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Abstract The focus of many particle tracking experiments
in the last decade has been active systems, such as liv-
ing cells. In active systems, the particles undergo simul-
taneous active and thermally driven transport. In contrast
to thermally driven transport, particle motion driven by
active processes cannot directly be correlated to the rheol-
ogy of the probed region. The rheology in particle track-
ing experiments is typically obtained through the mean
square displacements (MSD) of the trajectories. Hence, the
MSD and its functional form remain the only basic tools
to evaluate and compare living cells or other active sys-
tems. However, the mechano-structural characteristics of
the intracellular environment and the mechanisms driving
particle transport cannot be revealed by the MSD alone.
Hence, approaches for advanced analysis of particle trajec-
tories have been introduced recently. Here, we present a
broad review of the extensive intracellular particle tracking
experiments that have been carried out on a wide variety of
cell types. Those works utilize the MSD, revealing similar-
ities and differences relating to cell type and experimental
setup. We also highlight several advanced trajectory-and
displacement-based analysis methods and illustrate their
capabilities using particle tracking data obtained from two
cancer cell lines. We show that combining these analysis
methods with the MSD can reveal additional information on
intracellular structure and the existence and nature of active
processes driving particle motion in cells.
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Introduction

In active systems such as living cells, the mean square
displacements (MSD) of particle motion cannot directly
be correlated with rheological parameters, such as the
creep compliance and dynamic moduli (Bursac et al. 2005;
Mizuno et al. 2007; Wilhelm 2008). Deduction of rheo-
logical parameters from the MSD requires the generalized
Stokes–Einstein–Sutherland relation, developed under the
assumption of exclusively thermal driving forces (Einstein
1905; Mason and Weitz 1995; Squires and Brady 2005;
Sutherland 1905); in fact, the generalization also requires
the material to be a (hydrodynamic) continuum, homoge-
neous, isotropic, and incompressible (Squires and Mason
2010). Driving forces in cells are, however, a combina-
tion of thermal fluctuations and active contributions from
motor transport and cytoskeleton remodeling, leading to
system far from equilibrium (Hoffman et al. 2006; Mizuno
et al. 2007; Weihs et al. 2006). Hence, several methods
have recently been suggested to augment the MSD and
reveal processes driving particle motion in the dynamic
intracellular microenvironment.

Here, we review and discuss particle tracking results in
living cells and what has been revealed from such experi-
ments to date using the MSD. The MSD has revealed active
transport and dynamics in cells. Analysis going beyond
the MSD can suggest mechanisms driving particle trans-
port, and we highlight several such approaches for advanced
trajectory analysis. The approaches presented here can be
applied to any particle tracking experiment, active or ther-
mally driven. The structure of the manuscript is as follows:
first, we provide a basic description of the mechanical
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elements of the cell, followed by discussion of techniques
that have been used to measure whole cell and extracellular
mechanics through response to force application. We then
explain the basic approach for particle tracking microrheol-
ogy with the MSD as a basic tool and discuss specific issues
arising when applying particle tracking in cells. We specifi-
cally consider conditions under which intracellular rheology
may still be obtained from particle tracking data. Following
that, we provide an in-depth discussion of the current state
of the field, through a broad compilation of intracellular par-
ticle tracking works carried out in the last decade. We focus
on the observed MSD and MSD scaling exponents and dis-
cuss apparent similarities and differences depending on cell
type and experimental setup. Finally, as an extension to the
commonly utilized MSD, we highlight several recently sug-
gested methods for advanced trajectory analysis. Those are
designed to augment the MSD and provide more informa-
tion on the underlying mechanisms driving particle transport
in cells. We illustrate each of the methods with data obtained
from two cancer cell lines—high and low metastatic poten-
tial. We use our results to simultaneously show what can be
obtained with each of the methods as well as to expose and
discuss differences in intracellular structure and mechanics
between the two cell types.

Cell structure and the cytoskeleton

Cells are required to dynamically change shape and apply
forces during normal function, such as division, adherence,
and motility. Those capabilities require continuous regula-
tion and remodeling, affecting intracellular structure and
mechanics. The internal microenvironment of living cells
is a collection of compartments with specific functionali-
ties located within a crowded and viscoelastic cytoplasm.
The viscoelasticity of the cytoplasm largely results from the
cytoskeleton which stabilizes and facilitates many dynamic
processes in the cell. The dynamic abilities and viscoelastic-
ity of the cytoskeleton result mostly from active remodeling
and interactions with associated molecular motors. Motors
form dynamic and adaptive cytoskeletal networks that can
be restructured and moved according to cell function. The
cytoskeletal networks have three main functions: spatially
organizing the cell contents, connecting the cell physically
and biochemically to its external environment, and gener-
ating coordinated forces that enable the cell to move and
change shape (Fletcher and Mullins 2010).

The concentration and molecular architecture of the
different components of the cytoskeleton determine the
overall deformability and mechanical response of the cell
(Heidemann and Wirtz 2004; Janmey and Weitz 2004).
That response combines force application capabilities which
are part of the interactions with neighboring cells and the
extracellular matrix.

The cytoskeleton is composed of three main components:
actin filaments, microtubules, and intermediate filaments.
Actin is typically associated with dynamic processes, such
as motility and adhesion, and is concentrated at the cell
periphery, close to the membrane. Actin filaments in cells
are normally arranged into bundles or networks. Networks
can form when myosin molecular motors crosslink actin fil-
aments. The actomyosin network is highly dynamic and can
be used to transport cargo and also apply contractile forces.
Forces are generated as myosin slides filaments against each
other thus creating tension (Pollard and Cooper 2009).

Microtubules are primarily abundant deep inside the cell
yet span from the nucleus to the membrane. Microtubules
are involved in various functions such as cell division, intra-
cellular transport, and cell morphogenesis and organization.
Intracellular transport and organization are facilitated by
two families of molecular motors, kinesin and dynein that
travel to and from the membrane, respectively (Valiron et al.
2001). The role of microtubules in structural stability and
transport requires slower dynamics where their disassembly
time is typically minutes to hours. Intermediate filaments
(IFs) are the most structurally diverse of the three build-
ing blocks of the cytoskeleton, as over 40 separate types of
intermediate filaments have been identified with cell-type-
specific expression. Their major function is assumed to be
that of mechanical stress absorber and an integrating device
for the entire cytoskeleton (Herrmann et al. 2007; Nagle
1994).

The cytoskeleton and the cell membrane are the main me-
chanical elements of the cell. They allow cells to mechan-
ically adapt to changing environments and applied forces.
The mechanical response of cells and their cytoskeleton has
been evaluated using a variety of techniques.

Tools for active extracellular mechanics measurements

In the past decade, increasing attention has been drawn
to the fascinating interplay between biological function
and mechano-structural responses of cells. The reciprocity
between mechanics and function affects many normal cellu-
lar processes, such as differentiation, proliferation, motility,
and programmed cell death (Discher et al. 2009; Huang
and Ingber 1999; Lim et al. 2006; Suresh et al. 2005). For
example, cells respond to variations in stiffness of their
environment by changing their morphology, differentiated
state, and even forces that they are able to apply (Cameron
et al. 2011; Discher et al. 2005; Engler et al. 2006; Zemel
et al. 2010). Such changes are associated with membrane
restructuring and cytoskeleton remodeling (Discher et al.
2005). Cortex-region mechanics can be accessed through
external or whole cell measurements. The measured elastic
modulus of a single cell is orders of magnitude lower than
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that of materials like metals, ceramics, and even polymers
(Bao and Suresh 2003; Chen et al. 2010). Experimental
techniques capable of probing forces and displacements on
sub-pico Newton and sub-nanometer scales are required.
The evolution of experimental techniques for such small-
scale mechanical measurements is largely responsible for
the considerable progress in cellular biomechanics research.

Many methods have recently been developed to measure
the mechanical response of a single cell to an applied force
or stress, similar to rheometry. In those methods, forces are
applied either to the entire cell or to localized regions on the
membrane, providing a measure of whole cell compliance
or local viscoelasticity, respectively. Induced deformations
on the cell as a whole can provide estimation of the cell
compliance through changes in cell size and shape. Such
techniques include microplate stretchers (Asnacios et al.
2006; Suresh et al. 2005; Thoumine et al. 1999), an opti-
cal stretcher (Guck et al. 2005), microfluidics devices (Hou
et al. 2009; Qi et al. 2012), micropipette aspiration (Evans
et al. 1995; Guo et al. 2012), applied shear flow, or substrate
stretching (Suresh 2007). In contrast, other methods have
been developed that probe regions at the cell membrane,
typically at contact points with the cytoskeleton.

The viscoelastic response of the cortical cytoskeleton
can be accessed by applying force at localized regions
on the cell membrane. Force is applied to the membrane
and the adjoining cytoskeleton using beads or cantilevers,
which also serve as probes for the mechanical response.
Those probes can interact with the cytoskeleton through
the membrane or estimate the combined cytoskeleton–
membrane response of a region. The combined response
can be obtained by applying small deformation to the
membrane using, for example, atomic force microscopy
(Binnig et al. 1986; Chaudhuri et al. 2009; Cross et al.
2007). In contrast, responses of the cytoskeleton to exten-
sion and torsion have been measured by beads connected
to the actin cytoskeleton through membrane-traversing inte-
grins. Beads biochemically attached to the cytoskeleton can
be rotated in magnetic twisting cytometry (Fabry et al.
2001; Puig-de-Morales et al. 2001) or pulled by mag-
netic or optical tweezers (Bausch et al. 1998; Tanase
et al. 2007; Van Vliet et al. 2003; Zhang and Liu 2008).
In such experiments, the relative contribution of endoge-
nous active forces in cells can be evaluated by combin-
ing “passive” tracking and active manipulation of probes
(Gallet et al. 2009; Hoffman et al. 2006; Mizuno et al. 2007).
However, this does not provide information on the specific
elements in the cell driving the active motion.

Rheometry-like stress application is more difficult inside
living cells. Applying force inside cells can easily disrupt
the internal structure in an abnormal way, making analysis
difficult. With very few exceptions (de Vries et al. 2005;
Robert et al. 2010; Wilhelm 2008), active methods have

only been used to probe response of the cortex or a whole
cell, where the cell interior remains largely inaccessible to
such approaches. However, intracellular mechanics provide
an important measure of the internal structural response
that can occur in parallel with observed external changes.
Notably, the internal response may not intuitively match the
external one, underscoring the importance of both types of
studies. For example, the external and internal mechanics
of mouse fibroblasts were concurrently evaluated follow-
ing microtubule network disruption. Following microtubule
disruption, the Young’s modulus of the cortex reduced by
80 % (Pelling et al. 2007), while the internal microenvi-
ronment exhibited stiffening on similar time scales (Weihs
et al. 2007a). That indicates a cascade of biochemical and
mechanical changes occurring throughout the cell. To eval-
uate changes and responses of intracellular microenviron-
ments in real time, particle tracking is currently the method
of choice and the only approach that does not introduce
external stresses to the system.

Early particle tracking microrheology experiments were
already performed in the 1920s where magnetic particles
were actively manipulated within gelatin to reveal the quali-
tative response of the viscoelastic materials (Freundlich and
Seifriz 1923; Heilbronn 1922). This approach was also later
implemented to the cell cytoplasm (Crick and Hughes 1950;
Hiramoto 1969a, b; Yagi 1961) and to mucus (King and
Macklem 1977). Those measurements, however, could not
provide precise evaluation of sample rheology due to past
limitations in probe design, particle tracking, and motion
analysis (MacKintosh and Schmidt 1999). Current experi-
ments are predominately “passive”, where no external force
is applied to move the particles.

Particle tracking microrheology

Particle motion is often characterized by the estimator to
the second moment of the displacement, through the time-
averaged mean square displacement. The MSD is a sta-
tistical measure of time-dependent particle displacements〈
�r2 (τ )

〉 = 〈|r (t + τ) − r (t)|2〉
t
, where r(t) and r(t + τ )

are the positions of a single particle at two time points τ sec-
onds apart. The angular brackets in the MSD indicate a time
average on all such position pairs in a trajectory. Fewer pairs
are available for averaging at long lag times, which reduces
statistics, and can result in wavy MSD plots. To improve
the statistics especially at longer lag times, the MSD may
also be provided as simultaneous time and ensemble aver-
ages of several particles. It is important to note that time
averaging is applicable only when assuming a stationary
transport processes (Mason et al. 1997b). For example,
Brownian diffusion is stationary, yet if an underlying con-
stant drift-velocity exists, perhaps due to cell crawling,
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the process will become non-stationary. Random diffusion
(Brown 1828) occurs under thermal equilibrium, when only
thermal energy is available to drive particle motion; ther-
mal energy is on the order of kBT where kB is Bolzmann’s
constant and T is the absolute temperature. Under thermal
equilibrium, the rheology of a microscale region in a sys-
tem can be obtained through the motion of particles and the
resulting MSD.

A particle randomly moving in a viscous, thermally
equilibrated, d-dimensional system will exhibit linear time
dependence of the MSD:

〈
�r2 (τ )

〉 = 2dDτ . The MSD
depends on the diffusion coefficient, D, which is a mea-
sure for the rate that a particle of radius Rp can move
through a fluid of viscosity, η. For a system at thermal
equilibrium, the diffusion coefficient is given by the Stokes–
Einstein–Sutherland relation D = kBT /6πηRp, where the
particle experiences Stokes drag (Einstein 1905; Sutherland
1905). The same expression was developed in parallel by
Einstein and Sutherland, yet it was accredited only to Ein-
stein until recently (Squires and Brady 2005). Thus, the
Stokes–Einstein–Sutherland relation directly correlates an
obtained MSD with the viscosity for a purely viscous liquid
at thermal equilibrium. This relation had been generalized
provided the local rheology of non-Newtonian viscoelas-
tic fluids. Thus, the complex shear modulus (Mason et al.
1997b; Mason and Weitz 1995), the creep compliance (Xu
et al. 1998), and the dynamic moduli (Dasgupta et al. 2002;
Mason 2000) can be determined for non-Newtonian fluids
using the MSD.

In the development of the generalized Stokes–Einstein
relation, effects of inertia have been neglected (Mason and
Weitz 1995). Inertia becomes significant, however, at high
enough sampling frequencies or very short time scales and
can result in oscillations in the MSD (Indei et al. 2012a,
b); the critical resonance frequency is related to the relax-
ation time of the material. For example, particle tracking
with micron-scale tracers in wormlike micelle (Willen-
bacher et al. 2007) showed a deviation in the loss modulus,
G′′(ω) above ω = 0.1–1 MHz, when inertia was neglected
(Indei et al. 2012b). It is important to note that even at high
acquisition rates, the oscillations may not be visible as they
are dampened by the solvent viscosity (Head and Mizuno
2010; Indei et al. 2012a). In contrast, at low frequency or
long lag times, the inertial effects are negligible, the gener-
alized Stokes–Einstein-Sutherland equation is appropriate,
and the MSD can be used to obtain sample rheology.

In viscoelastic systems, the MSD can typically be
described by a single or multiple power-law time depen-
dence:

〈
�r2 (τ )

〉 = Aτα (Saxton and Jacobson 1997; Weihs
et al. 2006). Existence of a power law typically indicates
a balance between two contributing forces, such as energy
consuming (active) and thermally mediated. The driving

forces together with the particle microenvironment deter-
mine the mode-of-motion that will be indicated by the MSD
scaling exponent, α. The MSD scaling exponent is the slope
of the log-log plot of the time-dependent MSD, and its phys-
ical range is 0 ≤ α ≤ 2. In a non-active fluid, the scaling
exponent is in the range of 0 ≤ α ≤ 1, where the extremes
represent the elastic (trapped) and viscous (diffusive) lim-
its, respectively. Any intermediate values are termed sub-
diffusive and typically indicate hindrance to free diffusion
by steric obstacles or by friction resulting from motion
through a (continuum) viscoelastic medium. Sub-diffusion
can originating from network confinement and friction was
shown in semiflexible polymer and in actin networks, where
a scaling of 0.75 has been obtained experimentally and the-
oretically over various lag times (Gittes et al. 1997; Granek
1997; Morse 1998). Similar exponents have been observed
at long time scales in living cells, where particle motion
indicates cytoskeletal hindrance as the average persistence
time on molecular motors is exceeded (Caspi et al. 2000).
Transport induced by molecular motors and other active
processes result in super diffusion, typically with scaling
above unity (at lag times on the order of 1 s), but that may
also be close to unity (Brangwynne et al. 2008). Under
active transport, the MSD scaling exponent is 0 ≤ α ≤ 2,
where α = 2 is the ballistic limit of pure convection; in
pure convection x = vτ and thus x2 = (vτ )2. Thus, the
MSD scaling exponent provides an indication to the mode of
motion yet cannot reveal the actual mechanisms driving the
motion (Burov et al. 2011). The MSD is, nevertheless, the
best starting point of particle tracking analysis. A detailed
review of the stages in setting up a system for particle track-
ing and accurately obtaining particle trajectories is provided
elsewhere (Crocker and Hoffman 2007).

To obtain the MSD, each particle may be tracked individ-
ually, or correlated motion of pairs of close-by particles may
be evaluated (Mason et al. 1997a). Two-particle microrhe-
ology (Crocker et al. 2000; Levine and Lubensky 2000) is
superior when evaluating local rheology, providing results
comparable to macroscopic rheology. Both methods can
be used to probe microstructure that is larger or smaller
than the particle; in the latter, the particle experiences the
probed network as a continuum. However, within cells,
both single- and two-particle analyses have their advantages
and disadvantages (Crocker and Hoffman 2007; Lau et al.
2003; Weihs et al. 2006). The main differences between
the approaches are the range of region that is probed and
effects of probe–network interactions. Single particle track-
ing probes the heterogeneities in the immediate region of
the particle and is affected by probe interactions with the
microenvironment. In contrast, the two-particle approach
probes the local bulk region between two particles and
removes effects of probe interactions. In cells, it is often
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difficult to obtain sufficient statistics for two-particle track-
ing, especially when using internalized probes, and thus,
endogenous granules are often used (Hoffman et al. 2006);
those may not be available in all cell types and are often
localized only in specific regions in the cells. Hence, most
intracellular works utilize single particle tracking to obtain
the MSD. It is important to note that the MSD does not
easily translate to rheology in cells.

Intracellular particle tracking

The generalized Stokes–Einstein–Sutherland relation can-
not automatically be applied to describe particle motion
in living cells or in other active systems. In such sys-
tems, the assumption that only thermal energy is avail-
able to drive particle motion is, of course, violated. In
cells, particle motion is driven concurrently by thermal
fluctuations and by active processes utilizing intracellu-
lar energy sources. Specifically, adenosine-5′-triphosphate
(ATP) drives actin remodeling and molecular motor trans-
port, and guanosine-5′-triphosphate (GTP) drives micro-
tubule remodeling. Cytoskeletal remodeling and motor
transport can (directly and indirectly) induce particle
motion, resulting in displacements that may be larger or
more directional than those expected if motion was exclu-
sively thermal in origin (Bursac et al. 2005; Mizuno et al.
2007; Wilhelm 2008). Whether or not rheology can be
extracted, the MSD still provides an indication to the mode
of motion and to the mechanics of the microenvironment.
Specifically, the MSD amplitude was shown to be inversely
proportional to the local stiffness in cells (Brangwynne et al.
2009; Hoffman et al. 2006). Thus, for example, comparing
the MSDs of cancer cells with increasing metastatic poten-
tial has shown an increase in intracellular activity together
with a decrease in stiffness and structural density (Gal and
Weihs 2012).

It may still be possible to use the generalized Stokes–
Einstein–Sutherland relation in living cells under specific
conditions. Such conditions include experiments where
active cellular processes are inhibited, or if the time scale of
observation is shorter than that of the active processes. It has
been suggested that a measure of the “passive” mechanics
of the cell may be obtained following ATP depletion (Hoff-
man et al. 2006). This approach, however, may be applicable
only when morphological, structural, and viability changes
of the cell to ATP deletion are small, which is not the case
for many cell types. In addition, it is important to note that
ATP depletion does not significantly affect GTP levels in
the cell (Schwoebel et al. 2002), and thus, active processes
especially in microtubule-rich regions still exist. Another
approach to reveal the underlying thermally driven motion is

to acquire data at time scales shorter than those of the active
processes. Active modes in cells are typically not dominant
at time scales <0.1 s (frequencies >10 Hz), revealing ther-
mally driven processes (Brangwynne et al. 2009; Mizuno
et al. 2007). For example, the MSD scaling exponent in
drosophila cells is 0.6 for lag times <0.03 s and increases to
1.6 at longer time scales, indicating a shift from thermal to
active regimes (Kulic et al. 2008).

It is important to note that a reduction of the MSD scal-
ing exponent below unity may be observed at short times,
yet this does not immediately indicate a change in the mode
of motion. At short times, the MSD amplitude is typically
small and close to the noise floor of the system (Savin and
Doyle 2005). The noise floor depends on the mechanical
stability of the experimental setup, particle size, magnifica-
tion, frame rate, tracking algorithm, and other parameters
(Cheezum et al. 2001). These system parameters determine
the smallest displacement that can reliably be obtained from
a specific system. If the MSD is close to the noise floor,
it can appear to flatten out, while the system noise is in
fact biasing the measurement. Thus, the system noise must
be subtracted from the MSD (Savin and Doyle 2005) to
avoid artifactual changes in the MSD and the MSD scaling
exponents especially at the shortest lag times.

Many particle tracking experiments have been run in
the past decade, revealing interesting differences and sim-
ilarities between mammalian cell types. Table 1 shows a
collection of a wide variety of works on 23 different cell
types (primarily mammalian), using endogenous, sponta-
neously endocytosed, or injected particles as probes; all
cells were untreated by any chemicals. While this table is by
no means a full compilation of the literature, it is representa-
tive of the types of cells that were studied and experimental
setups that have been used. We have only included single
particle tracking works that had explicitly shown the MSD
and its scaling exponents.

We observe general differences in the MSD scaling expo-
nents of midrange time scales (0.5–6 s) that depend mainly
on the internalization method more than the cell type (Table
1). The internalization method determines particle interac-
tion with the intracellular microenvironment and localiza-
tion in the cell, i.e., the probed regions. Most endogenous
particles have exhibited α = 0.75–1. Ballistic injection and
microinjection of probes resulted in α of approximately
unity or below it, as a result of non-interacting particles
localized into possibly less active regions. Using natural
uptake, or endocytosis, we note that in most cases, super-
diffusive α > 1 were reported, regardless of cell type,
particle diameter, frame rate, or tracking method.

Differences between the experimental setups can have
great impact on the determined values of the MSD scaling
exponent. Hence, we compare the exponents obtained by
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different approaches on the same cell types in two examples.
Hmec-1 cells were evaluated with injected or endogenous
particles, differing in particle size and location, yet with
the same frame rate and overall time (Li et al. 2009). The
observed mechanics were similar yet not identical, as a
sub-diffusive exponent appeared at short time scales when
particles were injected. Another comparison is available for
HeLa cells, where the tracking method was the same, yet
the probe particles had different chemistry (Guigas et al.
2007; Weiss et al. 2004). Probe sizes were on the same scale,
and observed ranges of MSD scaling exponents were sim-
ilar. Hence, the experimental design will greatly affect the
available and obtained MSD scaling exponents.

Variations between measurements, as observed in
Table 1, can also occur due to particle location in the cells.
Particle motion near the cell periphery is more hindered as
compared to motion at its center and in the nucleus (Lei-
jnse et al. 2012; Li et al. 2009; Tseng et al. 2002). Hence,
if particles distribute unevenly or differently inside cells,
measurements from dissimilar regions may be compared.
Thus, approaches to automatically evaluate the location-
dependent motion of the probes within the cells are emerg-
ing (Abuhattoum and Weihs 2013). Such approaches require
evaluation of the MSD of single particles in the cells.

In summary, in living cells, the MSD is a good first esti-
mator of transport and mechanics, albeit it is not enough to
fully characterize this complex intracellular microenviron-
ment or reveal underlying transport mechanisms.

Life after MSD: trajectory and displacement analysis
methods

The MSD alone is an insufficient tool for analysis of active
systems including living cells. In cells, particle motion is
affected by many concurrent active processes. It is typically
the active processes together with mechanical responses of
cells that are of interest in intracellular studies. However, the
MSD cannot reveal underlying mechanisms leading to the
observed scaling exponents (Brangwynne et al. 2008; Burov
et al. 2011). Moreover, the MSD may conceal transient seg-
ments in a trajectory that are averaged out in the calculation
(Weihs et al. 2007b). Besides providing misleading data
that can generate artifacts and cause misinterpretation, the
transient, intermittent nature of the transport is lost. Hence,
the limitations of the MSD because of averaging and over-
simplification of the transport have instigated development
of supplementary analysis tools. Those revisit the particle
trajectories with focus on single particles.

Several approaches have been suggested for single-
particle trajectory analysis, typically focusing on direction-
ality and displacements as the main parameters. Information

Fig. 1 Time-and ensemble-averaged mean square displacements.
a MSD of the categorized particles in low MP cells. Most trajecto-
ries (92 % of all fit lines) exhibited α > 0.9 at short lag times, with
α ∼ 1 at longer lag times (solid line). Few trajectories (8 %) exhibited
α < 0.9 at short lag times and those had higher α at longer lag times
(dashed line). Inset: distribution of scaling exponents within the group
was continuous and had a single peak. b Ensemble-averaged MSD of
the large group utilized in subsequent analysis of the (1) high MP cells
and the (2) low MP cells. Super-diffusion with α ∼ 1.4 is observed at
short lag times, and scaling exponents reduce at longer lag times. Solid
lines are guides to the eye (Gal and Weihs 2012)

obtained from these methods should be combined with
input from the MSD. We highlight six different methods
in this section that have been applied in particle track-
ing experiments and demonstrate their utility with sample
data from living cells. We illustrate methods that provide
(1) the time-dependent directional persistence of trajectories
(Raupach et al. 2007); (2) the temporally resolved detection
of active regimes (Arcizet et al. 2008); (3) the tempo-
rally resolved detection of trapping regimes (Weihs et al.
2012); (4) the trajectory spread in space, calculated through
the radius of gyration (Saxton 1993); (5) the Van Hove
displacement distributions and deviations from Gaussian
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statistics (Valentine et al. 2001); and (6) the self-similarity
of a trajectory, using different powers of the displace-
ment (Gal and Weihs 2010). Each presented method reveals
different facets of single-particle transport phenomena.

We illustrate each of the methods using data obtained
from intracellular particle tracking in living cells. For a
full description of the particle tracking experiments and
experimental setup, see the paper of Gal and Weihs (2012).
We compare low and high metastatic potential (MP) breast
cancer cells; the cell lines are MDA-MB-468 and MDA-
MB-231, respectively, obtained from the American Tissue
Culture Collection. We track intracellular motion of 200
nm diameter, carboxylated polystyrene particles (Molecular
Probes-Invitrogen) at a frame rate of 60 fps for 60 s. We only
analyze trajectories over 300 frames long (5 s), showing a
total about 1,000 particles in more than 100 cells.

Figure 1b shows the ensemble-averaged MSD where the
majority of particles in both cells exhibit active motion
at short lag times which reduces to sub-diffusive motion
at longer lag times. We have only averaged quantitatively
and qualitatively similar MSD plots as determined by the
MSD scaling exponents for each trajectory; trajectories
were obtained using centroid-tracking algorithms (Crocker
and Grier 1996; Gal and Weihs 2012) and are available
in Gal and Weihs (2012). The MSD scaling exponents
were automatically determined for each trajectory using
a specialized algorithm (Umansky and Weihs 2012) and
were then grouped according to the exponents and the
qualitative nature of the motion. The motion of the par-
ticles produced two qualitatively different groups, as seen
in Fig. 1a. The majority of the particles exhibited expo-
nents of about 1.4 at short lag times which decrease at
longer lag times. We utilize the major group of trajecto-
ries in the ensuing analyses (Fig. 1b and here on) and
provide ensemble averages, where possible, for improved
statistics. Using the information gained from the MSD, we
proceed to apply each of the methods and discuss their
output and contribution to further characterization of the
mechanics and dynamics of the cells and differences bet-
ween them.

Directional persistence

The directionality and directional persistence of a trajectory
can provide indication to mechanisms driving the particle
motion. This approach has shown that the constant remod-
eling in a tensed cytoskeleton drives spontaneous motion
of particles attached to the cytoskeleton through the cell
membrane (Raupach et al. 2007); it can also be applied to
intracellular particle motion.

The method entails determination of time-dependent
directional changes in the trajectory. The directional chan-

ges are evaluated by a turning angle between each set of
three points on the trajectory. The points are defined by win-
dow of specified duration that is moved on the length of
the trajectory. By sliding the window along the trajectory,
the distribution of turning angles for a particle is obtained
as a function of lag time (Berg and Brown 1972). The dis-
tribution of turning angles indicates relative incidence of
random, persistently directional, or anti-persistent motion of
the particles. For random motion, successive turning angles
are independent and can exhibit any value in the range [−π

π] with equal probability in each time window. Conversely,
for persistent or anti-persistent motion, the directionality is,
respectively, correlated or anti-correlated between succes-
sive time intervals. That results in more obtained angles
around zero for persistent, directed motions, or close to
±π for anti-persistent motions. To combine information
from the turning angles, an index of directionality, P d,
is defined as the difference between the probabilities of
forward and backward motions. A P d of zero indicates ran-
dom motion, while positive or negative values, respectively,
signify persistent and anti-persistent motions. To detect
time-dependent processes, the P d is evaluated as a function
of lag time. For example, consistent increase in P d with lag
time indicates that the directionality becomes increasingly
dominant. Directional persistence can indicate local flow or
drift or existence of ballistic, active transport. Active motion
driven by motors may, however, not be ballistic, directional,
or directionally persistent (Kahana et al. 2008); thus, it is
important to also consider the MSD and the trajectory when
suggesting a mechanism. In contrast, anti-persistent motion
may be caused by elasticity of the medium (local trapping)
or by motor switching, inducing rapid changes in direction
when observed at characteristic lag times (Kahana et al.
2008). We have calculated the time-dependent directional
persistence for each particle and then ensemble-averaged
the P d for all the particles.

Figure 2 shows that particle trajectories are markedly
more directional and directionally persistent in the low MP
cells. The low MP cells exhibited anti-persistent motion
at short lag times and transitioned to highly persistent
motion above 0.1 s. That could indicate confined short
time-scale steps superimposed on directional motion, which
becomes more dominant at longer lag times, as appar-
ent by the consistent change in slope. This corresponds
to observed trajectories (Gal and Weihs 2012) and could
suggest active transport along a filament, for example, by
molecular motors. In contrast to the low MP cells, the high
MP cells were initially non-directional and became direc-
tionally persistent, albeit exhibiting a maximum at about
0.3 s. This could indicate that directional persistence can-
not be maintained for prolonged periods of time in the
high MP cells. In both cells, the persistent directionality
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Fig. 2 Persistent directionality in ensembles of all the particles in the
(1) high MP cells and (2) low MP cells (Gal and Weihs 2012)

corresponds with active transport regimes as determined
from the MSD. At longer lag times (5–10 s), we observe
changes in MSD scaling exponents that are also reflected
in the P d of both cell types. Note that despite being more
directionally persistent, the overall distance covered by par-
ticles in the low MP cells remains small with respect to the
high MP cells as is apparent through the difference in ampli-
tudes of the MSD (Fig. 1b). That is likely due to the dense
cytoskeletal network in the low MP cells (Gal and Weihs
2012) and underscores the importance of revisiting the MSD
following each analysis approach.

Temporally resolved detection of convective regimes

A similar approach, yet with different focus, is to simul-
taneously evaluate directionality together with convective
motion, as indicated by the MSD scaling exponents. That
approach is designed to detect segments of simultaneously
directional and nearly ballistic motion typically associated
with molecular motor transport (Arcizet et al. 2008).

In this method, a measure of the directional persistence is
determined for sliding time windows and is combined with
the MSD scaling exponent in each window. The local time-
dependent MSD is calculated within sliding user-defined
windows of M frames and then fit to a power law to
obtain the local MSD scaling exponent, α. Concurrently,
an angle correlation function in the range [−π π] is calcu-
lated through the same windows, providing the directional
persistence in that window. Directionality is defined when
the absolute value of the angle is under 0.6, where for uni-
directional motion the angle correlation function is zero.
The critical angle correlation function is given a limit above
zero to include slow directional changes in the underlying
cytoskeletal tracks (Arcizet et al. 2012). In parallel with
directionality determination in the window, the MSD scal-
ing exponent is used to identify convection. Convective

motion is defined in this method when the MSD scaling
exponent is >1.7; this cutoff is chosen to include strictly
active motion. When the defined conditions for the local
MSD scaling and the angle correlation function occur simul-
taneously, a convective regime is defined. The convective
regime determined here is assumed to result from molecular
motor-mediated transport (Arcizet et al. 2008). It is impor-
tant to note that motor-mediated convection can also be
non-directional (Kahana et al. 2008; Snider et al. 2004) and
will not be detected with this approach. Following detec-
tion of convective regimes, it is possible to evaluate their
frequency of appearance and temporal persistence.

Figure 3 shows that the detected convective segments are
of similar length in both cells. The low MP cells exhib-
ited convective segments in about half as many particles
as the high MP cells at all chosen window sizes (data not
shown). As window size was increased, fewer particles were

Fig. 3 Detected convective segments in trajectories. a Representa-
tive single trajectory with detected convective segment marked with
arrows. b Average convective or non-convective segments lengths in
(1, up-pointing triangle) non-convective segment in low MP cells;
(2, down-pointing triangle) non-convective segment in high MP cells;
(3, diamond) convective segment in high MP cells are overlapped by
(4, circle) convective segment in low MP cells
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detected as convective in both cells, but segments became
longer. Convective segment lengths in both cells were the
same for all windows. In contrast, the lengths of the non-
convective segments that connect convective segments were
longer in the low MP cells as compared to the high MP
cells. When the chosen time windows are very short, the
statistics for accurate calculation of the local MSD scaling
exponent are insufficient, and the algorithm may also erro-
neously detect non-convective regions as convective; e.g.,
short regions within a simulated, purely diffusive trajectory
have been identified as convective with very short windows
(data not shown). It is, thus, advisable to choose windows
that are typically no less than 1 s long and rely on motions
identified through MSD scaling exponents that persist for at
least half a time decade.

Temporally resolved detection of trapping regimes

An inherently different approach for detecting intermit-
tent trapping regimes is to scan the entire trajectory for
the “aftermath” of a local confinement—a dense region of
many overlapping steps (Weihs et al. 2012). That allows
easy detection of traps, which only become apparent after
prolonged periods of time, when a moving particle has
repeatedly encountered the trap edges (Weihs et al. 2007b);
smaller traps are apparent in less time/steps.

The method requires consideration of the entire trajec-
tory as an image, initially without regard for time, to detect
regions with large step density. A particle within an elas-
tic confinement on the same scale as its radius will exhibit
many back-and-forth steps. This will produce a dense region
in the image of the trajectory that can be detected with an
appropriately chosen density threshold. The choice of the
threshold is critical in this method and has been designed
to be done automatically. Automatic choice of the thresh-
old is performed using a preconditioned algorithm that has
been optimized for a wide range of experimental param-
eters. The parameters affecting the threshold include the
particle size, relative size of the confinement, the confine-
ment time, and the experimental setup; e.g., camera frame
rate. Using simulated trajectories with a wide range of sys-
tem and experiment parameters (Weihs et al. 2007b), the
threshold was preconditioned for optimal detection. Opti-
mal thresholds are, thus, automatically calculated following
user selection of cutoffs for the minimal confinement time
and the size ratio of particle to trap; those indicate what
a user would like to define as a trap. Following thresh-
old application and trap detection, the time dependence of
the trajectory steps is reintroduced. The sequence order of
steps is known, and thus, segment continuity may be veri-
fied and the mode of motion, confirmed by the segment’s
MSD. The MSD of even a short trajectory segment in a trap
will plateau (α = 0), where the plateau is proportional to the

Fig. 4 Representative trajectories observed in the high and low MP
cells. No trapping segments were detected in any trajectory in either
cell type even when particles appeared to linger in regions. (1, 2) high
MP cells (3, 4) low MP cells

trap size (Tseng et al. 2004; Weihs et al. 2007b). Conversely,
a diffusive trajectory of a particle randomly sampling its
immediate region will exhibit no MSD plateau. Hence, the
MSD and the MSD scaling exponents can be used to fil-
ter out any clearly diffusive regimes that may have been
incorrectly detected. The MSD may, however, exhibit small
scaling exponents (close to a plateau) due to viscoelasticity
of the medium or less likely due to vertical motion that is
tracked in 2D; vertical motion would have to persist for long
times for this to be identified. Thus, absolutely detecting
traps may be difficult, yet regions of local motion inhibition
can be identified.

Figure 4 shows that in the two cell lines evaluated here,
no intermittent trap–escape trajectories were detected exist.
Such trajectories typically occur when there is structural
obstruction to particle motion, e.g., when the microenvi-
ronment structure includes effective cages. Caged particles
will exhibit confinement together with intermittent escape
segments (active or diffusive). Escape is facilitated through
cage-structure dynamics or when a particle gains sufficient
energy to jump out of the cage. Many very different sys-
tems have exhibited intermittent particle diffusion in cages.
Those include complex materials (Weeks et al. 2000), inte-
riors of yeast cells (Golding and Cox 2006; Jeon et al.
2011; Weber et al. 2010), interiors of living mammalian
cells (Bronstein et al. 2009; Suh et al. 2004), and membrane
regions of mammalian cells (Bursac et al. 2005).

Trajectory spread in space—radius of gyration

The distance that a particle travels in a given time depends
on the forces driving its motion and the traversed microen-
vironment. Hence, differences in activity and mechanics of
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two samples can be evaluated by comparing the traveled dis-
tance away from the start or the spread of the trajectories in
those regions (Saxton 1993).

The amount of spread of a trajectory can be evalu-
ated with the radius of gyration (Rg), or other measures
of distances at a given time; the Rg has typically been
used to determine the size of a polymer chain (Rubinstein
and Colby 2003). Here, the Rg is defined as the root
mean square distance between each time-dependent step
and the center of mass. For a trajectory with a total of

N frames, the Rg is given by R2
g = 1

N

N∑

i=1

( �Ri − �Rcm

)2
,

where �Ri and �Rcm are, respectively, the particle location at
frame-i and the trajectory’s center of mass (Rubinstein and
Colby 2003). The Rg can also be calculated as the aver-
age of the distances between all measured positions in a

trajectory: R2
g = 1

2N2

N∑

i=1

N∑

j=i

( �Ri − �Rj

)2
. Hence, the Rg

simultaneously takes into account all time-scales provid-
ing an averaged measure of the trajectory size. Note that
with the effective normalization by trajectory length (N ),
the Rg from trajectories with different lengths can be com-
pared on the same plot. An inherent assumption of the Rg

calculation is that each sequential step is statistically inde-
pendent, which is not the case for motion in a viscoelastic
medium; hence, we also present for comparison a similar
magnitude that does not require this assumption. The time
scale of sampling determines what is estimated by the Rg.
At long times, longer than any relaxation time (memory)
of the material, the sequential steps become independent,
and we obtain a measure for the diffusion coefficient of the
particle as ∼R2

g /τ . For shorter times, we simply obtain a
comparative measure of the developing trajectories.

Figure 5 shows the cumulative distribution functions
of the trajectory spreading in the high and low MP cells
using three different measures. We have initially calculated
the radius of gyration of particle trajectories (Fig. 5a), as
detailed above. For comparison, we have also determined
the distance traveled by particles after 10 s from their initial
detection and the value of the MSD at τ = 10 s (Fig. 5b, c).
Those measures simply show the absolute and average trav-
eled distance, respectively, at a given time; the former does
not assume independence of the steps. All three approaches
showed qualitatively similar results: a log-normal distri-
bution of particle displacements in both cells, with lower
values in the low MP cells. The spread of trajectories in
the low MP cells were significantly smaller than those of
the high MP cells. This indicates that particles move far-
ther in the high MP cells, which again correlates with the
higher MSD amplitude in Fig. 1. The ability of particles to
move more in the high MP cells is likely because, concur-
rently, their intracellular environment is less dense and more

Fig. 5 Cumulative distribution functions of the high MP (1) and low
MP (2) cells, by calculation of the a radius of gyration, b distance
traveled after t = 10 s, and c MSD (τ = 10 s)

active than that of the low MP cells. The Rg and the distance
measures provide tools to compare trajectories in different
systems.
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Van Hove displacement distributions and deviations
from Gaussian statistics

The time-dependent probability distributions of the
observed displacements and their deviation from Gaussian
statistics can reveal existence of active modes of motion
(Valentine et al. 2001). Motions that are driven by active
transport will deviate from a Gaussian distribution. That
deviation has been quantified using two different non-
dimensional parameters (Rich et al. 2011; Weeks et al.
2000).

The approach dictates plotting the displacement dis-
tributions at lag times of interest and evaluating their
deviation from Gaussian statistics. The one-dimensional
displacements �x (τ) = x (t + τ) − x (t) at a lag time
τ can be collected into a probability distribution plot
P (�x, τ) for each particle or for the ensemble. The prob-
ability distribution of the particle displacements is known
as the ensemble-averaged van Hove correlation function
(Van Hove 1954). The van Hove correlation function of
Brownian thermally driven particles will simply be a single
Gaussian distribution. In contrast, displacements driven by
active intracellular processes will deviate from the Gaussian
distribution. The deviation from the Gaussian can be empha-
sized by plotting the ratio of the widths of Gaussian fits to
the ensemble-averaged van Hove correlations (Stuhrmann
et al. 2012).

The deviation from the Gaussian behavior can be quanti-
fied by the time-dependent non-Gaussian parameter (NGP):

α2(τ ) =
〈
�x4(τ )

〉

3〈�x2(τ )〉2 − 1, where the
〈
�xk(τ)

〉 = 1
N

∑

i

xk
i (τ )

are estimators for the kth moments of the distribution
(Rahman 1964; Weeks et al. 2000). The NGP is, in fact,
the kurtosis of the displacements �x. For a pure Gaussian
distribution, the NGP is α2 = 0, while for non-Gaussian
distributions the α2 will not vanish. Although a non-zero
α2 reveals deviations from Gaussian statistics, its specific
value is irrelevant and provides no indication to the mecha-
nisms driving the motion. Recently, the heterogeneity ratio
HR = M2 (τ )/M2

1 (τ ) had been suggested as an equivalent
yet improved measure of deviation from Gaussian statis-
tics (Rich et al. 2011). The M1 and M2 are the weighted
ensemble-averaged MSD and weighted ensemble-averaged
variance of the MSD, respectively. The weighting takes into
account differences in trajectory lengths, reducing statisti-
cal bias. However, if the NGP is calculated directly from the
raw data, it will inherently be weighted, as all the displace-
ments are taken into account and shorter trajectories will
contribute fewer �x’s.

Figure 6 shows that displacements in both cell types are
non-Gaussian, and the deviations correlate with time scales
observed in the MSD. Both cell types exhibit displace-
ment distributions with a Gaussian center, yet with so-called

Fig. 6 The van Hove correlation function and non-Gaussian parame-
ter in both cell types. van Hove correlation function at lag times of τ =
0.0167 s (diamond), τ = 0.5 s (down-pointing triangle), and τ = 5 s
(circle) for the a high MP cells and b low MP cells. The displacement
distributions were normalized by their respective standard deviations
for clarity. The solid line is a single Gaussian distribution. c Time-
dependent non-Gaussian parameter for (1) high MP cells and (2) low
MP cells

“heavy tails” that are distinctly higher than the Gaussian.
In parallel, the NGP also shows existence of non-thermal,
likely active driving processes. The α2 increase to maxima
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in the midrange time scales and vanish at short and long
lag times (Fig. 6c). Similar α2(τ ) plots have been attributed
to small non-thermal driving forces (Toyota et al. 2011),
which are likely in the dense intracellular microenviron-
ment. The non-thermal forces that induce the increase in the
NGP also affect the form of the MSD. Thus, the maxima in
the α2 occur at the same times as the crossover from super-
diffusive to diffusive-like scaling in the ensemble-averaged
MSD (Fig. 1). At the shortest and longest times, the NGP
is expected to vanish (Rahman 1964), as observed here,
albeit for different reasons. The NGP vanishes at the short-
est lag times, as the underlying thermally driven motion is
dominant and induces a Gaussian distribution of the steps.
A random distribution is again obtained at long lag times,
due to motor switching between filaments resulting in an
effective random motion (Kahana et al. 2008; Snider et al.
2004). The NGP provides a relative measure to compare
the two cell types. However, it is unclear from this param-
eter if variations result from different driving mechanisms
(forces) or structural environments, which also affect the
MSD amplitude.

Self-similarity of a trajectory

Existence of different and concurrent active transport pro-
cesses can be revealed through deviations of trajectories
from self-similarity (Gal and Weihs 2010). Self-similar tra-
jectories exhibit scale invariance, which occurs when all
steps belong to the same apparent distribution (e.g. in diffu-
sion). Conversely, two or more step distributions may coin-
cide when concurrent, thermal and various active driving
mechanisms coexist, causing weakly self-similar motions.

In this method, the time-dependent displacements are
raised to a range of powers other than the second
(i.e., the MSD) and the power dependence of the scal-
ing exponents is evaluated for a specific range of lag
times. The powers q of the displacements induce a time-
dependent response proportional to the power 〈�rq (τ)〉 =〈|�r (t + τ) − �r (t)|q 〉 ∼ τqν(q), where the scaling expo-
nents qv(q) provide a measure for the self-similarity of
a trajectory (Castiglione et al. 1999; Ferrari et al. 2001).
A trajectory producing a set of Gaussian-distributed dis-
placements will be strongly self-similar and, thus, scale
invariant. That is, the trajectory will appear the same on
any time scale, and displacement exponents qv(q) will be
linear with the power q with a slope v(q) = 0.5 at all
powers; an algorithm has recently been suggested to vali-
date the specific case of (sub-diffusive) fractional Brownian
motion where trajectories are stationary, Gaussian, ergodic,
and exhibit mixing (Burnecki et al. 2012). The slope of the
scaling exponents provides a basic indication of transport
mechanisms. Actively driven displacements will exhibit
0.5 < ν(q) ≤ 1 up to purely convective ballistic motion

(if v(2) = 1, then α = 2), where the scaling expo-
nents remain linear; similar to the MSD, this approach
cannot directly reveal what is the active mechanism.
Non-linearity of the scaling exponents, or a non-
constant v(q), indicate further deviation from Gaussian
and existence of other mechanisms driving or resist-
ing motion. Of particular interest are weakly self-similar
trajectories which are defined by a piecewise bilinear
qv(q), with two non-decreasing slopes, and v(2) > 0.5,
(Andersen et al. 2000; Castiglione et al. 1999; Ferrari et al.
2001; Leoncini et al. 2004; Pikovsky 1991). The last con-
dition translates to an MSD scaling exponent α > 1 that
indicates active motion. However, this is not simple active
transport, as the bilinear form indicates a weakly self-
similar trajectory, which likely results from at least two
concurrent active mechanisms driving the motion.

Figure 7 shows that particle motion in both low MP and
high MP cells is actively driven, yet the resulting trajectories
exhibit strong and weak self-similarity, respectively. The
scaling exponents were obtained in the range of 0.1–1 s for
all powers of the displacements, where the MSD indicated
active transport. The low MP cells exhibit a single slope
v(q) = 0.65, indicating super-diffusive yet sub-ballistic
motion. In contrast, in the high MP cells, we observe a bilin-
ear scaling which indicates weak self-similarity. The initial
slope of the scaling exponents in the high MP cells matches
that observed in the low MP cells (v(q ≤ 2) = 0.65). How-
ever, a second slope v(q ≥ 2) = 0.85 emerges at large q .
That second slope results from rarely appearing large dis-
placements, about 2 % of all steps (Gal and Weihs 2010).
While those steps are averaged out at small powers of the
displacement, they are accentuated at larger powers. Hence,
the weakly self-similar motion in the high MP cells could

Fig. 7 Scaling exponents of the displacements at each power, q, in
the (1) high MP, and (2) low MP cells. At low moment orders q ≤ 2,
a slope of ∼0.65 was observed in both cell lines. At higher moment
orders q ≥ 2, a second slope of 0.85 was observed in high MP cells
alone (Gal and Weihs 2012)
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result from intermittent segments of highly active transport
in an inherently active trajectory. Those may relate to the
high-frequency ballistic regimes predicted and observed in
cells following rapid decay of built-up stress in the cells
(Head and Mizuno 2010). It is important to note that those
rare, highly active steps are not necessarily sequential and,
thus, may not be detected with sliding window approaches.

Summary

In the past decade, a large variety of intracellular parti-
cle tracking experiments have been carried out, where the
MSD and its scaling exponents have served as the main
analysis tools. Table 1 shows the interesting collection of
results, with clear similarities and differences. It is apparent
that the measurements depend greatly on the experimen-
tal setup. Specifically, the frame rate, particle size, and its
location, which are partially determined by internalization
technique, affect the measured MSD and its scaling expo-
nents. We do observe a general difference between particle
transport deep within living cells and that measured follow-
ing injection (typically to the cell cortex) or by endogenous
particles. Hence, particle internalization and localization
strongly affect particle transport, as is revealed though the
MSD. However, as informative as the MSD is, it is still
limited in what it can provide.

The methods presented here to augment the MSD
revealed several more levels of information available in the
raw particle tracking data—particle trajectories in the living
cells. Through various the trajectory- and displacement-
based approaches, we have observed differences between
high and low MP cells that were not apparent in the MSD.
The ensemble MSD showed a difference between the two
cell types only in the MSD amplitudes, yet exhibited simi-
lar MSD scaling exponents and transition times. In contrast,
the analysis methods beyond the MSD have revealed many
more differences that can help to converge on the nature
of active transport processes in the cells. We have observed
both directional and convective segments in both cell types,
albeit with different characteristics and rates of recurrence.
We have also observed a relation between the deviation
of displacements from Gaussian distribution and the time
scales observed in the MSD. Moreover, in evaluating pow-
ers other than the second, we were able to show existence
of rare, highly active events in the high MP cells that do
not exist in the low MP cells. We deduce that particles in
the cells mostly experience small non-thermal forces, which
induce steps on the order of thermally mediated displace-
ments. Those non-thermal forces likely result from direct or
indirect interactions with molecular motors in the cells and,
in the high MP cells, are at times augmented by a different

process. Hence, the methods and algorithms described here
indirectly suggest mechanisms driving particle motion.

We suggest usage and interpretations that can be reached
using each of the described methods. Each method reveals
an element of the observed motion and can be used to
construct a hypothesis regarding intracellular structure and
transport mechanisms; some of the methods are only com-
parative, such as the Rg and the NGP. For example, if local
trapping or a small Rg are observed, that could indicate
dense and/or stiff intracellular structures. Similarly, exis-
tence of segments of convective or directional motion will
typically relate to the local structure and driving element,
while non-directional activity could also result from remod-
eling of the cytoskeleton; segments can be analyzed as
parts of trajectories if they are long enough. Non-directional
active transport will not be revealed by directionality- and
persistence-based analyses approaches but will require com-
parisons of displacements. The displacements can reveal
deviation from Gaussian distribution and also existence of
more than one active driving process. Not all the methods
will be relevant to every experimental data set and may pro-
vide negative answers (as illustrated here for intermittent
trapping). However, even a negative result from a specific
method can provide indication to the driving mechanisms
and local structure. It is important to keep in mind that a
single method will typically not provide conclusive proof
of the transport mechanisms or structure and rheology of
the probed microenvironment. Hence, careful analysis is
required to prove that what is observed arises from a specif-
ically suggested mechanism. For validation, results from
several analysis methods can be correlated and also com-
bined with particle tracking experiments under specifically
targeted drug-induced disruptions to the cells; e.g., disrup-
tion of motor function can help confirm motor transport. In
conclusion, the introduced methods for advanced particle
tracking analysis provide a much more in-depth view of par-
ticle transport in cells than available from the MSD alone.
The MSD and other approaches have revealed many inter-
esting aspects of intracellular mechanics and transport in
the last decades. However, while particle tracking measure-
ments have been performed on many cell types, a more sys-
tematic approach is required. We believe that the approaches
highlighted herein are essential for any significant progress
in understating the mechanisms driving particle transport
and through them, mechanisms and structure of cells in
general.
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