the highest concentration, there are clearly
two different regimes within the oscillation cycle. In the
first regime, the stress increases almost linearly with strain,
while in the second regime, the stress is almost independent
of strain. The two regimes are indicated by two arrows on
one of the Lissajous plots in Fig. 4. The first regime which
follows immediately after strain reversal is separated from
the second regime by a stress overshoot, i.e. a pronounced
peak in stress. The LAOS response of a colloidal glass after
strain reversal is thus very similar to the response to a start-
up step rate experiment (Renou et al. 2010). The stress
overshoot peak has been observed in step rate experiments
on a number of different samples (Mewis and Meire 1984;
Liddel and Boger 1996; Stokes and Telford 2004; Carrier
and Petekidis 2009; Renou et al. 2010; Koumakis et al.
2012a, b), and it occurs due to the distortion of the qui-
escent structure faster than it can relax through Brownian
motion (Sollich 1998; Zausch et al. 2008; Koumakis et al.
2012a). To avoid giving the impression that a simple one-
to-one correspondence exists between the LAOS and steady
shear stress overshoots, we should note that often there
are no stress peaks in LAOS although they exist under the
same conditions (rates and volume fractions) in steady shear
(Koumakis 2011).

At even higher strain amplitudes, the non-linear behav-
iour becomes obvious even at the lowest concentration stud-
ied here. The general phenomenological behaviour of the
samples at these large strain amplitudes is as follows: At
maximum strain (zero rate), the direction of deformation is
changed and the stress starts to increase linearly with strain,
indicating an elastic response. When the elapsed strain from
reversal exceeds a characteristic strain, which for samples
with solid-like response represents the yield point within the
cycle, a stress overshoot with concentration- and frequency-
dependent magnitude is observed. Beyond this yield point,
solid-like samples flow with a stress that remains almost
constant and independent of strain (and shear rate) within
the cycle (upper right plots of Fig. 4). For the frequencies
probed here, this indicates mainly plastic flow. Note that
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Fig. 4 (Top) Elastic Lissajous
figures of the steady-state stress
response at 1 rad/s for four
different samples and three
strain amplitudes at 10 ◦C. The
concentrations are c/c∗ = 2.1
(blue), c/c∗ = 2.4 (green),
c/c∗ = 2.6 (black) and
c/c∗ = 3 (red). The values of
the stress at zero strain are also
noted in the plot. The arrows in
the Lissajous curve for c/c∗ = 3
and γ0 = 10 % indicate the
elastic (1) and post-yield (2)
regimes. The vertical double
arrow indicates the stresses at a
point in the elastic (A) and
post-yield (B) region with the
same strain within the cycle.
(Bottom) Viscous Lissajous
figures of the same samples
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this characteristic strain within the cycle is similar but not
necessarily identical, at all frequencies, with the yield strain
amplitude determined at the overlap of G

′ = G
′′

in dynamic
strain sweeps. This sequence of elastic and plastic (or vis-
cous at higher frequencies) behaviour is quite commonly
found in yield stress systems within a LAOS cycle (Renou
et al. 2010; Rogers et al. 2011).

The viscous Lissajous figures (stress versus shear rate)
of the same samples can be seen in Fig. 4. Again, the
appearance of higher harmonics is manifested by the distor-
tion of the initially elliptical shape of the figures. What is
more interesting is the self-intersection of the stress signal
at 2.4c∗, 2.6c∗ and 100 % strain amplitude. The appearance
of this kind of secondary loops has recently been explained
as coming from a strong elastic non-linearity leading to an

apparent negative local elastic modulus around zero strain
(Ewoldt and McKinley 2010). More generally, this reflects
the difference in the behaviour upon increasing the rate as
zero strain is approached compared to that of decreasing rate
in the quadrant following zero strain.

Fourier transform analysis

We first use Fourier transform analysis to decompose the
stress response into a linear response and higher harmonics.
In Fig. 5a, b, the relative intensities of the third and fifth har-
monics are displayed as a function of strain amplitude for
the four samples at different concentrations shown in Fig. 3a.

Both I3/I1 and I5/I1 increase monotonically and then
reach a plateau at most concentrations. It is immediately
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Fig. 5 FT analysis results for the four samples at different concentra-
tions measured at 10 ◦C and 1 rad/s. a Amplitude of the third harmonic
divided by that of the first. b Amplitude of the fifth harmonic divided
by that of the first

evident that as the concentration is increased, the non-linear
response becomes stronger at all strain amplitudes and
the linear regime extends to lower strain amplitudes. The
maximum relative amplitude of the third (fifth) harmonic
is ∼0.28 (∼0.15) for the most concentrated sample and
then decreases to 0.26 (0.14) at 2.6c∗, 0.22 (0.11) at 2.4c∗
and 0.18 (0.08) at 2.1c∗. These values can be contrasted to
the maximum intensity of higher harmonics, I3/I1 = 1/3
and I5/I1 = 1/5, expected for a material that exhibits
perfect plastic response, i.e. a square-wave stress response
(Wilhelm et al. 2000; Ewoldt et al. 2010). Thus, as the
concentration is increased, the response approaches that of
a perfect plastic material. The weak decrease observed at
2.6c∗ and 3c∗ is due to the approach towards a simpler
liquid-like response at high strain amplitudes as explained
previously in similar studies of soft core–shell micro-
gels (Le Grand and Petekidis 2008; Carrier and Petekidis
2009) and also recently observed in multiarm star polymers
(Rogers et al. 2011).

In Fig. 6, the phase difference, δ3, between the third
harmonic and the strain is plotted as a function of γ 0.
From these, we can deduce the intracycle character of the
non-linearities as discussed above. It can be seen that the
character of the third harmonic for the two highest con-
centrations follows the same trend, from mostly non-linear
shear thickening at 4 % ≤ γ0 ≤ 10 %, to non-linear strain
hardening at 10 % ≤ γ0 ≤ 50 % and finally to non-linear
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Fig. 6 Phase difference between the third harmonic and the strain,
plotted only for amplitudes where I3 is more than 1 % of I1. The hor-
izontal lines mark the phase differences corresponding to pure strain
softening (0◦), pure strain hardening (180◦), pure shear thickening
(90◦), pure shear thinning (270◦) within the oscillation period

shear thinning at γ0 ≥ 50 %. For the 2.4c∗ concentration
sample, the third harmonic has mostly non-linear strain-
hardening character at 5 % ≤ γ0 ≤ 20 % while at γ0 ≥
50 %, this turns into non-linear shear-thinning character.
The lowest concentration sample behaves similarly, but with
non-linearities becoming important at even larger strain
amplitudes, γ0 ≥ 15 %. As mentioned before, yielding is
associated with a characteristic peak of G

′′
1, which indicates

increased energy dissipation as the microstructure is broken
down (Fig. 3). At the same strain amplitudes, the non-linear
response exhibits a shear-thickening intracycle character. It
is therefore conceivable that the non-linear shear thickening
present at high concentrations is due to the same mecha-
nisms that contribute to the increase and peak of G

′′
1. The

absence of non-linear shear thickening for the two lower
concentrations should thus reflect the absence of yielding
(related microscopically to shear-induced cage breaking) as
the terminal flow (thermally activated structural relaxation)
regime is probed here at 1 rad/s.

Discussion

Non-linear waveform analysis

All FT analysis methods essentially compare the devia-
tions from harmonic response (i.e. the higher harmonics)
to the first harmonic of the material under study. This idea
underpins all FT rheology efforts to provide a physical
interpretation of LAOS results. Since most rheometer’s soft-
ware extracts directly the first harmonic, we here propose
a more direct and simpler way to classify the non-linear
response of materials based on the framework of Ewoldt
et al. (2008). The alternative method is based on decom-
posing the full stress waveform into the harmonic response
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Fig. 7 Decomposition of total stress response σtot into a harmonic
response and an anharmonic response for the 3c∗, 10 ◦C sample at
γ 0 = 100 %.

(
a
)

Total stress waveform (black solid line) and har-
monic stress waveform (grey dashed line) plotted over one-half period.(
b
)

Anharmonic stress waveform resulting from the substraction of
the harmonic stress from the total stress shown on the left. The strain
waveform in this case is a pure sine with ω = 2π/T , so that maximum
γ 0 occurs at T/4 and maximum rate at 0 and T/2

represented by G
′
1 and G

′′
1 values and an anharmonic

response which contains all higher harmonics. The total
stress is thus decomposed into a ‘linear’ harmonic stress (1st
harmonic) and a ‘non-linear’ anharmonic stress. This can be
implemented simply by noting that the harmonic stress, cal-
culated directly from the G

′
1 and G

′′
1 output of the rheometer

during a dynamic strain sweep, is:

σ1 (t; ω) = γ0

[
G

′
1sin (ωt) + G

′′
1cos (ωt)

]
(3)

At the same time, the waveform of the total stress
σtot (t; ω) at each γ0 can be used to define the anharmonic
stress, σanh, by simply subtracting from the total stress
waveform the harmonic waveform:

σanh (t; ω) = |σtot (t; ω)| − |σ1 (t; ω)| (4)

Note that σanh is then the sum of all higher harmonics.
The procedure described above is illustrated in Fig. 7

for one measurement of the sample at 3c∗, T = 10 ◦C
at γ0 = 100 %.2 The total stress waveform is plotted

2All data have been shifted so that at t = 0 the strain is zero and the
shear rate is positive.

together with the harmonic stress response, calculated from
the dynamic strain sweep values of G

′
1 and G

′′
1 (Fig. 3)

using Eq. 3. The resulting plot (Fig. 7(a)) shows clearly
the extent of the difference between the real waveform
and the harmonic response. The anharmonic stress wave-
form calculated according to Eq. 4 is shown in Fig. 7(b).
The values of σanh at maximum strain and maximum shear
rate can be read directly off the graph and can be used
to determine the strain-softening/hardening and the shear-
thinning/thickening character of the intracycle non-linearity,
with the former detected at maximum strain while the lat-
ter at maximum rate. In this case, at maximum strain, the
total stress is 64.9 Pa whereas the harmonic stress is 21.3 Pa
(G

′
1 = 21.3 Pa at γ0 = 100 %). This can be clearly clas-

sified as strong strain-hardening behaviour since σanh(γ =
γ0) = 43.6 Pa. At the same time, the total and harmonic
stresses at maximum shear rate are 93.6 and 113 Pa, respec-
tively, yielding σanh(γ = 0) = −19.4 Pa. This reveals a
shear-thinning behaviour which is however weaker than the
strain-hardening one, both in absolute (19.4 versus 43.6 Pa)
and in relative terms (20 versus 70 % of total stress). We can
thus conclude that the dominant non-linear response within
the oscillatory cycle for this sample is strain hardening.

The main advantage of this method becomes clear when
one compares this result to the classification based on
the phase of the third harmonic performed earlier. In
Fig. 6, we have seen that the same sample at that particular
strain has δ3 = 231◦ which is very close to a pure non-
linear shear-thinning material (δ3 = 270◦). Recalling the
discussion on FT rheology in the introduction, we can calcu-
late the contribution of the third harmonic at the two points
of interest. At maximum rate, σ3 (γ = 0) = I3 sin(δ3) =
−0.78I3 = −28 Pa, and at maximum strain, σ3 (γ = γ0) =
I3 sin(3π/2 + δ3) = 0.63I3 = 23 Pa. This is obviously
classified as shear thinning. On the other hand, the subtrac-
tion of waveforms gives −19.4 and 43.6 Pa, respectively.
The additional harmonics with n > 3 have reduced the
magnitude of the shear-thinning contribution and have sub-
stantially increased the magnitude of the strain-hardening
contribution, so that now it is evident that the dominant
intracycle non-linearity has a strain-hardening character. For
this sample, this is actually true at all strain amplitudes
greater than 20 %.

The example above shows clearly that a classification
of non-linear response based on the third harmonic alone
can be very misleading. The argument for neglecting higher
harmonics is that, in most cases, their amplitude tends to
be smaller than the third harmonic. However, this argu-
ment neglects the fact that higher harmonics have also a
phase. Thus, it is possible that all harmonics higher than the
third add in phase, enhancing or acting against the strain
softening/hardening (or shear thickening/thinning) of the
third harmonic alone.
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Anharmonic moduli

Based on the anharmonic stress waveform, one can also
define moduli that describe the LAOS behaviour of the sam-
ple at two points inside the period, maximum strain and
maximum rate. For simplicity, we determine these in the
first quarter of the period (as shown in Fig. 7) where the
stress is positive, as follows:

G
′
anh = σanh(γ = γ0)

γ0
(5)

G
′′
anh = σanh(γ = 0)

γ0
(6)

The two anharmonic moduli, G
′
anh and G

′′
anh, can be

directly compared with the linear harmonic moduli G
′
1 and

G
′′
1 to give a more complete representation of LAOS. The

anharmonic moduli can be either positive or negative; a neg-
ative modulus means that the total stress is less than the
harmonic stress.

In Fig. 8a, c, e, g, the harmonic modulus G
′
1 and the

absolute value of the anharmonic modulus,
∣∣∣G′

anh

∣∣∣, are

displayed, with the sign of the anharmonic modulus also
indicated (open and solid symbols). This figure contains
all the information for the LAOS behaviour of the sam-
ple at maximum strain. More specifically, it shows clearly
that the anharmonic contribution to the stress starts to be
important close to the yield strain, at γ0 ∼ 10 %, while
above γ0 ∼ 40 %, the anharmonic contribution becomes
equally important with the harmonic contribution G

′
1 ∼

G
′
anh. At large amplitudes, the now-dominant anharmonic

contribution exhibits a linear decrease with strain amplitude
similarly with G

′′
1. Moreover, the anharmonic contribution

is always positive, indicating a strain-hardening intracycle
response essentially at all amplitudes. The power law expo-
nent of −1 is quite interesting, because it means that the

stress at maximum strain
(
≈ γ0G

′
anhwhen G

′
1 << G

′
anh

)
remains constant with strain amplitude. As at maximum
strain the shear rate is zero, the stress at this point is only of
structural origin. A constant stress would then indicate that
after yielding the structure of the micellar solution remains
the same for any strain amplitude (and thus average shear
rate) when the shear flow is stopped and reversed.

Similarly, in Fig. 8b, the harmonic modulus G
′′
1 and the

absolute value of the anharmonic modulus at maximum rate∣∣∣G′′
anh

∣∣∣ are shown for the highest concentration glassy sam-

ple (3c∗). In this case, the behaviour is more complicated.

In comparison with
∣∣∣G′

anh

∣∣∣, the anharmonic contribution to

the viscous stress becomes important at lower strain ampli-
tudes, γ0 ∼ 4 %, coinciding with the peak in G

′′
1. Between

γ0 ∼4 and 10 %, G
′′
anh is positive, indicating intracycle shear

thickening. At strain amplitudes γ0 > 15, %, G
′′
anh changes

sign revealing shear thinning which is almost equal to 15 %
of the harmonic viscous contribution.

The above methodology allows a complete description of
the LAOS intracycle non-linearities in the framework of FT
rheology. At low strain amplitudes γ0 <4 %, the response
is dominated by harmonic elasticity. At intermediate ampli-
tudes, 4 % < γ0 < 10 %, the harmonic elastic and viscous
contributions are important; however, now the anharmonic
shear-thickening response is also strong as revealed by the
high positive value of G

′′
anh. At larger strain amplitudes, the

response is dominated by harmonic viscous response and
anharmonic contributuon with dominant strain-hardening
character and a weaker shear-thinning component.

We can further compare the LAOS response for differ-
ent volume fractions (Fig. 8). Qualitatively, the behaviour
at maximum strain is similar (Fig. 8a, c, e, g). Beyond the
linear regime, the anharmonic elastic contribution is always
positive. The anharmonic strain-hardening stress decreases
with a power law exponent of −1 with strain amplitude,
but it becomes progressively more important compared to
the harmonic elastic stress. At the largest strain ampli-
tude attained, the anharmonic stress is at least 1 order of
magnitude above the harmonic one. On the other hand,
the behaviour at maximum rate is quite different at high
(Fig. 8b, d) and low concentrations (Fig. 8f, h). At high con-
centrations, the peak of G

′′
1 is always accompanied by an

anharmonic shear-thickening peak (Fig. 8b, d). This is not
present at the low-concentration samples. At large ampli-
tudes and for all samples, the anharmonic shear-thinning
contribution decreases almost linearly and is about an order
of magnitude smaller than the harmonic viscous stress.

Comparison with other methods of LAOS analysis

Local non-linear coefficients calculated at specific points
within the period have been introduced before, most notably
by Ewoldt et al. (2008). The modulus at minimum resolv-
able strain G

′
M is the gradient of the stress with respect to

strain calculated at zero strain, and the modulus at maximum
strain G

′
L is simply the stress at maximum strain divided by

γ0. The definition of viscosities η
′
M and η

′
L is similar but

with the strain replaced by the shear rate. Based on these
moduli and viscosities, a further two non-linear coefficients
are defined: S, which gives the strain-hardening/softening
character, and T , which gives the shear-thickening/thinning
character. It is clear that G

′
L and η

′
L are trivially related to

G
′
anh and G

′′
anh by the following relations:

G
′
anh = G

′
L − G

′
1 (7)

G
′′
anh = ωη

′
L − G

′′
1 (8)
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Fig. 8 a, c, e, g G
′
1, |G′

anh|. b,

d, f, h G
′′
1, |G′′

anh|. The harmonic
moduli are shown with lines,
while the absolute values of the
anharmonic moduli are shown
with symbols. A filled triangle
indicates a positive anharmonic
modulus, while an open triangle
indicates a negative anharmonic
modulus
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On the other hand, G
′
M and η

′
L cannot be expressed simply

in our scheme or any other scheme based on FT rheology,
and the same is true for S and T .

The key difference between the method of analysis pre-
sented in this paper and the previous methods is that here we
compare the non-linear stress directly to the harmonic stress
and not to the stress gradient. Hence, the anharmonic moduli
may also serve as indicators of the inaccuracy in the repre-
sentation of non-linear data by G

′
1 and G

′′
1 as in conventional

dynamic strain sweeps.
There is a further subtle but important conceptual differ-

ence; here, we do not decompose the total stress into an elas-
tic stress and a viscous stress (Cho et al. 2005). We refrain
from doing so because in our view, the elastic–viscous

decomposition does not represent correctly the physics
within the period, at least for the highly concentrated and
glassy samples undergoing yielding. More specifically, the
requirement for an identical elastic stress at the same values
of strain within the LAOS period is not always true since
in some cases, at the same values of strain, the material can
be either flowing or deforming elastically. This is illustrated
in Fig. 4 with an arrow that marks two points inside the
period at the same strain. Although according to the elastic–
viscous stress decomposition (Cho et al. 2005) they should
have the same elastic (and viscous) stress, this is clearly not
the case since these two points correspond to different rhe-
ological states of the material: In point A, we have mainly
an elastic response after strain reversal, whereas in point B,
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a viscous (or plastic) post-yielding response is approach-
ing strain reversal. Moreover, the decomposition includes
in the viscous stress all the G

′′
n terms of Eq. 1. However,

as it has been pointed out before, all of these terms with
the exception of G

′′
1 have an elastic character that renders

their inclusion in the viscous stress problematic (Onogi
and Matsumoto 1981; Dealy and Wissbrun 1999). In our
scheme, the whole non-linear behaviour is discussed using
the stress at two points inside the period: maximum rate,
where the contribution from the hydrodynamic stress is at
a maximum, and maximum strain, where the contribution
from the hydrodynamic stress is zero. This is certainly a
simplification but has the merit of being able to describe
the waveform of the stress response much better than the
first harmonic moduli alone. The failure of the decomposi-
tion in pure elastic and viscous contributions in the stress
within the period of oscillation in a generic manner provides
further justification for the choice of determining the char-
acter of the higher harmonics only at the points of zero and
maximum rate as discussed above.

Any method of analysis, such as FT rheology or
Chebyshev decomposition, that compares the total stress
waveform to a harmonic waveform suffers from the vague
physical meaning of the harmonic contribution. Neverthe-
less, we know that G

′′
1 is proportional to the total energy

dissipation and G
′
1 to the average elasticity. A possible way

to interpret the harmonic waveform would then be to asso-
ciate it with the response of a linear viscoelastic system
that dissipates the same energy and has the same average
elasticity. Thus, the strain hardening/softening and shear
thinning/thickening are defined with respect to this ideal
viscoelastic system.

Relation of LAOS with steady shear

Another approach to LAOS analysis seeks to understand
the non-linear response in relation to simpler steady shear
experiments, as discussed above. For colloidal glasses, a
qualitative relation between LAOS and steady shear (e.g.
step rates) has been discussed here and elsewhere (Renou
et al. 2010; Rogers et al. 2011). It is based on the fact
that following flow reversal, the stress increases linearly
with strain, indicating an elastic response, while near the
maximum shear rate, the material flows with a shear rate-
dependent viscosity. A quantitative relation between LAOS
and steady shear has been proposed by Rogers et al. along
two lines: firstly, that the the linear G

′
(called the cage

modulus or Gcage) can be determined from the slope of the
stress versus strain at zero stress and, secondly, that the
LAOS stress in the post-yield regime plotted against shear
rate may reproduce the steady shear flow curve (Rogers
et al. 2011). The cases were applied to experimental data
from a colloidal glass of multiarm star polymers probed

at a single frequency of 1 rad/s. Below, we test these
propositions in the current system.

In Fig. 9, we compare the dynamic strain sweep val-
ues of G

′
1 with Gcage extracted from the elastic part of

the LAOS stress for two solid-like samples. The agreement
between the two is quite good, confirming the validity of
this approach for our system at an angular frequency of
1 rad/s.

As the strain amplitude increases, the slope of the stress
versus strain is less well defined, leading to a larger error
in the determination of Gcage. In our view, this approach is
based on the assumption that the cage is undeformed at zero
stress, which allows the calculation of a cage elastic mod-
ulus. However, one should bear in mind that although this
seems to hold here, it is not necessarily true in general as in
other systems, the microstructure might be very anisotropic
at zero stress (Koumakis et al. 2012b).

In Figs. 10a and 11a, we show Lissajous plots from
LAOS experiments in a liquid and glassy sample, respec-
tively. Figures 10b and 11b depict the corresponding
stresses extracted from the LAOS cycle in the regime
between the maximum and zero rate, i.e. the flowing post-
yield regime as a function of the shear rate. In line with
Rogers et al. (2011), these are contrasted with the flow curve
(stress versus shear rate) measured under steady shear. The
latter was measured by progressively lowering the shear
rate and with long enough averaging at each rate to ensure
that a steady state is reached. It can be seen that Qualita-
tively, the LAOS data follow the flow curve at high shear
rates. However, there are important quantitative differences
mainly at low shear rates for both frequencies shown. The
same disagreement is found for the more concentrated sam-
ple (c = 2.9c∗) exhibiting yield stress behaviour (Fig. 11).
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Fig. 9 Comparison of G
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with Gcage, calculated from the gradient of
stress with strain of the LAOS experiments at zero stress. The horizon-
tal lines are an extension of the linear G
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values to all strain amplitudes.

Two solid-like samples are shown with 3c∗ (grey) and 2.6c∗ (black)
measured at 10 ◦C
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Fig. 10 a Stress versus normalised strain in an elastic Lissajous repre-
sentation of LAOS results at same maximum shear rate . b The LAOS
stress between zero and maximum strain plotted against shear rate for
two different pairs of frequency and strain amplitude, but with the same
maximum shear rate. The flow curve of the material is shown as a red
line (sample at 2.4c∗ was measured at 15 ◦C). Note that for the data
presented here, Wiα = 1.67 while Peω = 4.2 10−5 (for 0.1 rad/s)

Note that the discrepancy in the measured stresses upon
approaching zero strain (maximum rate) and going beyond,
manifested in the viscous Lissajous plots as secondary
loops (Fig. 4b), justifies the use of only the viscoplastic
flow regime of LAOS cycle between zero and maximum
strain.

A rationalisation for this difference can be provided by
considering the relaxation times in the system. The dimen-
sionless number quantifying the interplay of the terminal
relaxation and shear is given by the Weissenberg num-
ber, Wiα = tα(ωγ0), where tα is terminal α-relaxation
related with the out-of-cage diffusion, determined here at
the crossover point of G

′
and G

′′
at low frequencies (see

Fig. 2). For the 2.6c∗ sample, Wiα = 1.67, while for com-
parison, the ‘bare’ Peclet number Peω = tβ(ωγ0) with
tβ = R2

h/D0 (D0 is the free Brownian diffusion coefficient)
is only 4.2 10−5, for ω = 0.1 rad/s. For the high-
est concentration, 3c∗, the linear viscoelastic measurement
(Fig. 2a) does not indicate a terminal relaxation within the
frequency range of the experiment. Therefore, we can con-
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Fig. 11 a Elastic Lissajous figure (grey line) with the stress between
zero and maximum strain indicated by crosses. b The LAOS stress
between zero and maximum strain is plotted against shear rate for
different frequencies and strain amplitudes. The flow curve of the
material is shown as a red line (sample at 2.9c∗ was measured at
10 ◦C). Note that for the data presented here, Wiα > 10 (for 0.1 rad/s,
γ0 = 1,000 % and 1 rad/s, γ0 = 107 %) and Wiα > 40 (for 1 rad/s,
γ0 = 409 %) while Peω = 4.2 10−5 (for 0.1 rad/s)

clude that Wiα > 10 for the 0.1 rad/s, γ0 = 1,000 % and for
the 1 rad/s, γ0 = 107 % measurements shown. Such large
Wiα values are expected for any glassy sample where the
α-relaxation is either infinite or very long compared to any
measurement time. Here, it is obvious that the LAOS stress
data, extracted from the part of the period where the sample
qualitatively is showing a viscous/plastic response (past the
yield point after strain reversal), do not superimpose with
the properly measured flow curve. Moreover, there is a clear
discrepancy among the LAOS data at different frequencies
(0.1 and 1 rad/s) as well as different strain amplitudes (107
and 409 %) at the same frequency (1 rad/s) especially for
low rates. This should not be unexpected as only in the limit
of zero frequency, a LAOS experiment may be considered
identical to steady shear; however, when the frequency is
finite, the relaxation time of the material starts to affect the
stress response within the oscillatory cycle. Furthermore,
we should keep in mind that a proper flow curve measure-
ment requires averaging of the stress over a time period
typically of the order 1/γ̇ in order to allow steady state to be
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reached at each rate. In comparison, LAOS measurements
even at low frequencies do not involve similar long aver-
ages per point measured that would allow steady state to be
approached. For example, even at 0.1 rad/s, each of the 256
points measured within a LAOS cycle is taken in 0.25 s.
However, this duration is not sufficient to reach steady state
for rates roughly smaller than 1 s−1, and therefore, it is
not surprising that low rate values from LAOS deviate from
those of steady shear flow curves.

Conclusions

We have studied the non-linear response of model soft
starlike micelles at different volume fractions, both in
the concentrated viscoelastic liquid and glassy state by
large-amplitude oscillatory shear experiments. We discuss
the evolution of the Lissajous figures and use Fourier
transform analysis to quantify the progressively non-linear
behaviour with increasing strain amplitude. With increas-
ing volume fraction, the linear regime shrinks and the
magnitude of the non-linearity, as measured by I3/1,
increases faster with strain amplitude, although the yield

strain itself
(

determined at G
′ = G

′′)
also increases with

concentration.
The character of the dominant intracycle non-linearity

was first determined by the phase of the third harmonic.
However, we further propose an alternative method through
which all higher harmonics are taken into account by sub-
tracting the harmonic stress from the total stress waveform.
The new method shows that by taking into account all higher
harmonics, the character of the intracycle non-linearities
may by altered: For example, for the high concentra-
tion glassy systems, the intracycle non-linear behaviour
at large amplitudes has a stronger strain-hardening than
shear-thinning contribution contrary to what is suggested
by the third harmonic alone. Therefore, glassy samples
during yielding exhibit a progressive transition from non-
linear shear thickening at intermediate strain amplitudes(

near the G
′′

peak
)

to strain hardening at larger strains

(with similar order but weaker shear thinning). For liquid-
like samples, the initial shear-thickening character, which
may be related to yielding, is absent. The new method
proposed is easier to implement than Fourier transform rhe-
ology or Chebyshev decomposition, fully accounting of all
higher harmonics. However, similarly with the above, it
brings out the need for a physical understanding of the har-
monic response with which one naturally compares in this
approach.

Furthermore, we point out here that although the glassy
systems may be considered shear-melted at strains above
the yield strain, there is a considerable elastic component

at flow reversal even at very large strain amplitudes, in
agreement with previous studies in hard and soft-sphere
glasses showing strong strain recovery even after being
shear-melted at high shear rates (Petekidis et al. 2004; Le
Grand and Petekidis 2008; Christopoulou et al. 2009). This
is also manifested by the almost constant cage modulus
determined from the elastic regime of the LAOS cycle even
at high strain amplitudes. Finally, in contrast to the cage
modulus that is in a quantitative agreement with the linear
G

′
, the quantitative determination of the steady shear flow

curve from the viscous part of the Lissajous plot suggested
previously (Rogers et al. 2011) does not work in the present
system neither for liquid nor glassy samples. We consider
the latter to be representative of a generic behaviour of
glassy or highly concentrated systems with very long or infi-
nite structural relaxation times rather than the exception,
since practically a steady state equivalent to that in con-
stant shear rate cannot be reached at each point within the
LAOS period.
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