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Abstract Deterministic lateral displacement devices have
been proved to be an efficient way to perform continuous
particle separation in microfluidic applications (Huang et al.
Science 304:987–990, 2004). On the basis of their size,
particles traveling through an array of obstacles follow dif-
ferent paths and can be separated in outflow. One limitation
of such a technique is that each device works for a spe-
cific critical size to achieve particle separation, and a new
device with different geometrical properties needs to be fab-
ricated, as the dimensions of the particles to be separated
change. In this work, we demonstrate the possibility to tune
the critical particle size in a deterministic lateral displace-
ment device by using non-Newtonian fluids as suspending
liquid. The analysis is carried out by extending the theory
developed for a Newtonian constitutive law (Inglis et al. Lab
Chip 6:655–658, 2006) to account for fluid shear-thinning.
3-D finite element simulations are performed to compute the
dynamics of a spherical particle flowing through the deter-
ministic ratchet. The results show that fluid shear-thinning,
by altering the flow field between the obstacles, contributes
to decrease the critical particle diameter as compared to the
Newtonian case. Numerical simulations demonstrate that
tunability of the critical separation size can be achieved
by using the flow rate as control parameter. A design for-
mula, relating the separation diameter to the fluid rheology
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and the relevant geometrical parameters of the device, is
derived. Such a formula, originally developed for a power-
law model, is proved to work for non-Newtonian liquids
with a general viscosity trend.
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Introduction

Separation of particles suspended in fluids in microflu-
idic devices is a crucial step in many chemical and
biochemical processes (Pamme 2007). Several separation
techniques have been proposed, based on magnetic fields
(Pamme and Manz 2004; Xia et al. 2006), electric fields
(Mazereeuw et al. 2000; Fonslow and Bowser 2008), acous-
tic waves (Laurell et al. 2007; Nam et al. 2011), gravity
(Huh et al. 2007), and hydrodynamic forces (Yamada et al.
2004; Yamada and Seki 2005).

Within the context of separators based on hydrodynamic
effects, Huang et al. (2004) developed an efficient, size-
based, continuous separation technique known as “deter-
ministic lateral displacement” (DLD). The separation device
consists in a sequence of rows of obstacles that are shifted
by a fixed displacement along the flow direction. The dis-
placement is chosen such that, after a number of rows,
the obstacles aligned again. The suspension containing par-
ticles with different sizes is pumped through the array
of obstacles in laminar flow. Small particles follow the
direction of the flow, and there is no net displacement
when traveling through the device (“zigzag motion”). On
the other hand, bigger particles hydrodynamically interact
with the obstacles and are pushed from the original flow
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stream to the adjacent one, resulting in a net displace-
ment between the inlet and outlet position (“displacement
motion”). Such a technique is “deterministic” as, if dif-
fusion is negligible, the path followed by the particles is
completely determined by the geometry of the device. The
deterministic ratchet has been successfully used in biolog-
ical applications for separation of DNA, cells, and blood
(Huang et al. 2004; Davis et al. 2006; Inglis et al. 2008a, b,
2010; Green et al. 2009), showing improved performances
over alternative techniques in terms of speed and separation
resolution.

The critical particle size, i.e., the particle diameter divid-
ing the displacement from the zigzag behavior, depends
on the geometrical parameters of the device, e.g., the gap
between two posts and the displacement between two con-
secutive rows of obstacles (Inglis et al. 2006). Therefore,
once a device has been fabricated, it can be only used to
separate two classes of particles having sizes lower and
higher than the critical diameter which the device has been
designed for. For this reason, most practically used DLD
devices are made with several sections in series, each with
a different critical particle size. In this way, a discrete
set of characteristic dimensions can be separated. How-
ever, because of the high variability of sizes in biological
particles, an existing device may not have the adequate geo-
metrical properties to achieve particle separation. Therefore,
a limitation of the DLD technique is the need to fabricate
a new device able to process suspensions with the desired
critical separation size.

Recently, a couple of techniques to tune the critical par-
ticle size in a DLD device have been proposed. Beech and
Tegenfeldt (2008) showed that a variation of the critical
particle size can be attained by stretching the deterministic
ratchet along the direction orthogonal to the flow. Indeed,
as an effect of the applied strain, the inter-obstacle distance
increases, leading to an increase in the critical separation
size as well. Of course, the device needs to be fabricated
by an elastomeric material as PDMS and, as remarked by
the authors, a uniform stretching of the device is required,
avoiding, at the same time, the deformation of the pillars. A
second possibility to tune the critical size has been proposed
by Beech et al. (2009) by combining the DLD principle
with dielectrophoresis. By applying a nonuniform electric
field, a dielectrophoretic force acts on the particles leading
to a “jump” to the adjacent flow stream. By modulating the
external voltage, such a force can be varied, thus tuning the
critical separation size.

In this work, we present an alternative method to tune
the critical size in a DLD device. We propose to use non-
Newtonian fluids as suspending liquid in order to exploit
their rheological properties to modify the critical particle
size. Therefore, instead of applying an external force (e.g.,
by stretching the device or by using dielectrophoresis), we

propose to attain tunability of the critical size by exploiting
the “internal” properties of the liquid.

The use of non-Newtonian fluids as suspending liquids
in microfluidic devices has been proved to be an efficient
way to achieve operations that commonly require complex
apparati. For instance, viscoelastic fluids promote parti-
cle focusing in straight channels (Leshansky et al. 2006;
Yang et al. 2011; Villone et al. 2011; D’Avino et al. 2012),
and size-based separation by exploiting the particle migra-
tion phenomenon induced by fluid elasticity (Nam et al.
2012). Very recently, non-Newtonian fluids have also been
used as suspending liquids to manipulate DNA, cells, and
nanoparticles (Yang et al. 2012; Kim et al. 2012).

The aim of this work is to investigate the effect of the
rheology of non-Newtonian fluids on the dynamics of parti-
cles flowing in a deterministic ratchet. More specifically, the
study is finalized to relate the critical size to the fluid shear-
thinning and test the possibility to modulate the particle
separation diameter by properly selecting the fluid rheology
for a given geometry of the device.

The theory developed by Inglis et al. (2006) for predict-
ing the critical particle size for Newtonian liquids is firstly
extended to take into account fluid shear-thinning. This is
done by considering the power-law model because of its
simplicity and the availability of analytical expressions for
the flow field in simple geometries.

The theoretical results are, then, confirmed by 3-D direct
numerical simulations whereby the dynamics of a rigid,
spherical particle in the DLD device is computed by solving
the governing equations. The finite element method with a
mesh-deforming procedure to follow the particle motion is
adopted. A Newtonian suspending liquid is firstly consid-
ered to validate the numerical code by a comparison with
the available experimental data. The simulations are, then,
extended to the power-law and the Bird–Carreau constitu-
tive models. From the numerical results, a design formula
relating the critical particle diameter to the fluid rheology
and the geometry of the DLD device is derived.

Problem formulation and numerical method

Problem description and governing equations

A top view of the deterministic ratchet (also referred as
bumper array) is schematized in Fig. 1. Each gray circle is
a cylindrical obstacle with radius Rcyl = Dcyl/2 and height
Lcyl which is generally chosen much larger than the radius.
The gap between two obstacles along the y−direction is
denoted by H , whereas the distance between two con-
secutive rows of obstacles (computed from the cylindrical
surfaces) is denoted by �x. Each row is shifted with respect
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Fig. 1 Schematic top view of the deterministic ratchet. The cylindrical
obstacles are the gray circles and the relevant geometrical parameters
are reported. The computational domain used in the simulations is also
shown (dashed lines)

to the previous one by a quantity �λ. The ratio Npost =
�λ/λ, with λ = H + Dcyl, is called the periodicity number
of the bumper array. Indeed, such a parameter represents the
number of rows that identifies the characteristic cell of the
device, i.e., the whole device can be obtained by replicat-
ing along the x− and y−directions of such a cell. In Fig. 1,
the device periodicity is Npost = 4. The number of peri-
odic posts is a fundamental design parameter as it is directly
related to the critical particle size. Previous studies have
reported that, by choosing an integer periodicity number,
typically the particles follow two possible paths (see below),
whereas a more complicated scenario occurs for noninte-
ger values of Npost (Long et al. 2008; Frechette and Drazer
2009). In this work, we always set an integer periodicity
number.

A dilute suspension of spherical rigid particles flows by
imposing a flow rate along the x−direction. We denote the
particle radius by Rp = Dp/2. Assuming negligible inertia
and no external forces and torques, the governing equations
for the fluid domain read as follows:

∇ · u = 0 (1)

∇ · σ = −∇p + 2∇ · [η(γ̇ )D] = 0 (2)

Equations 1 and 2 are the mass and momentum balance,
respectively. In these equations, σ , u, p, η(γ̇ ), and D, are
the stress tensor, the velocity vector, the pressure, the viscos-
ity, and the rate-of-deformation tensor D = (∇u+∇uT )/2,
respectively. Notice that, in general, the viscosity is not con-
stant, but it is assumed to be a function of the magnitude of
the rate-of-deformation tensor γ̇ = √

2D : D (Bird et al.
1987). The expression for the viscosity is determined by
choosing a constitutive equation for the fluid. In this work,

we consider the Newtonian constitutive law characterized
by a constant viscosity:

η(γ̇ ) = μ (3)

and two non-Newtonian fluids, i.e., the power-law model:

η(γ̇ ) = mγ̇ n−1 (4)

and the Bird–Carreau model:

η(γ̇ ) = η∞ + (η0 − η∞)
1

[
1 + (Kγ̇ )2

] 1−n
2

(5)

In both non-Newtonian equations, the parameter n sets the
fluid shear-thinning. For n = 1, the Newtonian case is
recovered, with viscosity given by m and η0, for the power-
law, and Bird–Carreau models, respectively. For n < 1, both
models predict shear-thinning. In Eq. 5, η0 and η∞ are the
viscosities at low and high shear rates, and 1/K is the shear
rate value corresponding to the start of viscosity thinning in
simple shear flow. In Fig. 2, we show the viscosity trends
for the Newtonian case (μ = 1), the power-law fluid with
m = 1 and two values of the parameter n (n = 0.7 and
n = 0.4), and for the Bird–Carreau model with η0 = 1,
η∞ = 0.1, K = 1, n = 0.1. It is important to remark that
both non-Newtonian constitutive equations do not predict
normal stresses and fluid elasticity, and they can be regarded
as a generalization of the Newtonian constitutive equation
(Bird et al. 1987).

Because of the assumption of dilute system, we can
consider the dynamics of a single flowing particle, neglect-
ing particle–particle hydrodynamic interactions. Under the

Fig. 2 Viscosity trends in simple shear flow for a Newtonian fluid
(μ = 1, dashed–dotted line), power-law model (n = 0.7, long dashed
line; n = 0.4, short dashed line, and m = 1), Bird–Carreau model
(η0 = 1, η∞ = 0.1, K = 1, n = 0.1, solid line)
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assumptions of absence of particle inertia, and no external
forces and torques, the total force F and torque T acting on
the particle surface are zero:

F =
∫

∂Sp

σ · n dS = 0 (6)

T =
∫

∂Sp

(x − xp) × (σ · n) dS = 0 (7)

where n is the outwardly directed unit normal vector on the
particle surface ∂Sp, x is a generic point on the surface,
and xp is the particle center. Notice that, in writing Eqs. 6–
7, we neglected particle diffusion (i.e., Brownian motion).
Although diffusion has been proven to have an effect on
the behavior of DLD devices (Heller and Bruus 2008; Long
et al. 2008), we recall that non-Newtonian fluids usually
have viscosities much larger than water, thus reducing the
particle diffusion coefficient.

Finally, the particle position and rotation are updated by
integrating the following kinematic equations:

dxp

dt
= Up, xp|t=0 = xp,0 (8)

d�

dt
= ωp, �|t=0 = �0 (9)

with Up and ωp the translational and angular particle veloc-
ity, and � the angular rotation.

To prevent a severe mesh distortion between the parti-
cle and pillars, a short-range repulsive force needs to be
included (Frechette and Drazer 2009; Kulrattanarak et al.
2011b). Following Glowinski et al. (1999), in this work, we
model the repulsive force as

F p,j = 0, dp,j > Rp + Rcyl + ρ (10)

F p,j = F(xp − xcyl,j)(Rp + Rcyl + ρ − dp,j)
2,

dp,j ≤ Rp + Rcyl + ρ (11)

where dp,j = |xp − xcyl,j|, xcyl,j is the center of the circu-
lar section of the cylinder j (all the cylinders have the same
radius Rcyl), F modulates the magnitude of the force and
ρ is the force range. Such a force is added to the Eq. 6.
Preliminary tests have been performed to evaluate the force
parameters. In this work, we set F = 5, 000 and ρ = 0.035.
With this choice, the mesh deformation between the parti-
cle and a pillar is not critical, still allowing the particle to
closely approach the cylinders. Furthermore, as shown by
the validation tests presented in Section “Simulation proce-
dure and code validation”, with those values for F and ρ,
the simulation results fairly describe the experimental data.

To solve the system of equations, boundary conditions
for the velocity field need to be specified. This is post-

poned to the next section, after the computational domain is
discussed.

The governing equations are made dimensionless by tak-
ing the gap H as characteristic length, the ratio Q/H as
characteristic velocity, where Q is the flow rate per unit of
height of the device crossing the gap H (see below), and
ηQ/H 2 as characteristic stress, with η a viscosity depend-
ing on the constitutive equation. For brevity, we report in
dimensionless form only the mass and momentum balance
equations, after substituting the three constitutive models.
Denoting with starred symbols the dimensionless quantities,
they read as

∇∗ · u∗ = 0 (12)

−∇∗p∗ + 2∇∗ · D∗ = 0 (13)

−∇∗p∗ + 2∇∗ ·
[
(γ̇ ∗)n−1D∗] = 0 (14)

− ∇∗p∗+

2∇∗ ·
[(

ηr + (1 − ηr)
1

[1 + (�γ̇ ∗)2] 1−n
2

)

D∗
]

= 0 (15)

where Eqs. 13–15 refer to the Newtonian, power-law, and
Bird–Carreau model, respectively. In Eq. 15, ηr = η∞/η0 is
the viscosity ratio and � = KQ/H 2.

From the dimensionless equations, it is evident that, for
a Newtonian liquid, there is no constitutive dimensionless
parameter, whereas the exponent n is the only parameter for
the power-law model. Therefore, in both cases, the parti-
cle dynamics and, consequently, the critical separation size
are expected to be independent of the flow rate (in terms
of dimensionless quantities). On the contrary, the flow rate
appears in the parameter � of the Bird–Carreau model, that,
together with the viscosity ratio ηr and the exponent n, com-
pletely describes the fluid rheology. The effects of the flow
rate on the critical size for the Bird–Carreau model will be
discussed in Section “Bird–Carreau model”.

Finally, the dimensionless geometrical parameters are the
blockage ratio Dp/H , the distance between two consecutive
rows �x/H , the diameter of the cylinders Dcyl/H , and the
number of periodic posts Npost. In this work, we fix the fol-
lowing geometrical parameters Dcyl/H = 1 and �x/H =
2, whereas the influence of the fluid rheology and periodic-
ity of the device Npost is analyzed by varying the blockage
ratio Dp/H to identify the critical particle separation size.

Computational domain and boundary conditions

As discussed above, the structure of the deterministic ratchet
can be obtained by periodically replicating a characteristic
cell, as the one depicted in Fig. 1. Of course, it is assumed
that the influence of the inlet and outlet as well as the
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lateral bounding walls is negligible. Therefore, the numeri-
cal investigation of the critical particle size can be limited to
a periodic cell, as done in Kulrattanarak et al. (2011b). For
analyzing the flow field without particles, a further reduc-
tion of the computational domain is possible. Indeed, the
domain delimited by the dashed–dotted lines in Fig. 1 is rep-
resentative of the whole system, i.e., the flow field within
such a reduced domain is the same in any region of the deter-
ministic ratchet. Now the two periodic directions are along
the lines connecting the centers of the pillars.

When a particle is taken into account, the latter still
holds, provided that the lengths of the reduced domain are
sufficiently larger than the particle diameter such that the
particle path is not influenced by the images of the par-
ticle itself across the periodic boundaries. The periodicity
implies that, when the particle leaves the domain crossing
a boundary surface, it appears on the opposite surface, at
the same relative position with respect to the periodic direc-
tions. However, the dashed–dotted domain shown in Fig. 1
cannot be directly used as it would require the splitting of
the particle when crossing the domain boundaries. To over-
come this problem, the domain enclosed by the dashed line
can be used as computational domain, but the relocation
of the particle is still performed when its center crosses
one of the boundaries of the dashed–dotted domain. In this
way, the particle surface is always enclosed within the com-
putational domain and the domain size is increased, thus
leading to a larger distance between the particle and their
images. It is important to remark that the jump of the par-
ticle from one surface to the opposite one is allowed as
no velocity/stress time-derivative appears in the governing
equations (no inertia/no elasticity). In other words, each step
of the simulations is independent of the previous ones as the
velocity/stress field previously computed are not required
to calculate the solution at the current time level. Prelimi-
nary tests have been carried out to verify that the lengths of
the computational domain allows to neglect the influence of
the periodic images of the particle on its dynamics. Further
details are given in the next section.

Concerning the size of the domain along the z−axis, we
assume (in agreement with the ratchets used in the experi-
ments) that the height of the pillars is much larger than the
particle diameter. This allows us to study one-half of the full
geometry obtained by cutting the sphere in two halves by
a symmetry plane (the xy−plane). As a consequence, the
translational particle velocity has two components (along
x− and y−direction) and the angular velocity has one
nonzero component (rotation around the z−axis).

In conclusion, the computational domain used in this
work is shown in Fig. 3. Notice that the angle between the
planes parallel to the z−axis depends on the periodic num-
ber of posts Npost, as it directly affects the position of the
pillars.

Fig. 3 Computational domain used in the simulations. Notice that the
flow direction does not coincide with the plane ∂S5 and ∂S6

Referring to the notation in Fig. 3, the boundary condi-
tions read as follows:

u = 0 on ∂Scyl,i i = 1, ..., 4 (16)

u|∂S1 = u|∂S3 (17)

u|∂S5 = u|∂S6 (18)

−
∫

∂S1

u · n dS = Qin (19)

uz = 0, fx = fy = 0 on ∂S2 and ∂S4 (20)

u = Up + ωp × (x − xp) on ∂Sp (21)

Equation 16 is the no-slip condition on the pillar surfaces,
Eqs. 17–18 express the periodic conditions for the veloc-
ity, a flow rate Qin is imposed in inflow (Eq. 19 with n the
outwardly directed unit normal vector on ∂S1), and Eq. 20
is the symmetry condition applied on the upper and lower
boundaries where fj is the force directed along the direction
j . Finally, Eq. 21 is the rigid-body motion on the particle
boundary. Notice that, because of the chosen computational
domain, the flow rate Qin is twice the flow rate Q cross-
ing the section between two posts. Because of the arbitrary
size of the domain along the z−axis, both flow rates are
expressed for unit length of z−dimension. Therefore, the
characteristic velocity Q/H introduced in the previous sec-
tion is the average velocity of the fluid crossing the gap
between two obstacles.

Numerical method and preliminary tests

The governing equations are solved by the finite element
method. A second-order Adams–Bashforth scheme is used
for time integration of Eqs. 8–9. The particle translational
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and the angular velocity are treated as additional unknowns
and are included in the weak form of momentum equa-
tion. The force- and the torque-free conditions are imposed
through Lagrange multipliers in each node of the spherical
surface (D’Avino et al. 2008, 2010; Snijkers et al. 2011).
Therefore, at each time step, the velocity and pressure fields,
together with the x− and y−components of the particle
translational velocity and the angular velocity around the
z−axis are simultaneously computed.

A boundary-fitted mesh with tetrahedral elements is used
to discretize the domain. During a simulation, the particle
changes its position following the flow direction. The mesh
nodes describing the particle surface are moved in order to
follow the particle motion. The internal mesh nodes (repre-
senting the fluid) need to be moved as well in order to reduce
the mesh distortion. The mesh displacement, calculated in
terms of velocity û, is computed by solving a Laplace equa-
tion, assuring smooth variation (Hu et al. 2001). Due to the
mesh distortion as the particle moves, the mesh needs to
be regenerated after some time steps. Following Hu et al.
(2001), the mesh is considered too much distorted when
one of the two following parameters f1 and f2 exceeds the
threshold of 1.39:

f1 = max
1≤e≤Nel

(f e
1 ) (22)

f2 = max
1≤e≤Nel

(f e
2 ) (23)

with Nel as the total number of elements and

f e
1 = | log(V e/V e

0 )| (24)

f e
2 = | log(Se/Se

0)| (25)

where V e, Se, V e
0 , and Se

0 are the volume and the aspect
ratio of the element e and their values in the initial unde-
formed mesh, respectively. The aspect ratio is defined as
Se = (le)3/V e with le as the maximum side length of the
element e.

Because of the inertialess assumption, the computations
are greatly simplified as (a) no convective term appears in
the governing equations and, hence, we do not need to take
into account for the relative motion of the mesh nodes with
respect to the fluid velocity, and (b) the absence of time-
dependent terms does not require to project the velocity field
from the old mesh to the new one.

The mesh generation is automatically performed by using
the software Gmsh (Geuzaine and Remacle 2009). As the
particle–pillar distance can be very small, to accurately
solve the flow field in between the gap, we guarantee that at
least six to eight tetrahedral elements are generated between
the particle and cylinder surfaces. An example of the mesh
is shown in Fig. 4, when the particle is quite close to a pil-
lar. For the sake of clarity, only the elements on the domain

Fig. 4 Typical mesh used in the simulations. For sake of clarity, only
the mesh on the domain boundaries is reported and the discretization is
coarser than the one used in the computations. In the inset, the element
distribution between the particle and the closest cylinder is shown

boundaries are shown, and the mesh reported in the figure
is coarser than the ones typically used in the simulations. In
the inset, the nonuniform distribution of the elements on the
particle and the closest pillar is readily observed, assuring a
sufficiently fine discretization within the gap.

A number of preliminary tests have been carried out.
Mesh and time convergence has been checked by changing
the number of elements and the time-step size. A represen-
tative convergence test is reported in Fig. 5 where particle
trajectories in the bumper array with Npost = 4 are shown.
The solid line is the trajectory for Dp/H = 0.6 with a mesh
with about 20,000 elements and a (dimensionless) time-
step size �t = 0.05. The symbols refer to the same case
with �t = 0.025 (black circles) and about 35,000 elements
(white circles). It is readily seen that the symbols and the
solid line cannot be distinguished. By changing the geo-
metrical parameters, similar results are obtained. In all the
simulations, we adopt meshes with about 20,000 elements
and a time-step size �t = 0.05. Finally, Fig. 5 also shows
the two dynamics followed by the particle, i.e., the zigzag
motion for Dp/H = 0.6 (solid line and symbols) and the
displacement motion obtained by increasing the particle size
to Dp/H = 0.8 (dashed line).

To check the possibility of using the reduced domain as
discussed in the previous section, we perform 2-D numerical
simulations by comparing the particle trajectories obtained
in the reduced domain and in the whole periodic cell. The
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Fig. 5 Particle trajectories for
two different particle sizes:
Dp/H = 0.8 (dashed line) and
Dp/H = 0.6 (solid line). Both
simulations have been
performed with �t = 0.05 and
about 20,000 elements. The
symbols are the trajectories for
Dp/H = 0.6 with �t = 0.025
(black circles) and about 35,000
elements (white circles)

choice of using 2-D simulations is twofold: (a) the com-
putational effort to simulate the periodic cell is much less
expensive than the full 3-D computations and (b) more
importantly, if the 2-D results confirm that no appreciable
change in the particle dynamics occurs by using the small
computational domain, this is surely verified by the 3-D
case as well because the perturbations due to the presence
of the particle images die out faster in 3-D than in 2-D case.
Simulations have been performed by taking the largest par-
ticle diameter considered in this work as it gives the most
critical situation in terms of particle–particle interactions.
The results evidence that only slight deviations between the
particle trajectories occur, and the critical particle size is
unaffected. We remark that the possibility to use the reduced
domain reported in Fig. 1 is strictly related to the geomet-
rical parameters considered in this work. We expect that
by reducing the cylinder radius and/or the distance between
two rows of posts �x, a larger computational domain may
be required.

Finally, the height of the domain Lc has to be chosen
in order to exclude any interaction between the sphere and
its image across the symmetry boundaries. This is done by
monitoring the particle dynamics by progressively enlarging
the domain. We found that Lc/H = 2 suffices to fulfill such
a condition.

Simulation procedure and code validation

The aim of this work is to investigate how the (dimen-
sionless) critical particle diameter Dc/H , i.e., the diameter
of the particle dividing the displacement and the zigzag
motion, is related to the fluid rheology. The computation
of Dc is done by initially locating the particle with cen-
ter in the middle of two posts and monitoring its position
after passing through Npost pillars, i.e., after covering a dis-
tance equal to the length of the periodic cell. In agreement
with Kulrattanarak et al. (2011b) and Frechette and Drazer
(2009), we found that the initial particle position does not
affect the computation of the critical particle size. At each

time step the governing equations are solved and the parti-
cle position is updated. During the motion, when the particle
center crosses the plane between the two rightmost pillars of
the computational domain, it is relocated at the same posi-
tion (according to the periodic direction) along the opposite
plane. A similar procedure is done when the particle crosses
the lower boundary (that occurs when traveling in zigzag
motion).

To evaluate the critical particle diameter Dc, several sim-
ulations have been carried out by changing the particle
diameter. We start from a diameter comparable to the gap
size so that the particle travels following the displacement
motion. The diameter is, then, progressively reduced by
a constant step size in order to detect the limiting value
Dp,up such that the displacement motion occurs. By further
reducing the diameter to the next value Dp,down, the particle
experiences the zigzag behavior. The value Dc belongs to
the interval [Dp,down, Dp,up]. Finally, we improve the accu-
racy of Dc by running simulations with particle diameters
in this interval. For all the simulation data, the uncertainty
in the computation of Dc is 0.005 (in dimensionless units),
i.e., particles with Dp > Dc + 0.0025 follow the displace-
ment motion and particles with Dp < Dc − 0.0025 follow
the zigzag motion.

The code is validated by comparing the numerical pre-
dictions for a Newtonian suspending fluid with the experi-
mental data reported in Inglis et al. (2006). Figure 6 reports
the dimensionless particle diameter as a function of the
inverse of the device periodicity number 1/Npost. The cir-
cles are experimental observations for several combinations
of Dp/H and device periodicity. Particles observed in dis-
placement motion are reported as white circles, whereas
particles in zigzag motion are shown as black circles. There-
fore, the critical particle size is identified as the region in
between the black and white circles. The solid line is the
theory developed in Inglis et al. (2006) for predicting the
critical particle diameter as a function of Npost. The numer-
ical predictions are reported in the same figure as gray
diamonds for Npost ranging from 3 to 8. A good quantitative
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Fig. 6 Dimensionless particle diameter Dp/H as a function of the
inverse of the number of periodic posts Npost. The circles are the exper-
imental data from Inglis et al. (2006) for the zigzag motion (black
circles) and the displacement motion (white circles). The solid line is
the theoretical prediction from Inglis et al. (2006). The gray diamonds
are the simulation results

agreement is found and both experimental and theoretical
trends are correctly captured. Finally, it is worthy to mention
that the experimental data reported in Fig. 6 refer to differ-
ent post size to gap size ratios Dcyl/H (Inglis et al. 2006).
Therefore, it seems that such a parameter does not have a
significant influence on the critical separation size.

Results and discussion

Theory

Inglis et al. (2006) proposed a model for determining the
critical particle diameter as function of the number of array
periodicity and the gap between the posts. The theory is
based on the assumption that the critical radius is identi-
fied by the width of the first flow lane (see below) that is
calculated by assuming a parabolic velocity profile through
the gap between two posts. In this section, we general-
ize such a theory for non-Newtonian fluids by taking into
account the effect of the shear-thinning on the velocity
field. For the sake of simplicity, the fluid is modeled by
the power-law constitutive equation, as the shear-thinning
behavior is described by a single parameter. The velocity
field through the bumper array for a Newtonian fluid is
firstly presented and the methodology developed by Inglis et
al. (2006) is briefly reviewed. The theory is, then, extended
to shear-thinning fluids.

In Fig. 7a, the velocity field in the bumper array for a
Newtonian fluid is reported. The number of periodic posts
is chosen as Npost = 4, thus the region represented in the
figure is a periodic cell of the device. The colors are the

Fig. 7 a Velocity field within the bumper array for a Newtonian fluid.
The flow lane distribution is also shown. b Closer view of the velocity
field between two posts. The analytical velocity profile for a wide-slit
channel (solid line) is compared with the profile computed along the
gap by solving the governing equations in the real geometry (dashed
line)

(dimensionless) velocity magnitude. In the same figure, we
also show the streamlines dividing the flow lanes between
two posts. The latter have been computed by integrating the
motion equation of a material point dx/dt = u(x) with
u the computed velocity field. A fourth-order Runge–Kutta
algorithm is used for time integration. Notice that, assum-
ing that the height of the pillars is much larger than the
radius, the results in this figure can be obtained by 2-D sim-
ulations. Each streamline begins and ends on a post. The
number of flow lanes coincides with the bumper periodicity
(in this case, Npost =4). It is worth to mention that such a
condition is not always verified but depends on the geomet-
rical parameters of the device, as remarked in Kulrattanarak
et al. (2011a). For the device geometry considered in this
work, the number of flow lanes always matches the bumper
periodicity, in line with numerical calculations reported in
Kulrattanarak et al. (2011a).

Inglis et al. (2006) assumed that the critical particle
radius Rc = Dc/2 is equal to the width β of the first flow
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lane (see Fig. 7a). Indeed, particles with radius lower than
Rc are expected to flow within the same flow lane expe-
riencing the zigzag motion. On the other hand, particles
larger than Rc are bumped to the adjacent flow lane at each
subsequent row because of the hydrodynamic interactions
with the obstacles, thus traveling in the displacement mode.
Assuming also that the total fluid flux through the gap H

is equally partitioned into Npost flow streams, the following
relationship holds (in dimensional form):

∫ −H/2+β

−H/2
ux(y)dy = 1

Npost

∫ H/2

−H/2
ux(y)dy (26)

where ux(y) is the x−component of the velocity field
through the gap H . The left-hand side is the flow rate
through the first flow lane that is equal to the total flux
divided by the number of flow lanes. Notice that, in writing
Eq. 26, the origin of a Cartesian reference frame has been
chosen in the middle of the gap. To calculate β/H , Inglis
et al. (2006) considered the velocity ux(y) given by the fully
developed profile of a Newtonian fluid through a wide-slit
channel:

ux(y)

ū
= 3

2

[

1 −
(

2y

H

)2
]

(27)

By solving the Eq. 26 with the velocity field in Eq. 27,
the dimensionless critical diameter Dc/H = 2β/H can be
related to the number of periodic posts Npost. The solution
of Eq. 27, reported as solid line in Fig. 6 and as a solid line
with white squares in Fig. 8, shows that the critical diameter
is a decreasing function of Npost.

Fig. 8 Theoretical predictions of the dimensionless critical particle
size Dc/H as a function of the number of periodic posts Npost for a
power-law fluid with different values of the parameter n. The New-
tonian and plug-flow cases, corresponding to n = 1 and n = 0, are
also reported. The calculations have been carried out by assuming the
velocity profile in a wide-slit channel

Fig. 9 Dimensionless critical particle size Dc/H as a function of the
number of periodic posts Npost predicted from the theoretical analysis
by assuming the velocity profile in a wide-slit channel (solid lines) and
by computing the velocity field in the real device geometry (dashed
lines). The Newtonian (squares) and the power-law model with n =
0.4 (circles) are considered

The assumption of a parabolic profile for ux(y) is, how-
ever, an approximation of the real velocity field developed
between two posts. To verify how much such an approx-
imation affects the critical particle size for the geometry
considered in this work, we compare in Fig. 7b the parabolic
velocity profile (solid line) with the profile computed by
numerically solving the flow field within the device (dashed
line). It is observed that the computed velocity field has a
lower maximum and, consequently, higher values towards
the obstacles. Those deviations are due to perturbations to
the velocity field between two posts coming from the pillars
of adjacent rows. Therefore, deviations can be even more
pronounced for lower �x/H ratios (the rows of obstacles
are closer) (Kulrattanarak et al. 2011a). For quite low �x/H

values, an asymmetric velocity profile can also occur, and,
as mentioned above, the number of flow lanes may be higher
than Npost.

By substituting the computed velocity field ux(y) in
Eq. 26, we obtain the dashed curve with white squares in
Fig. 9. It is observed that the critical separation size slightly
decreases as compared to the prediction for a parabolic pro-
file (solid curve with white squares). Although the approx-
imation with a wide-slit channel flow does not introduce a
big error (at least for the chosen set of geometrical param-
eters), the computation of Dc/H through the velocity field
obtained via 2-D simulations is a more rigorous procedure
as it takes into account the real geometry of the device
(Loutherback et al. 2010).

Let us consider now the velocity field obtained in the
bumper array for a power-law fluid, reported in Fig. 10a.
The same geometrical parameters as before are considered.
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Fig. 10 a Velocity field within the bumper array for a power-law fluid
with n = 0.4. The flow lane distribution is also shown. b Closer view
of the velocity field between two posts. The analytical velocity pro-
file for a wide-slit channel (solid line) is compared with the profile
computed along the gap by solving the governing equations in the real
geometry (dashed line)

The power-law index is chosen as n = 0.4, denoting a
strong shear-thinning behavior. It is well known that the
viscosity thinning leads to a flat profile around the maxi-
mum (Bird et al. 1987), as confirmed by the red zones in
the figure (compare with Fig. 7a). As a consequence of the
modified velocity field, we expect that the flow lane distri-
bution as well as the partition of the flux through each flow
lane is affected as well, thus leading to a variation of the
critical particle diameter Dc. To estimate the critical size for
the shear-thinning fluid we can solve the Eq. 26 by using
the velocity field modified according to the non-Newtonian
fluid rheology. As above, we start by approximating the
x−component of the velocity ux(y) with the fully devel-
oped flow field of a power-law fluid in a wide-slit channel
given by Bird et al. (1987):

ux(y)

ū
= 1 + 2n

1 + n

[

1 −
(

2y

H

)1+ 1
n

]

(28)

By solving the Eq. 26 with ux(y) given by the expression in
Eq. 28, we obtain the normalized critical particle diameter
Dc/H as a function of the number of periodic posts Npost

for any value of the parameter n. The results are reported in
Fig. 8. As for the Newtonian case, a reduction in the crit-
ical particle size is found as the periodicity of the device
increases. However, for a fixed value of Npost, i.e., for a
given geometry of the device, the normalized critical diame-
ter decreases as the fluid shear-thinning is more pronounced
(higher n). This opens up the possibility to tune the critical
dimension to achieve particle separation by properly select-
ing the rheology of the suspending liquid. It is worth to
notice that the amount of reduction of Dc/H has its lower
limit corresponding to a plug-flow profile (n → 0). The
reduction of the critical size as compared to a Newtonian
suspending liquid has also some remarkable advantages as
discussed in Loutherback et al. (2010), e.g., the possibil-
ity to separate smaller particles by using the same device,
and, for the same critical particle size, to increase the gap
size (thus reducing the pressure drop and the clogging) and
to use a lower number of periodic posts (thus reducing the
overall length of the array).

As for the Newtonian case, we repeat the calculations
by using the velocity field between two posts computed
by 2-D simulations in the full geometry. Figure 10b com-
pares the velocity profile from Eq. 28 with n = 0.4 (solid
line) with the one from 2-D simulations in the real device
geometry (dashed line). As before, the presence of adja-
cent pillars leads to slight discrepancies, making the profile
even more flatter around the maximum (but still symmet-
ric). Therefore, a similar behavior as for the Newtonian
case is expected when the critical size is computed from
Eq. 26 by using the actual velocity field. This is confirmed
in Fig. 9 where a comparison between the dashed and solid
line with white circles evidences a reduction of the critical
size.

Numerical simulations

The theoretical analysis carried out in the previous section
showed the possibility to modulate the critical particle size
by changing the rheology of the suspending fluid. The pro-
cedure is based on the identification of the critical size with
the width of the first flow lane (Inglis et al. 2006), that is
calculated by computing (or assuming) the velocity field
between two posts without particles. However, the presence
of inclusions strongly alter the velocity field and, as the
particle approaches the obstacles, the hydrodynamic inter-
actions lead to deviations from the path followed by the
object. To quantify the effective variation of the critical par-
ticle size and relate it to the shear-thinning property of the
suspending liquid, we perform 3-D direct numerical sim-
ulations of the motion of a spherical particle through the
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array of obstacles, as described in Section “Simulation pro-
cedure and code validation”. In Section “Power-law model”,
the power-law fluid is considered as suspending liquid. The
analysis is, then, extended to the Bird–Carreau constitutive
equation in Section “Bird–Carreau model”.

Power-law model

In Fig. 11, the computed normalized critical particle diame-
ter Dc/H is reported as a function of the number of periodic
posts Npost for different values of the power-law exponent n.
The white squares are the Newtonian calculations (reported
as gray diamonds in Fig. 6). The simulation results confirm
that a reduction in the critical particle size can be attained
by suspending the particles in a shear-thinning fluid. It is
worth to note that a significant variation of Dc/H is found
for strong shear-thinning fluids as compared to the Newto-
nian case, especially for high values of Npost. For instance,
for Npost = 8 and n = 0.2, the predicted Dc/H is 37 %
lower than the Newtonian value, leading to a wide operat-
ing window for a fixed device geometry. A comparison with
the data reported in Figs. 8 and 9 shows that the critical size
predicted by the theory based on the undisturbed velocity
profile is overestimated. We remark that such discrepancies
are likely due to the finite dimension of the flowing particle
that alters the fluid velocity field, especially near the pillars
where strong particle–wall hydrodynamic interactions arise.

The data reported in Fig. 11 show a similar trend as the
power-law exponent n is varied. Such a trend can be fairly
described by the following equation:

Dc

H
= A(n)

A(n) + Npost − 2
(29)

Fig. 11 Dimensionless critical particle size Dc/H as a function of the
number of periodic posts Npost computed from 3-D direct numerical
simulations. The Newtonian (squares) and the power-law suspending
fluid for different values of the parameter n (circles) are reported. The
dashed lines are fitting curves through Eq. 29

where A(n) is a function of the parameter n. By fitting the
simulation data, we find that A(n) = 1.86+1.08n+1.38n2.
The Eq. 29 with such an expression for A(n) is reported as
dashed lines in Fig. 11 for different values of the parameter
n. A good quantitative agreement with the numerical predic-
tions is found. We point out that the formula given in Eq. 29
as well as the expression for A(n) do not come from any
physical consideration, but they are just the simplest func-
tions able to fairly describe the simulation results (at least
in the investigated range of parameters). Equation 29 can be
viewed as a design formula for the bumper array, relating
the critical particle diameter for separation Dc to the gap
between the pillars H , the number of periodic posts Npost

and the degree of fluid shear-thinning n.
Some remarks about the applicability of Eq. 29 are in

order. The design formula has been empirically derived by
simulation data for a power-law suspending liquid. As such,
it is strictly usable for fluids characterized by a similar rhe-
ology (see e.g., Zhang et al. 1996), or in those ranges of
flow rates where the viscosity vs shear rate trend is well
described by a power-law function. Although this seems a
quite strong limitation, we will show in the next section that
the application of Eq. 29 is much more general. Concerning
the geometrical parameters, we have investigated the effect
of the device periodicity Npost on the critical size by keep-
ing fixed both the cylinder diameter Dcyl and the distance
between two consecutive rows of pillars �x. As mentioned
above, the choice of �x is critical as, if it is chosen too
low compared to the gap size, it directly alters the velocity
field within two obstacles leading, in case, to asymmetric
profiles. As reported in Kulrattanarak et al. (2011a), our
choice of �x/H is around the limiting value. Therefore,
we expect that the formula in Eq. 29 still works for those
devices characterized by �x/H > 2 as the velocity profile
within the gap only slightly changes by increasing the dis-
tance between two rows of pillars (the disturbance induced
by the adjacent obstacles dies out). Of course, strong devia-
tions are, instead, expected as �x is reduced. On the other
hand, the dimension of the pillar diameter does not seem to
play an important role as demonstrated by the experimental
investigation of Inglis et al. (2006) (see also Fig. 6 and the
relative discussion).

Bird–Carreau model

The simplicity of the power-law constitutive equation con-
sidered so far allowed to easily extend the theory developed
by Inglis et al. (2006) to take into account the shear-thinning
of the suspending fluid. The simulation results also provided
a general formula relating the critical particle size to the
number of periodic posts and the power-law index. How-
ever, such a model has some limitations as it does not predict
the typical constant-viscosity regimes at low and high shear
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rates that are a characteristic feature of non-Newtonian flu-
ids (Bird et al. 1987). As a consequence of the power-law
relationship between viscosity and shear rate, the results
previously reported are independent of the flow rate, as
shown by the dimensionless equations in Section “Problem
description and governing equations”.

In this section, we extend the numerical analysis to a sus-
pending liquid modeled by the Bird–Carreau constitutive
equation. We choose the following dimensional parameters:
η0 = 1, η∞ = 0.1, K = 1, n = 0.1, corresponding to
the viscosity curve reported in Fig. 2. At variance with the
power-law model, the velocity profile through the bumper
array now qualitatively changes as the flow rate is varied.
It is known that the critical particle size Dc is related to the
profile of the velocity field (Inglis et al. 2006; Loutherback
et al. 2010), as also demonstrated in the previous section.
Therefore, we expect that, for a given device geometry and
fluid rheology, the critical separation size can be tuned by
properly modulating the external flow rate.

To investigate how the critical size can be related to the
flow rate through the velocity field, let us first analyze the
simple case of a fluid (without particles) with the viscos-
ity curve depicted in Fig. 2 flowing in a wide-slit channel.
Fig. 12a reports the computed fully developed velocity pro-
file across the channel section for different �-values. We
recall that, for a fixed geometry and fluid rheology, chang-
ing � is equivalent to modify the flow rate. The velocity is
normalized by the maximum velocity obtained for a New-
tonian fluid at the same flow rate uN,max. For low �-values,
the Newtonian parabolic profile is obtained due to the vis-
cosity plateau at low shear rate values. As � is increased, the
shear-thinning leads to a flat profile around the maximum,
similarly to the power-law model. For even higher �-
values, the velocity field tends to the Newtonian one again

because of the plateau at high shear rates. Needless to say,
at high �-values the Newtonian profile cannot be reached
as the local shear rate ranges from zero to a maximum
value, thus covering the range characterized by the viscosity
thinning.

To quantify the deviations of the non-Newtonian veloc-
ity profile from the parabolic one, we report in Fig. 12b
the percentage difference between the maximum velocity
attained for a Newtonian liquid and for the shear-thinning
Bird–Carreau model, as a function of �. The nonmonotonic
trend confirms the different behavior at low, intermediate,
and high �-values. Therefore, on the basis of the data shown
in Fig. 12a and the results reported in the previous section,
we expect that for low values of the parameter �, the critical
particle size essentially coincides with the Newtonian one.
A reduction is, instead, expected for higher �-values up to
a minimum value beyond which it raises again.

Direct numerical simulations are performed to confirm
and quantify the reduction in the critical size as � is varied.
Figure 13 shows the normalized critical particle diameter
Dc/H as a function of the number of periodic posts for
different �-values. The Newtonian results are also plot-
ted as white squares. It is readily observed that the data
corresponding to the lowest � (= 0.05) superimpose the
Newtonian ones, whereas a minimum is achieved around
� ∼= 0.5. The nonmonotonic trend can be better appreci-
ated in Fig. 14 where Dc/H is reported for several values
of the parameter � for three values of Npost. Starting from
the Newtonian value, the fluid shear-thinning contributes to
reduce the critical size. After a minimum is achieved, Dc/H

goes up again. It is worth to mention that the curves reported
in Fig. 14 show a similar trend. Therefore, the device geom-
etry does not qualitatively alter the functional form relating
the critical separation size to the flow rate, which is, instead,

(a) (b) (c)

Fig. 12 a Velocity profile in a wide-slit channel for a Bird–Carreau
model for different values of the parameter �. b Percentage difference
in the maximum velocity in a wide-slit channel between a Newtonian
fluid uN,max and a Bird–Carreau model uBC,max for different values

of the parameter �. c Velocity profile in a wide-slit channel for a
Bird–Carreau model for two values of the parameter � (lines) and the
velocity field for a power-law model obtained by fitting the parameter
n (symbols)
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Fig. 13 Dimensionless critical particle size Dc/H as a function of the
number of periodic posts Npost computed from 3-D direct numerical
simulations. The Newtonian (squares) and the Bird–Carreau suspend-
ing fluid for different values of the parameter � (circles) are reported.
The dashed lines are fitting curves through Eq. 29. For sake of clarity,
only the Newtonian case and the Bird–Carreau model with � = 0.5
are reported. The dark gray and white triangles are the data for a
power-law suspending fluid computed from Eq. 29 with the parameter
n obtained by fitting the velocity field of the Bird–Carreau fluid for
� = 0.5 and � = 2.5, respectively

strictly related to the fluid rheology. Needless to say, the
minimum value of the critical particle diameter depends on
the viscosity thinning. Therefore, to achieve wider operating
windows (in terms of tunability of the critical size) strong
shear-thinning suspending liquids have to be chosen.

It is interesting to note that the �-values correspond-
ing to the Newtonian-like behavior (both at low and high

Fig. 14 Dimensionless critical particle size Dc/H as a function of
the parameter � for a Bird–Carreau suspending fluid for different val-
ues of the number of periodic posts Npost computed from 3-D direct
numerical simulations

rates) as well as to the maximum reduction in Dc/H can
be fairly deduced from Fig. 12b. For instance, the mini-
mum Dc/H -value is found for � ∼= 1 corresponding to
the maximum deviation from the Newtonian and the non-
Newtonian velocity profile. This is not surprising, as a close
relationship between the critical particle size and the veloc-
ity field holds. However, no quantitative information about
the effective reduction of Dc/H can be deduced from the
data in Fig. 12b. Quantitative predictions require, in fact,
the simulation of finite-sized particles flowing in the actual
geometry.

The similarity of the velocity fields for the power-law
and the Bird–Carreau model suggests that the trends in
Fig. 13 can be well described by Eq. 29. For sake of clar-
ity, we report in Fig. 13 with dashed lines the curves for the
Newtonian case (already shown in Fig. 11) and for the Bird–
Carreau model with � = 0.5. The latter has been obtained
by fitting the parameter A in Eq. 29 that is now regarded as
a constant. It is readily observed that the formula in Eq. 29,
in fact, well describes the trend.

It would be useful, at this point, to extend the design
formula in Eq. 29 to account for all the parameters of the
Bird–Carreau constitutive equation. As this equation well
describes the viscosity trend over a wide range of shear rates
for several non-Newtonian fluids (Bird et al. 1987), a gen-
eral criterion for designing the non-Newtonian deterministic
lateral displacement separator can be devised. However,
even if we assume that the functional form in Eq. 29 still
holds for any fluid rheology, to find a general expression
for A = A(ηr, �, n) is not straightforward because of the
relatively large number of model parameters. The direct
relationship between the critical particle size and the veloc-
ity field evidenced in the previous section comes in handy.
Indeed, we expect that the formula in Eq. 29 (with the
expression for A(n) computed for a power-law fluid) can be
applied to predict the critical size for a given fluid rheology
and flow rate, provided that the velocity field can be approx-
imated by the one obtained for a power-law fluid for some
value of the parameter n. In other words, instead of directly
relating the critical separation size to the fluid rheology, we
link it to the velocity field stemming from such a rheology.

To test this idea, we apply Eq. 29 to try to predict the
simulation results in Fig. 13 for � = 0.5 (dark gray cir-
cles). First, we need to estimate the power-law index n in
order to match the velocity profile obtained for the Bird–
Carreau model. Strictly speaking, this should be done by
accounting for the velocity field through the real geometry
of the bumper array. However, we have shown above that
the approximation with the velocity profile developed in a
wide-slit channel only leads to slight deviations. Therefore,
we can take advantage of the analytical form in Eq. 28 for
the velocity in a wide-slit channel and fit the parameter n.
The fitting procedure gives n = 0.437 corresponding to the
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velocity profile reported with open circles in Fig. 12c (that
well describes the Bird–Carreau profile shown as dashed–
dotted curve). By using this value for n in Eq. 29, we
get the dark gray triangles in Fig. 13. A comparison with
the dark gray circles (and the dashed line) shows that the
quantitative prediction of Dc/H is excellent. The same pro-
cedure is repeated for the case � = 2.5 (white circles in
Fig. 13). The fitted power-law index is n = 0.613 and the
corresponding velocity profile is shown as black circles in
Fig. 12c. The critical sizes predicted from Eq. 29 are shown
as white triangles in Fig. 13. Again, a very good quantitative
agreement with the simulation results is found. Needless
to say, the successful application of the simple formula in
Eq. 29 stems from the fact that the velocity field corre-
sponding to a given rheology and flow rate can be appro-
priately described by the one resulting from the power-law
model.

To conclude this section, some remarks are in order. In
this work, we have assumed rigid particles. It has been
recently reported that the deformability of the particles
influences their effective size (Beech et al. 2012). More
specifically, as the flow rate increases, the deformation leads
to a reduction of the effective size (Beech et al. 2012).
Therefore, when a non-Newtonian DLD device is used to
process deformable particles, a suspending liquid with a
sufficient degree of shear-thinning needs to be chosen in
order to guarantee that the decrease in the critical separation
size for increasing flow rates related to the shear-thinning
is more effective than the reduction of the particle effective
size due to the deformation, thus making the separation still
possible. Finally, all the theoretical and numerical results
presented above are based on the assumption of negligi-
ble inertia. Furthermore, fluid elasticity is not taken into
account. The small length scales involved in microfluidics
generally lead to Reynolds numbers lower than 1 (Squires
and Quake 2005), thus making, in fact, inertial effects to
be irrelevant. Moreover, non-Newtonian fluids typically are
characterized by high viscosities that contribute to reduce
the Reynolds number further on. On the other hand, the
small length scales enhance elastic effects, giving rise to
nonlinear phenomena that would require extreme conditions
in macroscopic systems. It is not straightforward to deduce
the effects of fluid elasticity on the critical particle size.
Elasticity brings in nonlinear effects that alter the parti-
cle dynamics. For instance, viscoelasticity-induced particle
migration can occur during the motion through the obsta-
cles leading to “jumps” of the particle to an adjacent flow
lane. As an immediate consequence, the critical particle size
would not be independent of the particle initial position any-
more. In this case, a flow-focusing device can be integrated
to the bumper array to align in inflow the particles along a
streamline. Therefore, shear-thinning fluids with low elas-
ticity (e.g., Zhang et al. 1996) have to be preferred for an

efficient use in deterministic ratchets. A rigorous analysis
about the effect of fluid elasticity, i.e., whether and in which
direction it may alter the particle dynamics, requires simu-
lations with viscoelastic constitutive equations and will be
part of future work.

Conclusions

In this work, we showed that the critical particle size in
a deterministic lateral displacement device can be tuned
by using non-Newtonian fluids as suspending liquid. The
theory developed for Newtonian fluids (Inglis et al. 2006)
is extended to a power-law constitutive model. 3-D direct
numerical simulations are, then, performed to quantitatively
relate the critical particle size to the device geometry and the
fluid rheological properties. The governing equations are
solved by the finite element method and the dynamics of a
spherical particle flowing through the deterministic ratchet
is computed.

The theoretical results show that fluid shear-thinning
leads to a lower critical particle size as compared to the
Newtonian case. Indeed, the viscosity thinning modifies the
velocity profile through the ratchet, altering the flow lane
distribution and, in turn, the critical separation size.

Numerical simulations are firstly performed by consider-
ing the power-law constitutive equation to confirm the the-
oretical results. The effect of fluid shear-thinning (through
the power-law exponent) as well as the number of periodic
posts is related to the critical particle diameter normal-
ized by the gap size. The results show a general trend that
allows us to derive a formula to design the non-Newtonian
deterministic ratchet.

The simulations are, then, extended to the more realis-
tic Bird–Carreau model. It comes out that the flow rate can
be conveniently used to tune the critical particle size, once
the device geometry and the suspending liquid have been
chosen. Finally, we demonstrated that the simple design for-
mula derived for a power-law model also works for the
Bird–Carreau constitutive equation (and in general for any
viscosity curve) provided that the velocity field coming
from a given viscosity function can be approximated by
the one obtained from the power-law model (with a proper
choice of the parameter n). The proposed technique allows
to achieve arbitrarily small steps in the critical size in real
time, something that is not possible with a conventional
DLD device.

The results presented in this work can be extended in sev-
eral directions. Firstly, it would be interesting to investigate
the effect of fluid elasticity on the path followed by the par-
ticles. As remarked in the previous section, if fluid elasticity
is relevant, it may alter the particle dynamics giving rise
to nonlinear phenomena (e.g. migration). The quantification
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of such effects requires numerical simulations by choos-
ing viscoelastic constitutive equations able to describe both
shear-thinning and normal stresses.

The influence of the geometrical parameters, i.e., the
distance between the rows of obstacles and the cylinder
diameter, on the critical particle size can be studied in order
to define the region of validity for the design formula.
The shape of the obstacles, which affects the velocity field
through the ratchet and, as such, has been proved to have
a strong impact on the device performances (Loutherback
et al. 2010), can be also analyzed.

Finally, experimental data are required to validate the
theoretical results presented in this paper and to test the
applicability of the design formula derived for a simple
constitutive equation to real cases.
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