
Rheol Acta (2012) 51:649–673
DOI 10.1007/s00397-012-0628-8

ORIGINAL CONTRIBUTION

Direct numerical simulation of surfactant-stabilized
emulsions
Morphology and shear viscosity in starting shear flow

Roar Skartlien · Espen Sollum · Andreas Akselsen ·
Paul Meakin

Received: 15 December 2011 / Revised: 22 February 2012 / Accepted: 15 March 2012 / Published online: 24 April 2012
© Springer-Verlag 2012

Abstract A 3D lattice Boltzmann model for two-
phase flow with amphiphilic surfactant was used to
investigate the evolution of emulsion morphology and
shear stress in starting shear flow. The interfacial con-
tributions were analyzed for low and high volume
fractions and varying surfactant activity. A transient
viscoelastic contribution to the emulsion rheology un-
der constant strain rate conditions was attributed to
the interfacial stress. For droplet volume fractions be-
low 0.3 and an average capillary number of about
0.25, highly elliptical droplets formed. Consistent with
affine deformation models, gradual elongation of the
droplets increased the shear stress at early times and
reduced it at later times. Lower interfacial tension with
increased surfactant activity counterbalanced the effect
of increased interfacial area, and the net shear stress
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did not change significantly. For higher volume frac-
tions, co-continuous phases with a complex topology
were formed. The surfactant decreased the interfacial
shear stress due mainly to advection of surfactant to
higher curvature areas. Our results are in qualitative
agreement with experimental data for polymer blends
in terms of transient interfacial stresses and limited
enhancement of the emulsion viscosity at larger volume
fractions where the phases are co-continuous.

Keywords Emulsion · Shear viscosity · Morphology ·
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Introduction

The history-dependent rheology and morphology of
emulsions and the effects of surfactants on emulsions
are important in a wide range of natural systems such
as milk and plant latexes, foods and personal care prod-
ucts, and industrial applications. The work described
here was motivated by oil industry applications such
as the transport of mixtures of oil, water, and gas in
pipelines under steady and transient flow conditions
and the separation of oil and water in the presence of
indigenous and synthetic polymers. The work described
here is also relevant to the manufacture of polymer
blends with a valuable combination of properties that
cannot be obtained with individual polymers and the
effects of compatibilizers such as diblock copolymers,
which play a role like that of surfactants in low molecu-
lar mass multiphase fluid systems on the manufacture
and properties of polymer blends. Here we present
results obtained from simulations conducted using a 3D
lattice Boltzmann model that includes two liquid phases
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and a nonionic amphiphilic surfactant, to investigate
some aspects of emulsion morphology and rheology,
including the shear stress under transient, start up,
shear flow, and the effects of surfactant strength on
shear stress and morphology. Other aspects of the rhe-
ology, including the normal stress, will be analyzed in
upcoming work.

Emulsion rheology, morphology, and simulation

For dilute emulsions, in which the droplets have simple
shapes and they are separated by distances that are, on
average, much larger than their maximum diameter, it
is sufficient to consider the response of single droplets
to the applied shear. Rheological formulae can then
be derived from first principles, e.g., Taylor (1932),
Frankel and Achrivos (1970), Yu et al. (2002), and
Derkach (2009). Choi and Schowalter (1975) obtained
rheological formula for larger volume fractions and
found that the relationship between the effective vis-
cosity and droplet volume fraction becomes nonlinear.

For a simple droplet morphology, the viscoelastic
response of the emulsion in a time varying shear strain
rate can also be predicted. Jansseune et al. (2001) per-
formed experiments with a cone and plate rheometer
to investigate the transient behavior in Couette flow,
established in blends of nearly Newtonian immiscible
polymers. The rheology determined in these experi-
ments was consistent with the prediction of a simple
model based on affine deformation of the droplets. The
interfacial shear stress evolution that was measured
in these experiments is consistent with our simulation
results, which exhibited a rapid increase of the inter-
facial shear stress immediately after startup and then
a gradual decay as the droplets aligned with the flow.
Christini et al. (2002) performed numerical modeling
of the same system for both critical and subcritical
capillary numbers. Similar transients were measured by
Krall et al. (1993) who observed a rapid decrease of
the shear viscosity and elastic shear modulus during
spinodal decomposition and domain coarsening.

The role of morphology in dense emulsions and bi-
continuous blends is less well understood. Doi and
Ohta (1991) developed a general theoretical frame-
work for bi-continuous blends in terms of the in-
terface tensor and interface area for two immiscible
Newtonian fluids with the same viscosity and density
in low Reynolds number flows. Since only the interface
tensor and the specific surface area are used to char-
acterize the morphology, the coarse-grained Doi Ohta
model predicts the evolution of the average droplet
size, deformation, and orientation, but it does not pro-
vide detailed information about the droplet shapes,

droplet size distribution, local fluid velocities, etc. The
Doi Ohta model assumes a constant surface interfacial
tension (Marangoni effects are not included), and it
requires a closure approximation for the moments of
the components of the unit vector perpendicular to the
interface (tensor products of the unit vector normal to
the interface). Subsequent work has improved the the-
oretical model of Doi and Ohta, by introducing more
general expressions for the relaxation of the specific
surface area and the interface tensor (Lee and Park
1994), by using more accurate closure approximations
for the hierarchy of equations for the second rank
tensor product of the unit vector normal to the in-
terface (Wentzel and Tucker 1999; Almusallam et al.
2000; Wagner et al. 1999), and by developing different
theoretical approaches such as using an advection–
relaxation–diffusion equation of motion for the state
variables, based on the general equation for nonequilib-
rium reversible–irreversible coupling (GENERIC) ap-
proach to the dynamics of complex fluids (Grmela and
Öttinger 1997; Öttinger and Grmela 1997; Wagner et al.
1999; Grmela and Ati-Kadi 1994), which ensures con-
sistency with equilibrium thermodynamics, reversible
Hamiltonian dynamics, and linear irreversible thermo-
dynamics. The Doi Ohta model and related models
have also been applied to specific simplified cases such
as a constant droplet volume with no coalescence or
fragmentation (Almusallam et al. 2000) and extended
to more general cases such as different fluid viscosities
(Lee and Park 1994). All of these theories and related
theories discussed in the scientific literature provide
important insight into the rheology and dynamics of
multiphase fluids. However, they are based on mean
field approximations. Consequently, they cannot be
used to address questions such as how droplets deform
as they approach each other or how surfactants are
distributed over complex fluid–fluid interfaces. For this
purpose, experiments, which may be very difficult to
perform, or detailed computer simulations are needed.

A transition to a bi-continuous morphology (a mor-
phology with two continuous liquid phases) can occur
even at volume fractions as low as 0.25 (Willemse et al.
1999). The transition occurs at a volume fraction that
decreases as the capillary number is increased by reduc-
ing the interfacial tension, or by increasing the contin-
uous phase viscosity and/or shear strain rate. Willemse
et al. (1999) studied blends with viscosity ratios of 0.4
and 2.1 and devised a successful model for the critical
volume fraction based on randomly oriented “rods”
which represent stretched droplet filaments.

Takahashi et al. (1994) investigated the rheology of
immiscible polydimethylsiloxane (PDMS)/polybutadine
(PB) blends with a viscosity ratio near unity over a
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range of compositions up to a PDMS/PB ratio of 9.
They found that both the shear stress and normal stress
difference were proportional to the shear strain rate, in
accordance with the predictions of the Doi Ohta model,
except that the normal stress difference was not propor-
tional to the shear strain rate for the highest PDMS/PB
ratio. This deviation was attributed to the nonlinear
normal stress difference/shear strain rate relationships
for the component polymers. However, after correcting
for the nonlinear rheology of the component polymers,
the contribution of the interface to the normal stress
difference scaled in a more linear fashion with the
shear strain rate. Vinckier et al. (1996) investigated
the effects of shear strain on blends of polyisobutylene
(PIB) and PDMS with viscosity ratios of 0.15:6.57 and
density ratios of ≈1.09. The blends were sheared at a
constant strain rate in a cone and plate rheometer until
a steady state was reached, and the shear stress and
first normal stress difference were measured. After the
continuous shear was stopped, low amplitude dynamic
oscillatory shear measurements were used to determine
the dynamic moduli, and the self-consistent effective
medium theory of Palierne (1990) was used to deter-
mine the mean droplet size from the dynamic moduli
measurements and the independently measured inter-
facial tension. The Doi Ohta model predicts that the
shear stress and the first normal stress difference should
both be proportional to the shear strain rate for blends
of polymers with the same viscosity. The experimental
results were consistent with linear scaling between the
excess normal stress and shear strain rate over a range
of about 1.5 decades in the shear strain rate. However,
the excess shear viscosity was constant over only a
small range of shear strain rates. Vinckier et al. (1996)
concluded that the Doi Ohta model could be extended
to mixtures of fluids with different viscosities providing
that the shear strain rate is not too high and the ratio
between the viscosity of the fluid in the drops and the
viscosity of the continuum fluid is less than ≈4 (so that
the droplet fragmentation can occur and the droplet
size and shape distributions are determined by the flow
conditions instead of the initial conditions). Taking into
account the work of Takahashi et al. (1994), Vinckier
et al. (1996) also concluded that only the contribution
of the interface to the normal stress difference (not the
total normal stress difference) should be expected to
scale linearly with the strain rate.

Vinckier et al. (1999) measured the shear viscosity
of polymer blends with a viscosity ratio of 0.44 for
the full range of volume fractions. They found good
agreement with the Choi and Schowalter (1975) model
for high and low volume fractions corresponding to
droplets embedded in a continuous phase. An impor-

tant observation was that the emulsion viscosity can
be significantly lower than that predicted by classical
models in the intermediate range of volume fractions.
A similar effect was observed by Jansseune et al. (2003)
who found an interfacial shear stress plateau over a
broad interval of volume fractions, and an agreement
with the model of Maffettone and Minale (1998) was
found only at low and high volume fractions. Yu et al.
(2005) developed a model for intermediate volume
fractions based on droplet morphology but found that
the emulsion viscosity of Vinckier et al. (1999) was
still far below their model predictions, suggesting a co-
continuous morphology.

Keleşoğlu et al. (submitted for publication) studied
emulsions of water droplets in a matrix of highly vis-
cous North Sea crude oils. They found good agreement
with the model of Pal and Rhodes (1989) for various
temperatures and shear rates up to an aqueous phase
volume fraction of about 0.65. Closer to the phase
inversion point, the measured emulsion viscosity was
lower than the viscosity predicted by the model. Even
though oil/water emulsions have higher viscosity ratios,
it is likely that the Pal and Rhodes model did not fit the
data at these volume fractions because the morphology
did not correspond to droplets in a continuous phase.

Important effects of surfactants include altering the
phase inversion point and emulsion viscosity via mor-
phological changes (e.g., Pal 1993, for oil and water
emulsions). Clearly, the behavior near phase inversion
is complex and depends on the fluid properties, sur-
factant concentration, and type of surfactant. Numeri-
cal simulations can be used to gain qualitative insight
even for complex morphologies where analytic treat-
ment is difficult or impossible. Simulations can now be
performed on a spatial scale that is large enough to
generate rheological results with reasonable statistics,
using ordinary multiprocessor workstations.

Loewenberg and Hinch (1996) made a significant
breakthrough by performing 3D simulations of sheared
dense emulsions in 3D. Spinodal decomposition of bi-
nary mixtures under shear has been simulated by many
authors, both in 2D (Rothman 1991) and more recently
in 3D (Corberi et al. 2000). Kim and Hwang (2007)
implemented Lees–Edwards (periodic shear) boundary
conditions that eliminate wall effects in simulations of
shear flow. They studied relatively dense emulsions in
2D and determined the shear stress and first normal
stress difference. Roths et al. (2002) studied the inter-
facial area and elasticity of a sheared emulsion in 2D
and found that the elasticity increased with increasing
volume fraction while the interfacial area decreased.
Keestra et al. (1993) studied coalescence and breakup
effects in 2D.
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Here we present the results of 3D rather than 2D
simulations with the objective of capturing realistic
morphologies and predictions of the variation of inter-
facial area with volume fraction that can be compared
with experimental results. We include amphiphilic sur-
factant using the lattice Boltzmann model developed by
Nekovee et al. (2000). An important advantage of the
lattice Boltzmann approach is the high computational
speed that can be achieved by very efficient paralleliza-
tion on multiprocessor machines. The simulation do-
mains can then be large enough for volume averaging to
provide reliable estimates of the effective rheology. Us-
ing essentially the same model, Guipponi et al. (2006)
and González-Segredo et al. (2006) found evidence
for shear thinning and viscoelasticity in bi-continuous
self-assembled ordered structures in the presence of
amphiphilic surfactant. In the model, the surfactant is
soluble in the fluids, and diffusion-dominated adsorp-
tion kinetics can be simulated (Skartlien et al. 2011).
A version of the surfactant model based on a Cahn–
Hilliard-type free energy functional (phase field model)
was developed by Furtado and Skartlien (2010).

It is difficult to experimentally determine the mor-
phology of polymer blends and emulsions during
startup shear experiments and even more difficult to
determine how the distribution of surfactants, including
block copolymer surfactants, on the fluid–fluid inter-
face and in the fluid phases changes during such ex-
periments. Blends and emulsions are often opaque, and
because the X-ray attenuation coefficients of polymer
blend components are usually similar, attenuation con-
trast high-resolution X-ray tomography is not widely
applicable. Recently, phase contrast X-ray tomography
has been used to investigate polymer blends (Momose
et al. 2005), but X-ray tomography data acquisition
times are too long for transient behaviors to be inves-
tigated. If the morphology relaxation time, character-
ized by the interface energy (stress/strain) relaxation
time τ s

r = μa/σ and the kinetic energy (momentum)
relaxation time τ

p
r = ρa2/μ, where μ is the viscosity,

a is the characteristic morphology length such as the
equilibrium droplet radius, r◦, σ is the surface tension,
and ρ is the fluid density, is large enough, the mor-
phology of a polymer blend may be determined by
stopping the deformation, rapidly cooling the mater-
ial below the glass transition temperature, selectively
dissolving one of the two phases, and using optical or
electron microscopy to characterize the morphology of
the remaining component (Scott and Macosko 1995;
Lyu et al. 2000).

An important advantage of computer simulations is
the great amount of detailed information that can be
obtained without measurement artifacts or measure-

ment time smearing. However, simulations do suffer
from discretization errors, and they are only as good as
the conceptual and mathematical models that they are
based on.

The stress tensor for a surfactant-free emulsion

The average shear stress in an emulsion is determined
by the fluid properties and the stress associated with
the interface between the fluids. Here we focus on sim-
ulation results obtained with a viscosity ratio of unity
to isolate the contribution from the interfacial stress
from the contribution that arises due to the viscosity
contrast between the fluids. Other viscosity ratios will
be considered in the sequel to this paper.

As explained in “Appendix 1”, the shear stresses
were calculated from the momentum flux density of
the fluid particles (represented by population densi-
ties in lattice Boltzmann models) and the interactions
between the particles using the virial theorem. This is
a general approach that also incorporates the interfa-
cial stresses, and it is valid for any volume fraction
and viscosity contrast. An overview of the essential
stress contributions may be obtained by considering
the analytic expression for the volume averaged stress
tensor for a dilute emulsion of Newtonian fluids without
surfactant (e.g., Jansseune et al. 2001; Christini et al.
2002; Li and Sarkar 2005),

�αβ = −pδαβ + μc(∂αuβ + ∂βuα)

+μd − μc

V

∫
(uαnβ + uβnα)dS

+ σ

V

∫ (
1
3
δαβ − nαnβ

)
dS − 1

V

∫
u′

αu′
βdV. (1)

Here, μc is the viscosity of the matrix (the continuous
fluid), μd is the droplet viscosity, p is the isotropic
pressure, uα is the local velocity component, nα is the
component of the local normal vector to the interface,
σ is the interfacial tension, and V is the averaging vol-
ume. The surface integrals run over the total interfacial
area S in the averaging volume, and dS is the surface
element. The indices α and β denote the coordinate
directions, and ∂αuβ is the average velocity gradient in
the volume V. The fluctuating velocity components are
defined as u′

α = uα − uα , where the volume averaged
velocity is uα .

The second and third terms on the right-hand side
of Eq. 1 represent the viscous stresses. The third term
involves the fluid velocities at the interface, and it
represents a viscous contribution if there is a viscosity
contrast between the fluids. The fourth term is the
interfacial stress, which is the focus of this work. This
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depends on the drop shape, size, and orientation. The
interface tensor (e.g., Doi and Ohta 1991),

qαβ = 1
V

∫ (
nαnβ − 1

3
δαβ

)
dS, (2)

measures the degree of anisotropy of the interface (e.g.,
Tucker and Moldenaers 2002). The interface tensor
and the interfacial anisotropy also play central roles
for higher volume fractions with more complex mor-
phologies and topologies, as we will discuss below.
In this work, a viscosity ratio of unity was used, so
that the contribution that arises due to the viscosity
contrast (third term) vanishes. This enables us to focus
on the interfacial stress. For perfectly round drops, the
interface tensor and the interfacial stress are zero due
to symmetry, but for tilted elliptical drops (at nonzero
capillary number), the interfacial stress is significant.
The degree of ellipticity is characterized by the defor-
mation D defined as

D = L − B
L + B

(3)

for spheroids, where L is the greater diameter and B is
the lesser diameter (perpendicular to L).

The transient interfacial shear stress in an emulsion
in starting Couette flow (with a zero-velocity initial
state) at first increases and then decreases with in-
creasing time. The average interfacial shear stress in a
dilute emulsion of equal-sized spheroidal droplets can
be described by affine deformation models. At early
times, immediately after startup, the increasing defor-
mation D provides an increasing interfacial stress that
can be modeled with a “true affine” deformation model
as discussed in Jansseune et al. (2001). At sufficiently
late times and for sufficient deformation or capillary
number (Jansseune et al. 2001),

�
int
xy = σφ

B
F(B, L) sin(2θ); Uniform Spheroids, (4)

where θ is the tilt angle (between L and the mean flow
direction), F(B, L) is an algebraic–trigonometric func-
tion of L and B, and φ is the droplet volume fraction.
For a starting flow, the tilt angle and sin(2θ) decrease
in time after startup. Initially, the droplets are slightly
deformed spheres, and θ = 45◦. At later times, the tilt
angle is reduced further, and consequently, sin(2θ) in
Eq. 4 decreases and the stress decreases. The interfacial
stress is smaller for droplets that are more aligned with
the mean flow (smaller tilt angle θ).

The final term in Eq. 1 (the fifth term on the right-
hand side) is the “inertial stress” in the fluids, which
resembles the Reynolds stress in turbulent flows. The
inertial stress, which is zero for Stokes flow and in-

creases with increasing Reynolds number, is expected
to make a significant contribution to the total stress at
high shear rates with larger velocity fluctuations.

Surfactant effects

An important effect of surfactants is to reduce the
interfacial tension on the average. In pipe flow, this may
promote emulsification so that separated water and oil
phases may become a dispersion because less energy is
required to increase the interfacial area. In general, the
addition of surfactants generates smaller droplets in a
dispersion for a given shear field or turbulence, owing
to the reduction of the interfacial tension.

Apart from slip at the fluid–fluid interface, which can
be characterized by the slip length, �s = us/ε̇, where
us is the slip velocity at the interface and ε̇ is the
shear strain rate, the flow velocity field is continuous
across the interface. Molecular dynamic simulations (Li
et al. 2005; Hu et al. 2010) indicate that for fluid–fluid
interfaces, with or without surfactant, the slip length
is on the order of 1 nm or smaller, and the effects of
slip can be safely neglected if the droplet size is greater
than a few tens of nanometers. Under these conditions,
the interface is advected with the fluid and gradients
in the concentration of the surfactant in the interface
develop. This generates gradients in the interfacial ten-
sion (tangential or Marangoni stresses), gradients in the
chemical potential of the surfactant, and gradients in
the rheology and rigidity of the interface. In addition,
the variability in the surface tension must be taken
into account when the jump in normal stress across
the interface is calculated (��n(xs) = κ(xs)σ (cs(xs)),
where κ is the surface curvature, cs is the surfactant
concentration, and xs is the position in the interface).
If the surfactant is confined to the interface, it will
diffuse in the interface, down the chemical potential
gradient from regions of high surfactant concentration
to regions of low surfactant concentration, and an inter-
face Péclet number, Pes = ε̇r2◦/Ds, where ε̇ is the strain
rate, r◦ is the radius of the undeformed drop, and Ds is
the interface diffusion coefficient, can be defined. The
interface Péclet number measures the relative impor-
tance of advective and diffusive transport of surfactant
in the interface. When the surface Péclet number is
small, the gradients in the surfactant concentration in
the interface, ∇scs, and in the interfacial tension, ∇sσ ,
are small. When Pes is large, ∇scs and ∇sσ are large.

If the surfactant is soluble in one or both of the
liquids, diffusive and advective transport through the
bulk phase may become important, and additional Pé-
clet numbers may be required. Pawar and Stebe (1996)
have investigated how Marangoni effects influence the
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shapes of drops in an extensional flow for equal fluid
viscosities and surfactants that are insoluble in both
liquid phases with Langmuir and Frumkin equations
of state. Simulations were performed for several initial
surfactant coverages using a quasistatic steady state
Stokes flow approximation for the two fluids (inside
and outside the drops), and the capillary number was
incremented by small amounts until the drop became
unstable.

A second important effect is that the surfactant
tends to inhibit or oppose droplet coalescence because
of slower hydrodynamic draining of the liquid film
between the droplets and because of molecular re-
pulsion between the surfactant laden interfaces. Re-
duced draining rates occur due to Marangoni stresses
if the interface is sufficiently mobile so that gradients
in the interfacial surfactant concentration can be in-
duced (Danov et al. 2001). In more dynamic or tur-
bulent flows, the contact time (or available interaction
time) between droplets is reduced, and the hydrody-
namic repulsion can be more important than shorter
range molecular repulsion. Van Puyvelde et al. (2001)
have discussed the effects of surfactants on droplet
coalescence in the context of compatibilized polymer
blends for which block copolymers are used as com-
patibilizers (surfactants). A third surfactant effect is
the modification of the topology and morphology of
the interface via modified droplet deformations (e.g.,
Fisher and Erni 2007), formation of multiple emulsions
(Pal 1993), or via altered topology in co-continuous
blends.

Numerical model

Two-component lattice Boltzmann model
with surfactant

A detailed description of the lattice Boltzmann model
used in this work was published by Nekovee et al.
(2000). The model was developed into its free energy
form by Furtado and Skartlien (2010), and only a brief
overview is presented here. The lattice Boltzmann ap-
proach solves the Boltzmann equation directly using
a set of velocity collocation points in velocity space.
This is an alternative to solving the Navier–Stokes
equations using finite volume, finite difference, or finite
element methods or using particle methods such as
molecular dynamics or dissipative particle dynamics.
An important advantage of the amphiphilic LBM is
that it can simulate flows on hydrodynamic scales where
the fluids can be treated as continua, while it includes

mechanisms that arise from the molecular properties of
the surfactant.

A simple nonionic surfactant model that uses two
connected unlike “particles”, A and B, was used to
represent the hydrophilic and hydrophobic parts of a
surfactant molecule, S = A + B. The two ordinary fluids
were assumed to be composed of particles similar to
the A and B components of the surfactant, producing
an A-fluid and a B-fluid. The lattice Boltzmann model
used in this work is based on an underlying conceptual
model that attributes separation of the fluids into A-
rich and B-rich phases and the effect of the surfactant
on the A–B surface tension to (relatively) long range
attractive intermolecular forces. The dipole structure of
the surfactant results in relatively complex forces with
both radial and tangential components. The rotational
degree of freedom of the surfactant adds another level
of complexity compared with models that treat the
surfactant as a scalar.

Furtado and Skartlien (2010) assumed short-range
repulsive interactions V and longer-range attractive
interactions Wpq,

Vpq = V(Ri, R j) + Wpq(Ri, R j), (5)

where p and q denote any of the three species and Ri is
the position of particle i to derive the model of Nekovee
et al. (2000). The combination of short-range repul-
sive interactions and somewhat longer-range attractive
interactions are typical of nonionic molecules. In the
model, the short-range repulsive potential is governed
by the BGK collision term in the lattice Boltzmann
framework (Nekovee et al. 2000). The long-range force
between any two pairs of “particles” has the form

Fα = ± G
CD

Cα, (6)

where C = |C| = |R j − Ri| is the inter-particle separa-
tion and where D is the spatial dimension. The coupling
constant is chosen so that like particles attract while
unlike ones repel (or attract less), and this provides
immiscibility between the fluids (A and B) and an
affinity of the surfactant for the interface between the
fluids. This basic force model gives rise to a number
of coupling constants: GAB for interactions between
different fluid components, GAA, GBB for interactions
between particles of the same kind, GAS and GBS for
fluid–surfactant interactions, and GSS for surfactant–
surfactant interactions. The force model is used with
a standard lattice Boltzmann approach, and this is de-
scribed in the cited papers, along with the kinematic
viscosity relations and equations of state.
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Initial and boundary conditions and flow parameters

The fluids were assumed to have the same density in
order to eliminate buoyancy effects and to focus on
the shear-induced interfacial dynamics without grav-
itational settling effects. Shear was applied at t = 0
by the upper and lower walls, which were moved in
opposite directions. The boundary conditions in the
flow direction (x) and transverse direction, z (parallel
to the walls and perpendicular to the flow direction),
were periodic, and no-slip boundary conditions were
used on the moving walls at y = 0, y = Ly. A domain
size of Lx = 256, Ly = Lz = 128 was used.

A linear velocity profile was imposed between the
moving walls at t = 0 to avoid undesirable effects of
gradual diffusion of momentum into the simulation
domain from the moving walls (on a timescale of L2

y/ν,
where ν is the kinematic viscosity). If the initial velocity
in the domain had been set to zero, the finite diffusion
time would have resulted in appreciable shear only
in the near wall region during the early stages of a
simulation, and the coalescence rates would have been
much larger near the walls than in the middle of the
computational domain.

Small random fluctuations in the composition of the
fluid mixture were used to initiate spontaneous phase
separation (nucleation and growth for large and small
volume fractions and spinodal decomposition for sim-
ilar volume fractions). Phase separation gave droplets
of A-rich fluid, immersed in a B-rich continuous phase,
provided that there was a significant asymmetry in the
volume fractions. For all volume fractions, phase sepa-
ration proceeded from t = 0. The model surfactant was
soluble in both fluids and exhibited diffusion-controlled
adsorption kinetics (Skartlien et al. 2011).

Constant wall velocities of uw = ±0.1, commensu-
rate with the lattice units �t (time step) and �x
(grid spacing), were used, and these increments were
chosen to fit a desired set of dimensional parame-
ters of the flow. The characteristic kinematic viscosity
is νc = �x2/�t, and the characteristic velocity scale
is uc = �x/�t. With the chosen domain size, a flow

Reynolds number of Re = 77 (based on the wall ve-
locity difference) was obtained. The simulations were
carried out over Nt = 104 time steps, to obtain ap-
proximately steady-state conditions. This corresponds
to a total strain of 2Ntuw/Ly = 15.6. Highly elongated
droplets were already obtained at 103 time steps with
a strain of 1.56, and the average droplet diameter per-
pendicular to the walls was about 0.1 times the wall
separation, or about 10–15 grid points. Reliable results
in terms of deformation, tilt angles, and breakup prop-
erties are obtained with lattice Boltzmann methods
even for this modest grid density (e.g., Xi and Duncan
1999). At later times, the diameters are larger due to
coalescence, and this corresponds to more grid points
per droplet.

The average capillary number was of the order of 0.1
(below the critical capillary number for single droplets).
The diffusion timescale for surfactant adsorption was
on the order of 103�t, or 10% of the full duration of the
current simulations. The interface Péclet number was
on the order of unity, so that diffusion of surfactant and
advection in the interface were equally important. The
surfactant diffusion coefficient was Ds = 1/3(τs − 1/2)

(where τs is the relaxation time discussed below), and if
the characteristic droplet diameter is ≈0.1 Ly, and the
mean shear rate is ε̇ = uw/Ly, which was typical of the
lattice Boltzmann simulations presented here, Pes ≈ 1.

Table 1 shows two physical parameter sets with two
combinations of lattice units, �x and �t, that give
droplet sizes in the micrometer and millimeter range.
The interfacial tension without surfactant is ≈20 mN/m
if a length scale for the system that gives droplet sizes in
the millimeter range is chosen. If a length scale corre-
sponding to droplets in the micrometer range is chosen,
an interfacial tension (without surfactant) of ≈1 mN/m
is obtained. The magnitudes of the surfactant-related
coupling constants in the model were adjusted to two
different sets of values (Table 2), corresponding to
“strong” and “weak” surfactant forces. The equilibrium
interfacial tension for the strong surfactant forces was
≈1/2 the equilibrium interfacial tension without sur-
factant (Skartlien et al. 2011). For the weak surfactant

Table 1 Physical parameters for two different sets of lattice units, �x and �t

�x (μm) �t (s) ly (cm) dc (μm) γ̇ (s−1) ν∗ (m2/s) σ0 (mN/m) uc (m/s)

2.4 10−6 0.03 30 1562 1.9 × 10−6 1.0 2.4
140 10−4 1.80 1,800 15.6 6.5 × 10−5 19.0 1.4

The characteristic droplet size, dc, is in the micrometer range with the parameters in the first row and in the millimeter range for the
second row. If the values �x = 0.14 mm and �t = 10−4 s are chosen, the domain size becomes ly = lz = 1.8 cm and lx = 3.6 cm, and
the strain rate becomes γ̇ = 2uw/Ly/�t = 15.6 s−1. The interfacial tension without surfactant, σ0, is now 19 mN/m. Furthermore, the
kinematic viscosity of fluid i becomes νi = 6.5 × 10−5(τi − 1/2) m2/s where τi is the BGK collisional relaxation time
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Table 2 Interaction coupling constants used with the force model

GAA GBB GAB GAS GBS GSS

Weak surfactant 0.0 0.0 2.5 −5 × 10−3 5 × 10−3 2 × 10−3

Strong surfactant 0.0 0.0 2.5 −5 × 10−1 5 × 10−1 2 × 10−1

forces, the coupling constants were a factor 100 smaller,
and the surfactant did not affect the interfacial ten-
sion significantly (giving an interfacial tension that was
comparable to the surfactant free value). In the cur-
rent model, the strength of the surfactant forces (mag-
nitudes of the surfactant-related coupling constants)
affects the interfacial tension in the system and not the
Péclet number.

The total time span T of the simulations depends
on the timescale parameter �t chosen for the system.
For the two timescales selected in Table 1, T = �tNt =
10−2 and 1.0 s, with Nt = 104. Peak shear stresses were
obtained after about 1,000�t, or 10−3 and 0.1 s for the
two examples given in Table 1.

Model parameters

A number of simulations were performed with four
different volume fractions: 0.2/0.8, 0.3/0.7, 0.4/0.6, and
0.5/0.5 (with respect to the ratio: fluid A/fluid B). Two
additional simulations were also performed with the
volume fractions 0.6/0.4 and 0.7/0.3. However, these
runs are equivalent simulations with volume fractions
of 0.4/0.6 and 0.3/0.7 for a viscosity ratio of unity and
serve as additional realizations of these volume frac-
tions. One series with weak surfactant forces and one
with strong surfactant forces were simulated, giving a
total of 12 runs. The strength of the surfactant forces
in the model is determined by the magnitudes of the
surfactant related coupling constants. These are given
in the last three entries of Table 2, and strong forces
correspond to coupling constants that are a factor 102

larger than the weak surfactant coupling constants.
Collisional relaxation times of τi = 1.2 were chosen

for both ordinary fluids and τS = 3.0 for the surfactant,
giving a surfactant that was slightly more viscous than
fluids A and B. The rotational relaxation time of the
amphiphiles was set to τd = 2.0, and the surfactant
temperature parameter was set to Ts = 0.1. Further ex-
planation of these parameters can be found in Nekovee
et al. (2000).

An average surfactant-to-ordinary fluid density ratio
of 0.15 was used, and a similar density ratio was used in
the studies of Nekovee et al. (2000). The relatively large
surfactant density was chosen mainly for numerical
stability reasons, since a small density resulted in a large
acceleration of the surfactant fluid. The large surfactant

density had no consequence other than altering the
bulk properties of fluids via the average viscosity and
density with changes on the order of the surfactant-to-
ordinary fluid density ratio (0.15).

MPI processing and visualization

The code was implemented in Fortran 90 with mes-
sage passing interface (MPI) for parallel processing
(Sollum and Skartlien 2010). The domain was divided
into equal horizontal slabs in the flow direction (x), one
for each CPU. With eight or 12 CPUs, the processing
time was reduced to about 36 h for Nt = 104 time
steps, generating 22 Gb of data per run. A D3Q19
velocity quadrature was used to eliminate the effects
of lattice anisometry. The stress tensor was calculated
from the force model directly using all the 19 lattice
directions. Volume visualizations of iso-contours of the
fluid density fields including surfactant and of the shear
stress contributions were carried out using the freeware
VISIT.

Benchmark testing with droplet deformation

Droplet deformation D and breakup are controlled by
the capillary number,

Ca = μcaγ̇

σ
. (7)

Here, μc is the viscosity of the fluid external to the
droplet, a is the non-deformed droplet radius, γ̇ is
the applied strain rate, and σ is the interfacial ten-
sion (without surfactant). Droplet breakup occurs at a
critical value of the capillary number, Cacr(λ), which
is highly dependent on the viscosity ratio λ = μd/μc,
where μd is the droplet viscosity (Grace 1982; deBruijn
1989). Breakup generally occurs when the capillary
number is O(1) or greater in the range 0.1 < λ < 4. In
the limit Ca � 1, the droplets are essentially spheri-
cal because the capillary forces dominate the viscous
forces, and the tilt angle relative to the flow direction
is near 45◦. In this regime, Taylor (1932) obtained a
deformation of

D = Ca
19λ + 16
16λ + 16

. (8)
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Fig. 1 Droplet deformation
as a function of capillary
number with weak surfactant
forces. Left panel λ = 0.24,
right panel λ = 1.03. There is
excellent agreement with the
Taylor limit (thick line) at low
capillary numbers. The
deformations are larger than
the Taylor limit at larger
capillary number, as expected

Increasing Ca above 0.1 results in a droplet deforma-
tion that increases nonlinearly with increasing capillary
number and that is larger than the Taylor limit (e.g.,
Bazhlekov et al. 2009).

Emulsion simulations were performed with capil-
lary numbers in the range 0.1–0.3—below the critical
capillary number for a single droplet with λ = 1. A
number of 3D benchmark simulations of single droplets
in Couette flows were also conducted, with different
viscosity ratios, surfactant strengths, and strain rates.
Figure 1 shows that the benchmark results were in
excellent agreement with the Taylor limit at small
capillary number for λ = 0.24 and λ = 1.03 with weak
surfactant forces. As expected, the droplets became
more deformed than the Taylor value as the capillary
number increased.

Fig. 2 Effect of surfactant on the deformation at λ = 0.69.
Squares weak surfactant forces, triangles strong surfactant forces,
thick line Taylor limit. As the surfactant strength was increased,
the droplets became more distorted for a constant capillary
number

Figure 2 shows the effect of surfactant in bench-
mark simulations with λ = 0.69. The deformation of
the droplets increased as the surfactant forces increased
(triangles). With stronger surfactant forces, the defor-
mation deviated appreciably from the Taylor result at
lower capillary number, but the Taylor limit was still
recovered at very low shear rates. The experimental
results of Hu and Lips (2003), using polymeric liquids,
also showed that surfactant increased the droplet de-
formation if λ < 1. In this case, the deformation was
due mainly to Marangoni stress, which is captured by
the current model. Bazhlekov et al. (2009) conducted
similar investigations and found reasonable agreement
between their insoluble surfactant model and the re-
sults of Hu and Lips (2003).

Effects of volume fraction and surfactant activity

Morphology overview

The simulations were started with uniformly mixed
liquid components and surfactant, with small concen-
tration fluctuations. The early stages of phase separa-
tion occurred via nucleation and growth of droplets or
spinodal decomposition, depending on the composition
(nucleation and growth when the volume fractions are
much different and spinodal decomposition when both
liquid components were present in similar quantities).
As time progressed, droplet growth and coalescence in-
creased the average droplet size. The droplet sizes sta-
bilized for long times with smaller droplets for more ac-
tive surfactant. Coarsening of the morphology formed
by spinodal decomposition led to co-continuous phases,
with smaller length scale of the interfacial structures for
more active surfactant.
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Dispersed phases Separate droplets embedded in a
continuous fluid domain were formed for the volume
fractions 0.2/0.8 and 0.3/0.7. Figure 3 shows the inter-
face for the volume fraction 0.2/0.8 at early times (left
panels) and at late times close to steady-state condi-
tions (right panels). With strong surfactant (lower row),
there were more but smaller droplets at late times.
For weak surfactant forces (upper right panel), some
of the droplets were stretched into longer filaments,
and the droplet volumes were on the average larger, as
expected for larger capillary numbers. At early times,
the surfactant reduced the surface tension, and this
caused the droplets to deform more (lower left panel
versus the upper left panel), like the behavior found for
single droplets.

Figure 4 shows how the mean effective diameter and
standard deviations of the effective diameters at late
times (t = 8,000–10,000) depend on volume fraction
(note that the volume fractions 0.3 and 0.7 in this figure
are equivalent, as are 0.4 and 0.6). The standard devi-
ations are indicated only for systems in which distinct
droplets are dispersed in a continuous fluid domain. For

intermediate volume fractions, co-continuous phases
were formed. The effective diameters were defined in
terms of the volumes V of separate fluid domains by

deff = 2reff = 2
(

3
4

V
π

)1/3

. (9)

It is evident from the figure that a more active surfac-
tant resulted in smaller mean droplet sizes.

For strong surfactant, the mean effective diameter
was reduced roughly by a factor of 0.8 compared with
the mean effective diameter obtained with the weak
surfactant. Another effect was the smaller standard
deviations of the droplet size distributions with stronger
surfactant.

Figure 5 shows an example of the evolution of the
average capillary number, deformation, and orienta-
tion angle of the major axis of the droplets, for the
strong surfactant case. The volume fractions 0.3 and
0.7 in this figure are equivalent, and they provide two
different realizations of the same case. The capillary
number (upper row) increased in time because of the

Fig. 3 Evolution of the morphology of emulsions with volume fractions of 0.2/0.8. Upper row weak surfactant forces, lower row strong
surfactant forces, left column t = 3,000 (strain = 4.5), right column, t = 9,000 (strain = 14)
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Fig. 4 Droplet diameters at late times: t = 8,000–10,000 (squares
weak surfactant, triangles strong surfactant). The standard devi-
ations are indicated for cases in which the droplet distribution
was well defined. For the intermediate volume fractions, the
phases were co-continuous. For a viscosity ratio of unity, volume
fractions of 0.3 and 0.7 and volume fractions of 0.4 and 0.6
are equivalent. The particle diameters were not equal for these
equivalent systems because of the different initial states (random
composition fluctuations)

increasing droplet sizes. The deformation D (middle
panel) increased in time owing to a gradual response to
the shear flow and larger droplet sizes. The lower row

shows that the average tilt angle relative to the flow
direction decreased in time as the droplets adjusted
to the flow. The average capillary number was slightly
larger for the volume fraction 0.3/0.7 (and 0.7/0.3) com-
pared with the 0.2/0.8 case, due to larger droplet sizes.
The average deformation was therefore also slightly
larger for the higher volume fraction. For all cases, the
average capillary number was in the range 0.1–0.3, and
the average deformation factor was in the range 0.2–0.6
corresponding to highly elliptic droplets.

Co-continuous phases For the intermediate volume
fractions 0.4/0.6 and 0.5/0.5, co-continuous domains
that resemble a sponge structure were formed, as
shown in Fig. 6. The interfaces were connected surfaces
with a complex topology, and the emulsion morpholo-
gies were elongated, on average, due to the strain.
With stronger surfactant forces, the apparent length
scale of the interfacial structures appears to be smaller.
Figure 7 shows Fourier power spectra of the phase
function φ = ρA − ρB (the density difference between
the fluids), evaluated in the x–y plane, and averaged
over the transverse direction (the z-direction). The iso-
contours are plotted on a log-scale. Figure 7 indicates
that there was more structure on shorter length scales
with stronger surfactant (lower row), since the same
iso-contours cover a larger area in the wave vectors
space (kx, ky). This widening can be seen in all direc-
tions. Note that the major axis of the contour levels
of the power spectra is perpendicular to the average
interface direction. As expected, the interfaces became
more aligned with the flow direction, and the structures
became more anisotropic at later times.

Fig. 5 Average capillary
numbers, deformations and
tilt angles. Results are shown
for simulations conducted
with a strong surfactant in
which droplets were
dispersed in a continuum
fluid. These quantities varied
in time as the droplet sizes
increased, and they
responded to the shear. The
volume fractions 0.3 (denoted
by 37) and 0.7 (denoted
by 73) in this figure are
equivalent realizations.
Again, the results for these
equivalent systems were not
exactly the same because the
initial conditions were not
exactly the same
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Fig. 6 Emulsion morphology for 0.5/0.5 volume fraction at early
times. Upper panel weak surfactant forces. Lower panel strong
surfactant forces. The fluid domains are bi-continuous, and the
characteristic scale of the morphology is smaller with stronger
surfactant

The dashed lines in the power spectra correspond to
the total strain, and the full line corresponds to 0.4 times
the strain, which appear to correspond to the major axis
of the spectrum. There is no clear variation of the tilt
angle of the iso-contours as the wave number varies.
Furthermore, the tilt angles do not change significantly
as the surfactant strength changes. Analogous plots can
be obtained experimentally to probe the average mor-
phology in emulsions, using small angle light scattering
(SALS). For example, Vermant et al. (1998) found
small variations in the tilt angles as a function of wave
number (or scattering vector) in SALS images of steady
state shear flows. The varying tilt angles corresponded
to the variation of the droplet tilt angles as the droplet
size changed. They investigated dilute emulsions of
polymer blends with a viscosity ratio of 0.27.

Shear stress transients

Figure 8 shows the evolution of the relative viscosity
with weak surfactant forces. The volume fractions vary

as indicated (with “28” as a short notation for 0.2/0.8,
etc.). The relative viscosity is shown with a thick line,
and it is defined by

μr = �xy

�
c
xy

(10)

�
c
xy = μc

2Uw

Ly
, (11)

where �xy is the total volume averaged shear stress
and �

c
xy is the shear stress for a pure single-phase

fluid with viscosity μc. Uw is the wall velocity and Ly

the distance between the walls. The calculation of the
various stress contributions from the simulation data
is outlined in “Appendix 1”, and the calculation of the
effective viscosity is outlined in “Appendix 2”.

The thin full lines in Fig. 8 correspond to the viscous
stress integrated over the computational domain with
volume V,

�
visc
xy = 1

V

∫
V
(μ∂yux)dV, (12)

which is almost identical to the reference stress defined
by �

c
xy (Eq. 11). The dashed line shows the total in-

terfacial stress, �
int
xy . The thick dashed line shows the

surfactant contribution to the interfacial stress, which
was negligible in these simulations with weak surfactant
forces. Finally, the dash-dot line shows the volume
integrated Reynolds stress contribution,

�
R
xy = − 1

V

∫
V
(ρu

′
xu

′
y)dV, (13)

which was also negligible. For higher shear rates, we
expect that this inertial stress will be important.

Figure 8 demonstrates that the relative emulsion vis-
cosity was significantly larger than unity due to the in-
terfacial stress, and the peak values were comparable to
the viscous stress. The total stress and effective viscosity
reached maxima near t = 2,000 for all volume fractions.
For the droplets, the transient stress is a consequence
of the starting flow, in which the droplets are gradually
distorted into tilted ellipsoids so that the net interfacial
stress increases with time (dashed lines). The gradual
deformation of the droplets is a consequence of work
done by the shear stress. This work is partially stored
in the form of increased interfacial energy (larger in-
terfacial areas), and part of it is dissipated by viscosity
due to the perturbations in the velocity field. Conse-
quently, the rheology of the emulsion is viscoelastic.
Remarkably, similar responses were also found for the
co-continuous cases, and the reason for this is a similar
change of the average interfacial orientation with time.
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Fig. 7 Power spectra of the
phase function ρ1 − ρ2,
represented by iso-contours
on a logarithmic scale. Right
column t = 3,000, left column
t = 9,000, top row weak
surfactant, bottom row strong
surfactant. The dashed line
corresponds to the strain, and
the full line corresponds to
0.4 times the strain. The latter
corresponds to the major axis
of the power spectrum, which
is aligned perpendicular to
the average interfacial
direction. In general, there is
more structure on shorter
length scales with stronger
surfactant (lower row).
Furthermore, the interfaces
are more aligned with the
flow direction, and the
structures become more
anisotropic at later times, as
expected. The axes show the
wave numbers, kx and ky,
normalized to the Nyquist
frequency

At the lowest volume fraction, a time lag due to
delayed formation of interfaces was observed. Conse-
quently, the interfacial forces and the associated shear
stress profiles also show a delay. At low volume frac-
tion, phase separation proceeds via nucleation and
growth in the initial phases of the simulation. At 50/50
volume fraction, the phase separation proceeds via
spinodal decomposition, and there is no such delay. At

intermediate volume fractions, phase separation also
occurs without a delay.

The total interfacial area decreased from the be-
ginning of the simulations because of coalescence
and/or coarsening of the morphology during surfactant
modified spinodal decomposition. Figure 9 shows an
example of the evolution of the interfacial area for
one of the droplet cases. However, the area reduction

Fig. 8 Contributions to the
effective viscosity for weak
surfactant forces. The volume
fractions are indicated (e.g.,
“28” for 0.2/0.8). Thick line
relative emulsion viscosity.
The different contributions
are given by the following
curves; thin line viscous stress,
dashed line total interfacial
stress, thick dashed line
surfactant contribution to
interfacial stress, dash-dot
line Reynolds stress
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Fig. 9 Total interfacial area as a function of time. For the volume
fractions 0.3/0.7 and weak surfactant forces. The interfacial area
decreases before the total shear stress reaches a maximum near
t = 2,000

was not sufficient to prevent the initial increase of the
stress due to droplet tilting and deformation, and we
therefore obtained results that are comparable to ex-
periments with stable emulsions (e.g., Jansseune et al.
2001) where a stress maximum in time was observed.
The reduction in interfacial area and tilting of the
droplets at later times further reduced the interfacial
stress.

Jansseune et al. (2001) investigated starting Couette
flow for a blend of nearly Newtonian, high viscosity
immiscible polymers using a cone and plate rheometer.
The blend consisted of 10% by volume of PDMS in
PIB, with a viscosity ratio of 1.61, and PDMS droplets

were dispersed in a PIB continuum. The interfacial
tension was relatively low (3 mN/m), but they were
able to separate the interfacial stress from the other
stress components. For significant droplet deforma-
tion, the morphology evolution could be described in
terms of affine deformation models. The interfacial
shear stress evolution in these experiments and in the
current simulations are qualitatively similar, with a
rapid increase of the interfacial shear stress immedi-
ately after start-up followed by a gradual decay as
the droplets align with the flow. The main difference
between the simulation results and these experiments
is that the simulated emulsion started out as a com-
pletely mixed system followed by droplet nucleation,
growth, coalescence, and a diminishing interfacial area,
while the experiments utilized stable emulsions prior to
shearing.

Figure 10 shows the individual contributions to the
effective viscosity during simulations with strong sur-
factant forces. The surfactant provided a negative con-
tribution to the shear stress (thick dashed lines), orig-
inating from the interfaces where the surfactant accu-
mulated. The contribution was negative because the
surfactant lowered the interfacial tension and the inter-
facial energy (for a comparable geometry). The inter-
facial energy for a planar interface based on the surfac-
tant model used in this work is discussed in “Appendix
3”. The time dependence of the surfactant contribution
was similar to that of the total interfacial stress (but
with opposite sign) since both quantities depend on the
varying orientation and shape of the interfaces. The
interfacial stress with surfactant was also influenced
by altered interfacial orientations and variations in the
local interfacial tension (the surfactant is not uniformly
distributed over the interface in a flowing system).

Fig. 10 Contributions to the
effective viscosity. Strong
surfactant forces. The coding
is the same as in Fig. 8
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Fig. 11 Effective viscosities.
Thin line weak surfactant,
thick line strong surfactant.
Here the time axis is replaced
by the total strain or shear
deformation, which increases
linearly with increasing time
(this is calculated using the
strain rate corresponding to
the wall separation and
velocities, multiplied by
time). This normalization can
be used when simulation
results are compared with
experimental results obtained
on various time and length
scales

Volume fraction effects

Figure 11 compares the relative viscosities determined
for strong and weak surfactant forces. The figure in-
dicates that the shear stresses were similar for the
lower volume fractions, but stronger surfactant forces
reduced the shear stress significantly at higher vol-
ume fractions (thick lines). For low volume fractions,
droplets were dispersed in a continuous fluid domain,
while for higher volume fractions, a complex sponge
structure formed (Fig. 6).

Stress maxima at early times The maximum stress
(near t = 2,000) increased with volume fraction up to
0.5/0.5, as shown in Fig. 12 (upper left panel). The
upper right panel shows the interfacial areas averaged
over the time interval t = 2,000–3,000. Both the stresses
and the areas increased with increasing volume frac-
tion, and the interfacial area was significantly larger
with stronger surfactant (triangles). It is reasonable
to expect that lowering of the interfacial tension with
stronger surfactant would lead to emulsion morphol-
ogy with smaller characteristic length scales and larger
interfacial area. The increase in interfacial area with
increasing volume fraction contributed to the increase
in stress, but the stresses for stronger surfactant were,
in fact, comparable or lower than those for the weak
surfactant case, even if the interfacial area was larger.
It is very interesting that the stresses were significantly
lower for stronger surfactant only for the higher volume
fractions.

Late times near steady state At later times, approxi-
mate steady-state conditions were reached. The lower
right panel in Fig. 12 shows the interfacial areas av-

Fig. 12 Relative viscosities. Upper left maximum relative viscos-
ity (near t = 2,000). Upper right interfacial areas averaged over
the interval t = 2,000–3,000. Triangles strong surfactant forces,
squares weak surfactant forces, lower row Relative viscosity and
interfacial areas at late times averaged over the interval t =
8,000–10,000. The volume fraction denoted 0.3 was averaged
over the volume fractions 0.3/0.7 and 0.7/0.3 and likewise for 0.4
(0.4/0.6 and 0.6/0.4)
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eraged over the time interval t = 8,000–10,000, and
the lower left panel shows the stresses averaged over
the same time interval. Once again, stronger surfac-
tant forces increased the interfacial area. The highest
stresses occurred at a volume fraction of 0.5/0.5, and the
shear stresses were suppressed with strong surfactant
only for the higher volume fractions, as for the earlier
times.

The lower left panel indicates, somewhat surpris-
ingly, that the relative viscosity may decrease with in-
creasing volume fraction. This behavior is consistent
with the results of Loewenberg and Hinch (1996),
which covered volume fractions up to 30%. A decrease
in viscosity with increasing volume fraction was ob-
served when the capillary number was larger than about
0.25, for a viscosity ratio of unity. The droplets were
more aligned with the flow for large volume fractions,
and this reduced the emulsion viscosity. The average
capillary number in the current simulations was in
the range 0.1–0.3, and our results are consistent with
Loewenberg and Hinch (1996).

There was only a modest increase of the emulsion
viscosity near a volume fraction of 0.5/0.5, relative
to the lower volume fractions. This is consistent with
the experimental results of Vinckier et al. (1999) and
Jansseune et al. (2003) for PDMS/PIB polymer blends
with a viscosity ratio of order unity, which had a
“fibrillar” morphology under shear for a 0.5/0.5 com-
position.

Morphology and surfactant effects

An important effect of surfactants is reduction of the
interfacial tension, which depends on the local surfac-
tant interfacial density, and this can directly reduce the

interfacial shear stress. At a lower interfacial tension,
the fluid can deform the interface more easily, and
this leads to smaller characteristic interfacial scales.
In addition, nonuniform surfactant interfacial densities
generate surface tension gradients, which is the origin
of Marangoni phenomena. For example, the surfactant
accumulates at the higher curvature droplet tips, and
this generates Marangoni stresses which alter droplet
shapes (e.g., Bazhlekov et al. 2009).

Figure 12 implies that, in the simulations, the sen-
sitivity of the shear stress to the surfactant depended
on the topology of the interface. At lower volume
fractions, where well-defined droplets existed, the shear
stress was insensitive to the surfactant activity. This
can be explained in terms of a pure interfacial tension
effect; increased interfacial area (more and smaller
droplets with stronger surfactant) is compensated by
reduced interfacial tension. We will show below that
this picture is somewhat simplified since the changes in
the droplet shape also come into play.

In the co-continuous regime, it appears from Fig. 12
that the surfactant reduced the shear stresses efficiently
during early time transients and at late times as the
steady state was approached. The reason for this is
that the interfacial structure was altered with stronger
surfactant, and surfactant accumulated near high cur-
vature portions of the interface by advection. This
gave a lowered total interfacial stress, even though the
interfacial area was larger. The details are discussed
below.

Stress statistics for the droplet regime The left panel in
Fig. 13 shows a histogram of the interfacial stress dis-
tributions for the lowest volume fraction (0.2/0.8). The
asymmetric shape is due to droplet elongation, where

Fig. 13 Interfacial stress distributions for 0.2/0.8 volume fraction
at late times. The thick vertical line indicates zero stress, and the
two thin vertical lines indicate the stress levels 0.001 and 0.003 that
are discussed in the text. Left panel total interfacial shear stress

�
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a larger area of the interface is associated with positive
stress (as compared to areas with negative stress), and
this provides a net positive interfacial stress. The dis-
tributions appear to have similar shapes, independent
of surfactant strength. However, the distributions are
slightly wider with stronger surfactant, even though the
interfacial tension is lowered. This reflects a difference
in droplet shapes or morphology.

The middle panel in Fig. 13 shows the contributions
to the stresses from the forces between ordinary fluids
only (see “Appendix 1”), hereafter denoted as “OO-
stresses,” where “OO” stands for the ordinary f luid-
to-ordinary f luid interaction. These stresses are directly
related to the morphology (orientations and shapes of
the droplets) through the interface anisotropy tensor
(Eq. 2) via

�
oo
αβ = −σ ∗qαβ, (14)

where σ ∗ is a constant interfacial tension. The OO-
stress �

oo
αβ is then simply a measure of the interface

anisotropy tensor. Onuki (1987) provided a similar
relation,

�
oo
xy = −aσ ∗ 〈nxny〉, (15)

where a is the interfacial area per unit volume and
〈nxny〉 is the area averaged local interface tensor, where
nx and ny are components of the unit vector normal
to the interface. The maximum value of nxny occurs at
an interface orientation angle of 45◦ and the minimum
value of zero at 0◦ or 90◦. This stress contribution
does not involve the surfactant forces directly, but the
surfactant influences the orientation and morphology
of the interface and hence 〈nxny〉.

The middle panel of Fig. 13 shows wider tails also for
the OO-distribution with stronger surfactant (dashed
line). More droplets and lower interfacial tension ap-
pear to promote larger peak values of the OO-stresses.
The volume rendering in Fig. 14 shows the 0.001 (yel-
low) and 0.003 (red) OO-stress levels for both strong
(upper panel) and weak (lower panel) surfactant, and

Fig. 14 Stress contributions
for 0.2/0.8 volume fraction at
late times. Upper panel
positive contours of the
ordinary fluid–ordinary fluid
stress (0.001—yellow,
0.003—red), for strong
surfactant. Lower panel
positive contours of the
ordinary fluid–ordinary fluid
stress, for weak surfactant,
same contour levels
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Fig. 15 Interfacial stress
distributions for 0.5/0.5
volume fraction at late times.
Left panel: thin line weak
surfactant, thick line strong
surfactant. The net stress was
lower with surfactant due to a
reduction of the number of
positive stress values,
preferentially near 0.001. The
coding is the same as in
Fig. 13

it can be seen that stronger surfactant increased the
number of droplets. The more numerous red (higher
stress) areas in the upper panel display, in a direct way,
the more extended tails for the OO-stresses. The total
size of the yellow areas for the 0.001 level are compa-
rable for the two cases, as shown by the comparable
counts in the middle panel in Fig. 13. The reason for this
is that with the lower surfactant strength, the droplets
were more elongated with larger yellow (lower stress)
areas, and this compensated for the effect of fewer
droplets.

The total interfacial stress is given by

�
int
αβ = −σ ∗qαβ + �

S
αβ, (16)

where �
S
αβ depends on both the local interfacial orien-

tation and the local surfactant density. The total stress
was also calculated by using the force model directly
(“Appendix 1”). In general, −σ ∗qαβ is positive and �

S
αβ

is negative because the surfactant reduces the interfa-
cial tension. The wider tails for the OO-stresses for the
stronger surfactant were to some degree compensated

Fig. 16 Stress contributions
for 0.5/0.5 volume fraction at
late times. Upper panel
ordinary fluid–ordinary fluid
stress for weak surfactant,
contours at 0.001 and 0.003.
Lower panel ordinary
fluid–ordinary fluid stress for
strong surfactant, contours at
0.001 and 0.003
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by the surfactant-related stresses �
S
xy. This is illustrated

in the right panel of Fig. 13, which displays the OO-
stresses again (dashed) and the narrower total stress
distribution with the surfactant stress included (full
thick line). The surfactant contribution did not fully
compensate for the wide OO-stress tails, and in the
end, a wider total stress distribution was obtained with
stronger surfactant (left panel, full thick line, Fig. 13).
Even so, the total stress did not increase noticeably for
stronger surfactant.

Stress statistics for the co-continuous regime Figure 15
shows the interfacial stress distribution functions, or
histograms for 0.5/0.5 volume fraction. Again, the
asymmetric shape of the distributions indicates a net
positive interfacial stress. The left panel demonstrates
that the net stress was lower with stronger surfactant
(thick line) mainly due to a reduction of the number
of positive stress values (the counts are reduced in
particular near 0.001 as indicated by the vertical line).

The same effect can be seen for the distribution of
OO-stresses (middle panel), but there is also an in-
creased number of the higher stress values (dashed line
for strong surfactant). This suggests that the change of
interfacial stress with stronger surfactant was partially
due to a modified interfacial structure, since the shape
of the OO-stress distribution is quite different with the
strong surfactant.

Figure 16 shows volume renderings of the OO-
stresses in red and yellow together with the interface in
green. The upper panel shows the OO-stress for weak
surfactant with contours at 0.003 (red) and 0.001 (yel-
low), corresponding to the vertical lines in the middle
panel of Fig. 15. The lower values (yellow) correspond
to relatively large connected areas with significant tilt
angles relative to the mean flow. Note that the total in-
terfacial shear stress is now approximately �

int
xy � �

oo
xy .

The lower panel in Fig. 16 shows the OO-stress
for the strong surfactant case (with the same con-
tour levels), corresponding to the dashed line in the

Fig. 17 Total interfacial
stress contributions for 0.5/0.5
volume fraction at late times.
Red: stress = 0.003, yellow:
stress = 0.001. The red
patches correspond to the
extended positive tail of the
corresponding distribution
function. Lower panel total
stress for strong surfactant,
upper panel total stress for
weak surfactant. The
qualitative appearance is
similar to the strong
surfactant case, even though
the volume averaged stress
was higher due to a larger
area with stress levels near
0.001 (yellow)
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Fig. 18 Interfacial stress contributions for 0.5/0.5 volume fraction
at late times. Grey: interface, red: ordinary fluid–ordinary fluid
stress = 0.003, yellow: higher surfactant density. In this simula-
tion, the surfactant tended to accumulate where the interfacial

tensor values (OO-stresses) were relatively large (red), and this
prevented large peak stress values. The left panel shows the front
half of the domain, while the right panel shows the back half

middle panel of Fig. 15. The increased areas of the
0.003 level is evident from the volume rendering, with
more numerous red patches in the lower panel. Figure
17 shows a side view of the morphology of the total
stress distribution for weak surfactant (upper panel)
and strong surfactant (lower panel). The same contour
levels are shown in red and yellow. Both cases display
highly organized, skewed, and smooth structures for the
areas that provide the dominating stress contributions
(yellow). More smaller scale structure can also be seen
with stronger surfactant.

The higher OO-stresses (red) seem to be associated
with higher interface curvatures. The power spectra
shown earlier indicate more smaller scale structures
(higher curvatures) with stronger surfactant. The his-
togram in the right panel of Fig. 15 indicates that
these higher stress values were counteracted by rela-
tively strong negative surfactant contributions. Figure
18 displays a perspective more in the flow direction.
Higher surfactant densities are shown in yellow and the
full interface in opaque grey. It is clear that surfactant
accumulated where the OO-stresses were large (red),
resulting in a suppressed shear stress. Furthermore,
these interfacial areas are associated with transverse
liquid threads and sheets between larger domains of the
same fluid.

The main contribution to the total interfacial stress
for the strong surfactant case came from the lower
curvature (smoother) portions of the interface (shown
in yellow in Fig. 17). These areas were more aligned
with the flow so that they provide lower shear stress
contributions. For weak surfactant, these smooth por-

tions of the interface occupied a larger area, so that the
total interfacial stress became larger.

Discussion

The peak values in time for the interfacial stresses were
relatively large and comparable to the viscous stresses.
This is not necessarily a general result when the vis-
cosity ratio is significantly different from unity because
the interfacial contribution to the viscous stress (the
third term on the right-hand side of Eq. 1) comes into
play. For example, Jansseune et al. (2001) performed
transient experiments with polymer blends consisting
of 10% PDMS in PIB, with a viscosity ratio of 1.61 and
a relatively low interfacial tension of 3 mN/m. Even
though the viscosities were comparable, they found
that the interfacial contribution to the viscous stress
was larger than the interfacial stresses. Our simulations
are representative of systems in which the interfacial
tension (that increases the interfacial stress) is larger
and the viscosity ratio is of order unity.

The interfacial area is a key factor in determining the
rheology, together with the emulsion morphology. In
most cases, we found that the interfacial area increased
with volume fraction up to 0.5/0.5, as shown in Fig. 12.
Using 2D simulations, Roths et al. (2002) found that
the interfacial area actually decreased with increasing
volume fraction due to coalescence and formation of
interconnected structures that extended over the full
computational domain in the flow direction. Dimen-
sionality and finite size effects are important issues for
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simulation work. The probability of coalescence and
droplet–droplet interaction is lower in 3D so that a
larger interfacial area can be maintained even without
surfactant. Furthermore, the breakup rates are larger
in 3D for capillary breakup modes because there are
two principal radii of curvature (rather than one in 2D),
and this increases the pressure perturbations in droplet
filaments.

Vinckier et al. (1999) found that the effective
viscosity of an immiscible blend of approximately
Newtonian polymers was significantly lower than the
predictions of classical models. The morphology was
not determined, but the authors suggested that it
was co-continuous. A similar effect was observed by
Jansseune et al. (2003) who found an interfacial shear
stress plateau over a broad interval of volume fractions.
For a 50/50 PDMS/PIB composition, the morphology
was “fibrillar” at high shear rates and droplets dis-
persed in a continuous phase at lower shear rates. The
fibrillar structure observed by Jansseune et al. (2003)
resembles the interfacial structure in our simulations,
as shown in Fig. 17.

A similar suppression of the shear stress has also
been found in many crude oil- and water-based emul-
sions. For example, the data of Keleşoğlu et al. (sub-
mitted for publication) show a clear suppression effect
close to the phase inversion point, relative to the pre-
diction of the model of Pal and Rhodes (1989). A
well-known explanation is that droplets are more
aligned with the flow for higher volume fractions (e.g.,
Loewenberg and Hinch 1996). Our results indicate that
a similar effect can occur with co-continuous phases,
as already suggested by Vinckier et al. (1999) and
Jansseune et al. (2003).

The transition from a droplet field to a co-continuous
morphology seems to be associated with the stretch-
ing of droplets into longer filaments that can coalesce
with other filaments (Willemse et al. 1999). The role
of surfactant is therefore potentially important in this
respect as well. More surfactant corresponds to lower
interfacial tension, higher capillary number, and more
droplet deformation, with a potentially lower transition
point (lower volume fraction) for phase inversion. On
the other hand, increased surfactant concentration is
associated with smaller coalescence rates and a smaller
mean droplet diameter, which implies less deforma-
tion. A transition to co-continuous morphology was
observed between the volume fractions 0.3 and 0.4 for
both strong and weak surfactant forces in the current
system. Preliminary results show that an earlier tran-
sition point is obtained with higher continuous phase
viscosity (lower viscosity ratio), in accordance with
(Willemse et al. 1999).

Conclusion

Simulations of emulsions with a simple model for am-
phiphilic nonionic surfactants were performed on rela-
tively large grids of dimension 128 × 128 × 256 using
a three component (fluid A, fluid B, and surfactant)
lattice Boltzmann model. The experimental measure-
ment of the dynamics of surfactants on surfaces and
interfaces is extremely challenging, and this is currently
possible only for simple geometries (Fallest et al. 2010).
Consequently, only numerical methods, such as lattice
Boltzmann simulations, can reveal details such as the
correlation between the concentration of the surfactant
and the interface curvature under dynamic conditions,
as illustrated in Fig. 18 for a bi-continuous morphol-
ogy. For low volume fractions, the emulsion rheology
can be predicted, to some extent, from the stress dis-
tribution on single, surfactant covered droplets. For
higher volume fractions with complex morphologies
(e.g., bi-continuous morphologies), the influence of
the surfactant on the rheology cannot be reliably esti-
mated without a fairly advanced numerical model. We
have demonstrated how the surfactant influences the
shear rheology for both high volume fraction (in a bi-
continuous morphology) and for low volume fractions
(for a droplet field), and the main differences are sum-
marized below.

For high volume fractions with bi-continuous phases,
the total interfacial shear stress (and shear viscos-
ity) decreased as the magnitude of the surfactant-
related forces increased. In the current model, stronger
surfactant-related forces correspond to lower interfa-
cial tension. More smaller scale structures with higher
interface curvatures were formed with lower interfacial
tension as shown by the volume renderings and power
spectra of the fluid density fields. The surfactant density
tended to be larger in higher curvature areas of the
interface due to significant advective transport by the
flow field (with a Péclet number of order unity), and
this suppressed potentially large stress values there
(Fig. 18). Stronger surfactant forces reduced the shear
stresses more efficiently in these higher curvature ar-
eas, and the main contribution to the total interfacial
stress then came from the lower curvature areas. These
areas were more aligned with the flow for the stronger
surfactant forces, so that stronger surfactant forces pro-
vided lower average shear stress values and a lower
shear viscosity.

For the smaller volume fractions, for which the
morphology consisted of droplets dispersed in a con-
tinuum, the surfactant modified the volume, shape,
and orientation of the droplets, as expected. Weak
surfactant forces resulted in larger, fewer, and more
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elongated/stretched droplets, while the stronger sur-
factant forces (lower interfacial tension) resulted in
smaller and more numerous droplets. Large local in-
terfacial stresses are associated with regions of high
interfacial curvature such as the end caps of elongated
droplets, and more numerous droplets can therefore
potentially increase the total shear stress. Since the
Péclet number was of order unity, the advection and
diffusion of surfactant were equally important in the
interface. Similar to the bi-continuous case, advection
served to increase the surfactant concentration in the
end caps (or higher curvature areas), and this prevented
a significant increase of the shear stress. The total inter-
facial shear stress (and emulsion shear viscosity) was in
this case nearly unchanged with respect to surfactant
strength even though the number of droplets were
larger for the stronger surfactant.

We emphasize that, for bi-continuous/high volume
fractions cases, the average interfacial shear stress was
significantly reduced with stronger surfactant forces
(lower interfacial tension), in contrast to the low vol-
ume fraction/dispersed cases where the average shear
stress was nearly unchanged. For the dependence of
the emulsion viscosity and morphology on the volume
fraction, we found qualitative agreement between our
results and experimental data for polymer blends. The
polymer blends of Vinckier et al. (1999), Yu et al.
(2005), and Jansseune et al. (2003) were dispersed at
low volume fraction and co-continuous at higher vol-
ume fractions, similar to our cases. These authors found
only a moderate increase of the emulsion viscosity
at higher volume fractions when the phases were co-
continuous, similar to our results.
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Appendix 1: Stress calculations

The stresses in the simulated emulsions can be de-
termined from the forces between the fluids and the
kinetic stresses that are available from the Boltzmann
distribution. The virial theorem is commonly used to

calculate the macroscopic (continuum) stress in molec-
ular dynamics computations, and the same concept was
used to calculate the virial stress from the populations
in the Boltzmann distribution and from the mesoscale
forces in the model. The virial stress is given by (e.g.,
Xu and Liu 2009)

�vir
αβ = 1

V

⎛
⎝−

∑
k

mkv
k
αvk

β + 1
2

∑
k,l �=k

rkl
α Fkl

β

⎞
⎠ . (17)

Here Fkl is the force on a particle k due to particle
l, rkl = rl − rk is the separation vector pointing from
particle k to particle l, V is the averaging volume, mk

is the particle mass, and vk
α is the velocity components

of the same particle.
The stress has the form �vir

αβ = �kin
αβ + �int

αβ , where
�kin

αβ is the kinetic (momentum flux density) and �int
αβ

is the contribution from attractive and repulsive in-
teractions. In general, the kinetic stress is nonzero
throughout the flow volume. In terms of the population
distributions in the discrete lattice Boltzmann model,
the kinetic contribution for each fluid is given by

�kin
αβ = −

∑
i

ficiαciβ = −ρuαuβ − pδαβ + �visc
αβ , (18)

where �visc
αβ � ρν(∂αuβ + ∂βuα) is the Newtonian (vis-

cous) stress to leading order if the velocity divergence
can be ignored (Dellar 2001) and p is the isotropic
pressure component. Here, fi corresponds to the par-
ticle population in a single lattice cell with volume Vc.
In Eq. 18, superscripts indicating the chemical compo-
nent are omitted. Since all three components (fluid A,
fluid B, and surfactant) are present in each phase, the
contributions from the individual components must be
summed.

To calculate the interaction stress or interfacial
stress, neighboring cells must be included, since the
forces act between neighbor cells and not within the
local cell and the corresponding volume is 2Vc. The in-
teraction contribution to the stress is given by

�int
αβ = 1

2Vc

1
2

∑
i

(
e0i
α F0i

β + ei0
α F i0

β

) = 1
2

∑
i

e0i
α F0i

β , (19)

where e0i
α is the lattice separation vector pointing from

the local cell “0” to the neighbor cell “i” and F0i
β is

the total force on the local cell from the neighbor cell.
Similarly, ei0

α is the lattice separation vector pointing
from the neighbor cell “i” to the local cell “0,” and F i0

β

is the total force on the neighbor cell, due to the local
cell. In the case of two ordinary fluids,

F0i
β (x) = GABψA(x)ψB(x + ci)ciβ, (20)
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where ψA and ψB are monotonically increasing func-
tions of the fluid densities and GAB is the interaction
strength between A and B. With this relation, we verify
the form of González-Segredo et al. (2006),

�oo
αβ = 1

4

∑
σ,σ

GAB

×
∑

i

[ψσ (x)ψσ (x + ci) + ψσ (x)ψσ (x + ci)]ciαciβ,

where the first summation runs over the two fluid com-
ponents. Volume averaging yields the interface tensor
due to ordinary fluid forces, �

oo
αβ . When surfactant

forces are included, a volume averaged interfacial stress
of �

int
αβ = �

oo
αβ + �

S
αβ is obtained.

Appendix 2: Calculation of the emulsion viscosity

In general, the average stress in any chosen volume V
is given by

�αβ = 1
V

∫
V

∑
σ

(�kin
αβ + �int

αβ)dV. (21)

The deviation �� from the stress in a single-phase fluid
with

�
kin,0
αβ = −ρu0

αu0
β − p0δαβ + �

visc,0
αβ (22)

�
int,0
αβ = 0, (23)

is a central quantity. The viscous stress in the single-
phase fluid is �

visc,0
αβ . In simple shear, the relations for

the shear stress

�kin,0
xy = �

visc,0
αβ = μ0∂yu0

x (24)

��xy = 1
V

∫
V

∑
σ

(
−ρu′

xu′
y + μ

(
∂yux

) + �int
xy

)
dV

−μ0∂yu0
x. (25)

are obtained assuming no pressure change. Here, u′
xu′

y
is the macroscopic stress due to the velocity perturba-
tions in the emulsion, and the corresponding volume
average is referred to as a Reynolds stress. The excess
shear viscosity for the emulsion is defined as

μe − μ0 = ��xy

∂yu0
x

, (26)

and the relative viscosity is defined by

μr = �xy

�
0
xy

= �xy

μ0∂yu0
x
. (27)

Appendix 3: Energy density of the planar interface

For a planar interface perpendicular to say the z-
direction, the non-isotropic contribution to the to-
tal pressure in the model is given by (Furtado and
Skartlien 2010),

Pni = κ

(
dφ

dz

)2

+ b Mz
dφ

dz
, (28)

where M = Mzẑ is the dipole vector of the surfactant
and φ = (nA − nB)/n is the phase ordering function.
The total fluid density n ≈ nA + nB is assumed to be
constant, and b and κ depend on a number of lattice
quadrature weights. These relations can be found in
Furtado and Skartlien (2010). The first term in Eq. 28
corresponds to the interfacial tension or energy den-
sity of a surfactant-free interface. The second term
in (Eq. 28) arises from the adsorption of surfactant
molecules to the interface. If the signs of the interaction
parameters GAS and GBS are as specified in Table 2, then
the surfactant contribution results in a reduction of the
interfacial tension when the dipole is aligned with its
equilibrium direction perpendicular to the interface.
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