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Abstract We use fractional viscoelastic models that
result from the application of fractional calculus to the
linear viscoelastic theory to characterize thermorhe-
ologically simple linear viscoelastic materials. Model
parameters are obtained through an optimization
procedure that simultaneously determines the time–
temperature shift factors. We present analytical inter-
conversion based on the fractional viscoelastic model
between the main viscoelastic functions (relaxation
modulus, creep compliance, storage modulus, and loss
modulus) and the analytical forms of the relaxation and
retardation spectra. We show that the fractional vis-
coelastic model can be approximated by a Prony series
to any desired level of accuracy. This property allows
the efficient determination of the fractional viscoelastic
model response to any loading history using the well-
known recursive relationships of Prony series models.
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Introduction

Linear viscoelastic theory describes the behavior of
a homogenous, additive, shift invariant causal system.
Such a system is mathematically described by convolu-
tion of the input with the unit impulse response func-
tion to produce the output. In linear viscoelasticity, this
convolution is most often written in a slightly different
but mathematically equivalent form known as the
Boltzmann superposition integral with the stress and
strain as input–output pairs (either can be input or
output). In general, the kernel of the Boltzmann su-
perposition integral can assume any form as long as
it is thermodynamically admissible. Of possible forms,
the kernel comprising a sum of exponential functions
has received particular interest due to its many desir-
able characteristics. One such characteristic is that it
allows reformulating the linear viscoelastic theory in
terms of differential equations with solutions that can
be represented in terms of arrangements of springs and
dashpots. This formulation provides efficient recursive
integration algorithms for linear viscoelastic computa-
tions. These algorithms have become the standard in
the numerical application of viscoelasticity (e.g., the
finite element method).

The weights in the exponential kernel are referred
to as the discrete spectrum. In the limit of infinite para-
meters, the summation is replaced by an integral, which
results in the continuous spectrum. In polymer rheol-
ogy, the continuous spectrum provides insight into the
molecular processes occurring at different time scales,
which characterize the relaxation process (Stadler and
Bailly 2009). The main disadvantage of the exponential
kernel is that relaxation of most viscoelastic materials
occurs at a slower rate than the decay of exponential
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functions. For this reason, a large number of exponen-
tial functions are needed to provide a good represen-
tation of the whole range of response of viscoelastic
materials.

During recent times, fractional viscoelastic models
have gained wide use in linear viscoelasticity. While
fractional viscoelastic models can be traced to the
late 1940s (Rossikhin and Shitikova 2010; Mainardi
2010a), most of the currently used approaches follow
the work of Caputo and Mainardi (1971). Fractional
viscoelastic models initially provided a mathematical
description of the relaxation process and were thought
to have no physical interpretation. The kernel of these
models is the Mittag-Leffler function, which results
in a relaxation that asymptotically follows a power-
law behavior (Friedrich 1991; Mainardi and Gorenflo
2000). The first successful attempt to provide a phys-
ical meaning to fractional models was to show that
the Rouse model gives rise to a fractional differential
equation of order 1/2 (Bagley and Torvik 1983). This
was further generalized to arbitrary fractional orders
(between 0 and 1) by Sharma and Cherayil (2010) who
proposed a molecular basis for fractional equations
of viscoelasticity in terms of the generalized Langevin
equations. The next significant development was
establishing the thermodynamic validity of fractional
viscoelastic models (Friedrich 1991; Glöckle and
Nonnenmacher 1991). The main difference between
fractional viscoelastic models and classical viscoelastic
models is the replacement of the Newtonian dashpot
with the so-called springpot as the dissipative rheo-
logical parameter. However, it has been shown that
the springpot can be derived from hierarchical and
self-similar models comprising springs and dashpots
(Schiessel and Blumen 1995; Heymans and Bauwens
1994). Recent efforts have shown that fractional order
models arise from the classical generalized Maxwell
model (GMM) and generalized Kelvin model (GKM)
when the number of elements in these models tend to
infinity (Adolfsson et al. 2005; Papoulia et al. 2010).

Until recently, one drawback of fractional viscoelas-
tic models has been the lack of efficient methods for
the numerical evaluation of the fractional operator.
This results from the fact that at each time step in the
discretization of the fractional operator, all strain states
from all previous increments are needed to calculate
the new strain state (Ford and Simpson 2001; Oeser
and Freitag 2009). Different strategies have been pro-
posed to reduce the computational effort of the nu-
merical evaluation of the fractional operator (Enelund
and Lesieutre 1999; Padovan 1987; Ford and Simpson
2001; Oeser and Freitag 2009; Adolfsson et al. 2004).

However, these strategies involve approximations that
are not easily evaluated and often complicate the prob-
lem. To address this, a new strategy based on the
approximation of fractional order models with inte-
ger order models has been proposed (Papoulia et al.
2010). This allows fractional models to have the com-
putational efficiency of the GMM and GKM while
simultaneously maintaining the relatively low number
of defining parameters of the corresponding fractional
model.

As stated earlier, the spectrum of polymeric materi-
als is often of interest because of its link to molecular
processes that govern relaxation. However, direct de-
termination of the relaxation spectrum (or retardation
spectrum) from experimental data is an ill-posed prob-
lem, and a number of methods based primarily on regu-
larization have been suggested to calculate the discrete
spectrum (Mead 1994; Malkin 2006; Stadler and Bailly
2009; Baumgaertel and Winter 1989; Honerkamp and
Weese 1989; Kaschta and Schwarzl 1994; Honerkamp
and Weese 1993). For this purpose, Friedrich et al.
(1995) suggested obtaining the spectrum through ana-
lytical inversion of the fractional viscoelastic model. In
this case, the spectrum of an n-parameters generalized
fractional Maxwell model (GFMM) can be obtained us-
ing Laplace transform techniques (Friedrich et al. 1995;
Enelund and Lesieutre 1999). Results of analytical in-
version performed by Friedrich et al. (1995) compared
favorably with results obtained by Honerkamp and
Weese (1993) and Weese (1993) for discrete spectrum
calculation with nonlinear regularization.

Objective and organization

In this paper, we show how fractional viscoelastic mod-
els can be efficiently used to obtain a linear viscoelastic
model description from experimental data. Although
fractional viscoelastic models have been shown to be
able to accurately determine the continuous spectrum
(Friedrich et al. 1995), we do not address this issue
in this paper. As such, accurate determination of the
spectrum is not our objective. Rather, our aim is to
obtain a fractional viscoelastic model and show how this
model can be used to perform interconversion between
viscoelastic functions and to determine the material re-
sponse under any loading. We provide conditions under
which interconversion can be performed analytically
and show how fractional viscoelastic models can be
approximated by classical rheological models. Given a
thermorheologically simple material, the parameters of
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the fractional viscoelastic model and time–temperature
shift factors are simultaneously obtained during the
process of constructing the master curve at a cho-
sen reference temperature. The paper is organized as
follows:

In “Fractional viscoelastic models”, we present
a brief overview of fractional calculus and frac-
tional viscoelastic models. Our presentation is con-
cise, and we refer the reader to Mainardi (2010b)
and Mainardi and Spada (2011) for a comprehen-
sive presentation of the subject. In Section “Model
determination from dynamic modulus test measure-
ments”, we show how to simultaneously determine
the time–temperature shift factors and the fractional
viscoelastic model parameters. This essentially en-
tails solving a nonlinear least squares equation. In
Section “Interconversion between the GFMM and
the GFKM”, we prove a theorem that states under
which conditions exact analytical interconversion of
fractional viscoelastic models can be performed. This
section builds on results obtained by Koeller (1986).
In Section “Approximation of the GFMM and GFKM
by the GMM and GKM”, we show that fractional vis-
coelastic models can be approximated to any desired
level of accuracy by the classical GMM and GKM. This
result has been obtained by Adolfsson et al. (2005) and
Papoulia et al. (2010). However, the previous authors
imposed restrictions on the discretization and limits of
integration to prove this assertion. Our approach re-
moves these restrictions and identifies the two sources
of errors in the numerical approximation. The first
source of error results from approximating an improper
integral (an integral that has infinite limits of integra-
tion) with a proper integral (an integral that has finite
limits of integration). The second source of errors re-
sults from approximating a proper integral with a finite
summation (i.e., performing numerical integration). An
example application using asphalt concrete dynamic
modulus test results is presented in Section “Numerical
examples”, and the conclusions are presented in Sec-
tion “Conclusion”.

Fractional viscoelastic models

Fractional calculus

Fractional calculus deals with integrals and derivatives
of arbitrary (non-integer) order. There are different
(i.e., not necessarily equivalent) definitions of frac-

tional operators. The most commonly used operator
is the Riemann–Liouville fractional integral operator
which associates with a real function f : P → P, its
fractional integral Iα

x0
f of order α > 0 defined as:

Iα
x0

f (x) = 1
� (α)

∫ x

x0

f (ξ) (x − ξ)α−1 dξ (1)

Where � is the Gamma function and x0 is an ar-
bitrary fixed point. In what follows, we take x0 =
0 and denote Iα

0 by Iα . Note that the Riemann–
Liouville fractional integral operator is a generalization
of the Cauchy formula for repeated integration defined
for the cases when α is a positive integer. Because
differentiation is the inverse operator to integration,
the fractional derivative can be defined using the inte-
ger order derivative with Iα . In this case, there are two
possible definitions for the fractional derivative. These
are referred to as the left-hand side and right-hand side
definitions. The right-hand side definition introduced
by Caputo (1967) is referred to as the Caputo deriv-
ative and is used in linear viscoelasticity. In general,
the Caputo derivative is preferred in physical settings
as initial conditions that arise in fractional differential
equations are expressed in terms of the function and its
integer order derivatives. Another desired property is
that the Caputo derivative of a constant is 0. For α > 0
and m − 1 < α < m, where m is a positive integer, the
Caputo (right-hand side) derivative Dα is defined as:

Dα f (x) = 1
� (m − α)

∫ x

0

dm f (ξ)

dxm
(x − ξ)m−α−1 dξ

= I(m−α) dm f (x)

dxm
(2)

The Caputo derivative with 0 < α < 1 is used to define
fractional viscoelastic models. Finally, we note that the
fractional integrals and fractional derivatives are linear
operators. This is due to their definitions in terms of the
classical integer order derivatives and integrals that are
linear operators.

Fractional viscoelastic models

In this section, we present the equations of the main
viscoelastic functions, namely creep, relaxation, and
dynamic functions, that result from fractional viscoelas-
tic models. For a detailed exposition, we suggest the
following references: Mainardi (2010b) and Mainardi
and Spada (2011). Fractional viscoelastic models result
from replacing integer stress and strain derivatives used
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in linear viscoelasticity with fractional counterparts.
The exponential relaxation function that arises from
integer stress and strain derivatives has a short tran-
sition zone and is by itself inadequate to describe the
relaxation function of real materials. On the other hand
fractional models have a long transition zone that de-
pends on the fractional order of differentiation. There-
fore, only a few numbers of parameters are needed to
describe the relaxation of real materials. The simplest
fractional differential equation linking stress σ and
strain ε is that of the springpot as described by Koeller
(1984):

σ = Eτα Dα
∗ε (3)

Where E and τ are the modulus and the relaxation
time, respectively. For α = 0 the equation represents
linear elastic behavior (Hookean spring); for α = 1
the equation represents Newtonian viscosity (dashpot).
For intermediate values of α, the springpot describes
viscoelastic behavior. To describe actual viscoelastic
behavior, the springpot is associated in series with at
least one elastic element, which gives the fractional
Maxwell element. The complex modulus E∗ of the
fractional Maxwell element as a function of angular
frequency ω is shown in Eq. 4 (Heymans 1996; Schiessel
et al. 1995).

E∗ (ω) =
(

1
E

+ 1
E (iωτ)α

)−1

= E
(iωτ)α

1 + (iωτ)α
(4)

Multiple fractional Maxwell elements and a Hookean
spring can be combined in parallel to form the GFMM,
which is similar to the GMM that arises from the
combination of Maxwell elements. The real (storage
modulus) and imaginary (loss modulus) parts of the
complex modulus of the GFMM can be obtained by
summing the respective moduli of individual fractional
Maxwell elements as a result of the fact that the frac-
tional operator is a linear operator.

E′ (ω) = E∞ +
n∑

i=1

Ei
(ωτi)

2αi + (ωτi)
αi cos (αiπ/2)

1 + (ωτi)
2αi + 2 (ωτi)

αi cos (αiπ/2)

(5)

E′′ (ω) =
n∑

i=1

Ei
(ωτi)

αi sin (αiπ/2)

1 + (ωτi)
2αi + 2 (ωτi)

αi cos (αiπ/2)
(6)

Where E′ is the storage modulus, E′′ is the loss modu-
lus, and n is the number of fractional Maxwell elements.

The relaxation modulus of the GFMM is calculated
using Eq. 7 (Koeller 1984).

E (t) = E∞ +
n∑

i=1

Ei

{
MLαi

[
−

(
t
τi

)αi
]}

(7)

Where,

MLα (x) =
∞∑

n=0

xn

� (α n + 1)
(8)

is the Mittag–Leffler function, a generalization of the
exponential function. For the case α = 1, the Mittag–
Leffler function reduces to the exponential function,
and Eq. 7 becomes the Prony series representation of
the relaxation modulus.

As the fractional Maxwell element, the fractional
Kelvin element comprising a spring combined in par-
allel with a springpot can be used to obtain the gener-
alized fractional Kelvin model (GFKM). In this case,
compliances are easily determined. The creep compli-
ance of the GFKM is calculated as follows:

D (t) = D0 +
n∑

i=1

Di

{
1 − MLαi

[
−

(
t
λi

)αi
]}

(9)

Where D(t) is the creep compliance, D0 is the initial
compliance, Di is the spring compliance of individual
fractional Kelvin elements, and λi is the retardation
time of individual fractional Kelvin elements. The com-
plex compliance can be obtained from the complex
compliance of the single fractional Kelvin element
(Schiessel et al. 1995) and that of a single Hookean
spring as:

D∗ (ω) = D
1

1 + (iωλ)α
(10)

The real and imaginary parts of the GFKM are calcu-
lated as follows:

D′ (ω)= D0 +
n∑

i=1

Di
1 + (ωλi)

αi cos (αiπ/2)

1 + (ωλi)
2αi + 2 (ωλi)

αi cos (αiπ/2)

(11)

D′′ (ω) =
n∑

i=1

Di
(ωλi)

αi sin (αiπ/2)

1 + (ωλi)
2αi + 2 (ωλi)

αi cos (αiπ/2)

(12)

Where D′ is the storage compliance and D′′ is the loss
compliance.
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Model determination from dynamic modulus test
measurements

For thermorheologically simple materials, the relation-
ship between time and temperature can be described
by simple models. For such materials, the effect of
changing the temperature is simply to horizontally shift
the viscoelastic response as a function of time (or fre-
quency). The time–temperature shift factor aT(T) is
defined as the horizontal shift that must be applied to
the response curve measured at an arbitrary tempera-
ture T to move it to the curve measured at a chosen
reference temperature Tref.

aT = τ (T)

τ (Tref)
(13)

For the storage and loss moduli, the horizontal shifting
essentially multiplies the frequency of tests performed
at a particular temperature by the appropriate shift
factor at the particular temperature. For a two parame-
ters GFMM with constant fractional order, this can be
expressed as follows:

E′(ωaT)= E∞+
2∑

i=1

×Ei
(ωaTτi)

2α + (ωaTτi)
α cos (απ/2)

1 + (ωaTτi)
2α + 2 (ωaTτi)

α cos (απ/2)

(14)

E′′ (ωaT) =
2∑

i=1

Ei
(ωaTτi)

α sin (απ/2)

1 + (ωaTτi)
2α + 2 (ωaTτi)

α cos (απ/2)

(15)

To determine the parameters E∞, E1, E2, τ 1, τ 2, α, and
aT , we minimize Eq. 16.

n f∑
i

nT∑
j=1

{
log

[
E′

M

(
ωi, T j

)] − log
[
E′

F

(
ωiaT j

)]}2

+
n f∑
i

nT∑
j=1

{
log

[
E′′

M

(
ωi, T j

)] − log
[
E′′

F

(
ωiaT j

)]}2 (16)

Where nf and nT are the number of tested frequencies
and temperatures, respectively. The subscripts M and F
stand for measured and fractional models, respectively.
The minimization is performed with the logarithm of
each modulus because the moduli vary across many
orders of magnitude. Using the logarithm scale ensures
the resulting fit is acceptable for all orders.

Interconversion between the GFMM and the GFKM

Use of the GFMM to calculate the relaxation modulus
and use of the GFKM to calculate the creep compliance
result from the simplicity of expressing each function
in each model. The conversion between the transient
responses (relaxation modulus and creep compliance)
is more complicated. For example, a constant stress
can be applied to the GFMM which results in a creep
response. However, the expression of the creep com-
pliance cannot be directly obtained from the GFMM
parameters. We know that for the integer order deriv-
ative models, the creep compliance expression of an
n-parameters GMM is provided by an n-parameters
GKM. In this section, we will obtain expressions for
the creep compliance of the GFMM and the relaxation
modulus of the GFKM. We first state the following
theorem:

Theorem The creep compliance of an n-parameters
(with n > 1) GFMM with parameters having dif ferent
fractional order α cannot be expressed in the form of a
f inite number m-parameters GFKM.

Proof We first prove the theorem for the case n = m.
To prove this assertion, we suppose that it is false and
show that this leads to a contradiction (a set of incom-
patible equations). Using the relationship between the
creep compliance and the relaxation modulus in the
Laplace domain

D (s) = 1

s2 E (s)
(17)

and the fact that the Laplace transform of the Mittag-
Leffler function is expressed by

L {MLa (−atα)} = sα−1

(sα + a)
(18)

we get for an n-parameters GFMM and an n-
parameters GFKM, respectively:

E (s) = E∞
1
s

+
n∑

i=1

Ei
sαi−1(

sαi + τ
−αi
i

) (19)

D (s) = 1
s

(
D0 +

n∑
i=1

Di

)
−

n∑
i=1

Di
sαi−1(

sαi + λ
−αi
i

) (20)
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Equations 19 and 20 combined with Eq. 17 imply:

(
D0 +

n∑
i=1

Di

) ∏
i

(
sαi + λ

−αi
i

) −
n∑

i=1
Disαi

∏
j�=i

(
sα j + λ

−α j

j

)

s
∏

i

(
sαi + λ

−αi
i

)

=
∏

i

(
sαi + τ

−αi
i

)

s

[
E∞

∏
i

(
sαi +τ

−αi
i

)+ n∑
i=1

Eisαi
∏
j�=i

(
sα j +τ

−α j

j

)] (21)

For the equality in Eq. 21 to hold we must have (com-
paring the denominators):

∏
i

(
sαi + λ

−αi
i

)

=
E∞

∏
i

(
sαi + τ

−αi
i

) +
n∑

i=1
Eisαi

∏
j�=i

(
sα j + τ

−α j

j

)

E∞ +
n∑

i=1
Ei

(22)

Expanding both sides of Eq. 22 and equating terms of
like powers sαi , we obtain a set of n equations for i = 1
to n that must be satisfied as follows:

∏
j�=i

λ
−α j

j =
(E∞ + Ei)

∏
j�=i

τ
−α j

j

E∞ +
n∑

i=1
Ei

(23)

Furthermore, equating the constant term of the expan-
sion of Eq. 22, we obtain (one equation):

∏
j

λ
−α j

j =
E∞

∏
j
τ

−α j

j

E∞ +
n∑

i=1
Ei

(24)

Taking the product of all n equations of Eq. 23 and
noting that each term λi and τi appears n − 1 times in
this product, we find:

⎛
⎝∏

j

λ
−α j

j

⎞
⎠

n−1

=

∏
j

(
E∞ + E j

) (∏
j
τ

−α j

j

)n−1

(
E∞ +

n∑
i=1

Ei

)n (25)

Raising Eq. 24 to the n − 1 power, we obtain:

⎛
⎝∏

j

λ
−α j

j

⎞
⎠

n−1

=
En∞

(∏
j
τ

−α j

j

)n−1

(
E∞ +

n∑
i=1

Ei

)n−1

=

(
En∞+En−1∞

n∑
i=1

Ei

)(∏
j
τ

−α j

j

)n−1

(
E∞+

n∑
i=1

Ei

)n (26)

The left-hand sides of Eqs. 25 and 26 are the same
which implies (equating the right-hand side and after
simplification) that:

∏
j

(
E∞ + E j

) =
(

En
∞ + En−1

∞
n∑

i=1

Ei

)
(27)

The equality in Eq. 27 does not hold for arbitrary values
of E∞ and E j, for n > 1. This contradiction proves the
theorem for the case of n = m. The case m �= n is trivial
as it results in terms of unlike powers. ��

Corollary The relaxation modulus of n-parameters
(with n > 1) GFKM with dif ferent fractional order α

for each parameter cannot be expressed in the form of
a f inite number m-parameters GFMM.

Although the interconversion cannot be performed
for the GFMM and GFKM comprising fractional
Maxwell or Kelvin elements having different fractional
orders α, it can be performed if α is restricted to be the
same for all model elements. Koeller (1986) provided
the conversion of the GFKM to the GFMM for the case
of n = 2 parameters. Here we give the results for an
arbitrary finite number of elements n. The procedure is
similar to the interconversion of the classical GMM and
GKM (α = 1). In this case, we rewrite Eq. 21 and drop
the index on α, which results in Eq. 28.

(
D0 +

n∑
i=1

Di

)∏
i

(
sα + λ−α

i

) −
n∑

i=1
Disα

∏
j�=i

(
sα + λ−α

j

)
∏

i

(
sα + λ−α

i

)

=
∏

i

(
sα + τ−α

i

)
[

E∞
∏

i

(
sα+τ−α

i

)+ n∑
i=1

Eisα
∏
j�=i

(
sα + τ−α

j

)] (28)
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Again using the denominators, the parameters λi are
obtained from the n roots of the nth degree polynomial
in sα given by Eq. 29.

E∞
∏

i

(
sα + τ−α

i

) +
n∑

i=1
Eisα

∏
j�=i

(
sα + τ−α

j

)

E∞ +
n∑

i=1
Ei

(29)

The parameters D0 and Di are obtained using the nu-
merators (slightly modified right-hand side numerator)
in Eq. 28 as follows:

(
D0 +

n∑
i=1

Di

)∏
i

(
sα + λ−α

i

)

−
n∑

i=1

Disα
∏
j�=i

(
sα + λ−α

j

)
=

∏
i

(
sα + τ−α

i

)

E∞ +
n∑

i=1
Ei

(30)

Note that Eq. 24 can also be used to determine GFMM
parameters from known GFKM parameters.

Approximation of the GFMM and GFKM
by the GMM and GKM

Relaxation and retardation spectra of GFMM
and GFKM

The relaxation spectrum is defined in Eq. 31.

E (t) − E∞ =
∫ ∞

0

H (ξ)

ξ
exp

(−t
/
ξ
)

dξ (31)

Friedrich et al. (1995) suggested obtaining the spectrum
through analytical inversion of the fractional viscoelas-
tic model. In this case, the spectrum of an n-parameters
GFMM can be obtained using Laplace transform tech-
niques, which gives (Friedrich et al. 1995; Enelund and
Lesieutre 1999):

H (t) = 1
π

n∑
i=1

Ei
(t/τi)

αi sin (παi)

1 + 2 (t/τi)
αi cos (παi) + (t/τi)

2αi
(32)

Where
n∑

i=1
Ei = E0 − E∞

To obtain the retardation spectrum we start from its
definition given in Eq. 33:

D (t) − D0 =
∫ ∞

0

L (ξ)

ξ

[
1 − exp (−t/ξ)

]
dξ (33)

For the case of a single parameter GFKM, Eq. 33 can
be written as

D1

{
1−MLα

[
−

(
t
λ

)α]}
=

∫ ∞

0

L (ξ)

ξ

[
1 − exp

(−t
/
ξ
)]

dξ

(34)

D1 − D1 MLα

[
−

(
t
λ

)α]

=
∫ ∞

0

L (ξ)

ξ
dξ −

∫ ∞

0

L (ξ)

ξ
exp

(−t
/
ξ
)

dξ (35)

We note that the left-hand side and the right-hand side
of Eq. 35 comprise of one time-dependent and another
time-independent term. For the equation to be valid, it
has to be satisfied term by term; that is:

D1 =
∫ ∞

0

L (ξ)

ξ
dξ (36)

D1 MLα

[
−

(
t
λ

)α]
=

∫ ∞

0

L (ξ)

ξ
exp

(−t
/
ξ
)

dξ (37)

Equation 37 is similar to Eq. 31. Therefore, the re-
tardation spectrum of an n-parameters GFKM can be
obtained using the same procedure as the one used to
obtain the relaxation spectrum of the GFMM, which
gives:

L (t) = 1
π

n∑
i=1

Di

(
t
/
λi

)αi sin (παi)

1 + 2
(
t
/
λi

)αi cos (παi) + (
t
/
λi

)2αi

(38)

Discrete relaxation and retardation spectra and Prony
series parameters

For the fractional viscoelastic model, the integral in
Eq. 31 can be performed analytically (it basically results
in the Mittag–Leffler function). There are, however, ad-
vantages to obtaining a numerical approximation of the
integral. This numerical approximation gives the Prony
series approximation to the GFMM. In this section, we
show that the Prony series approximation converges
to the GFMM. This means that the GFMM can be
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represented to any level of desired accuracy by a finite
Prony series expansion. The Prony series formulation
has the advantage of providing a convenient recursive
integration algorithm for linear viscoelastic computa-
tion. The computational effort in the recursive integra-
tion is proportional to the number of terms in the Prony
series expansion (Taylor et al. 1970) and only requires
storing the stress and strain values from the previous
time step. This has led to its adoption in nonlinear
viscoelasticity to computations involving the Schapery
nonlinear viscoelastic material model (Henriksen 1984;
Roy and Reddy 1988; Lai and Bakker 1996; Haj Ali and
Muliana 2004). On the other hand, available methods
for the numerical evaluation of the fractional operator
are slow as at each time step all strain states from all
previous increments are needed to calculate the new
strain state (Ford and Simpson 2001; Oeser and Freitag
2009).

Papoulia et al. (2010) and Adolfsson et al. (2005)
proved that the integral in Eq. 31 under certain
restrictions placed on the discretization could be
approximated by a Prony series expansion. We present
an alternative proof that removes these restrictions
and is in our opinion significantly shorter and simpler
than the proof provided by Papoulia et al. (2010). The
simplicity follows from recognizing that the approxima-
tion involves two steps. The first step approximates an
improper integral (one with infinite limits of integra-
tion) using a proper integral (one with finite limits of
integration). The second step approximates the proper
integral with a Riemann sum. We start with Eq. 39,
which is equivalent to Eq. 31.

g (t) = E (t) − E∞ = lim
b→∞

∫ b

0

H (ξ)

ξ
exp (−t/ξ) dξ

= lim
b→∞

∫ b

0
f (ξ) dξ (39)

Where g and f are introduced to simplify the nota-
tion. Since the limit in Eq. 39 exists (because it gives the
fractional viscoelastic model), we find by the definition
of the limit that for every ε > 0 there exists a c (in this
case c > 0) such that

∣∣∣∣∣g (t) −
∫ b

0
f (t, ξ) dξ

∣∣∣∣∣ <
ε

2
(40)

whenever b > c. This asserts that we can come arbitrar-
ily close to the value of the improper integral, g(t), if we

make b large enough. Furthermore, because f (ξ) > 0
for all ξ > 0,

∣∣∣∣∣g (t) −
∫ b 2

0
f (t, ξ) dξ

∣∣∣∣∣ <

∣∣∣∣∣g (t) −
∫ b 1

0
f (t, ξ) dξ

∣∣∣∣∣ (41)

for all b 2 > b 1. Equation 41 shows that the approxi-
mation error strictly decreases with increasing b . Now
f (ξ) is continuous on [0, b ] except at ξ = 0. However,
we have

lim
ξ→0

f (t, ξ)= lim
ξ→0

exp
(−t

/
ξ
)

π

n∑
i=1

×Ei
(ξ/τi)

αi sin (παi)

1+2 (ξ/τi)
αi cos (παi)+(ξ/τi)

2αi
= 0

(42)

Therefore, we can make f continuous at every point in
[0, b ] by setting f (t,0) = 0. Under these conditions, the
function f has a Riemann integral. Using Theorem 6.8
in Rudin (1976), we can find δ > 0 and ε > 0 such that
any partition P = [ξ 0, ξ 1,..., ξn] of [0, b ] with �ξ i < δ

for all i implies

U (P, f ) − L (P, f ) <
ε

2
(43)

Where U(P, f ) and L(P, f ) are the upper and lower
Riemann sums of f over [0, b ], respectively. Further-
more, conditions stated in Theorem 6.7 (b) of Rudin
(1976) are met, and we have that

∣∣∣∣∣
n∑

i=1

f (t, ξi) �ξi −
∫ b

0
f (t, ξ) dξ

∣∣∣∣∣ <
ε

2
(44)

for any arbitrary point in [ξ i−1, ξ i]. We can now write

∣∣∣∣∣g (t) −
n∑

i=1

f (t, ξi) �ξi

∣∣∣∣∣
=

∣∣∣∣∣g(t)−
∫ b

0
f (t, ξ) dξ+

∫ b

0
f (t, ξ) dξ−

n∑
i=1

f (t, ξi) �ξi

∣∣∣∣∣

≤
∣∣∣∣∣g (t) −

∫ b

0
f (t, ξ) dξ

∣∣∣∣∣

+
∣∣∣∣∣

n∑
i=1

f (t, ξi)�ξi −
∫ b

0
f (t, ξ) dξ

∣∣∣∣∣ <
ε

2
+ ε

2
= ε

(45)
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which shows that the improper integral, g(t), can be
approximated to any desired level of accuracy by the
finite sum given the appropriate c and δ. In the numer-
ical examples presented later, we illustrate how c and δ

affect accuracy. With the approximation of the integral,
the relaxation modulus then becomes

E (t) ≈ E∞ +
n∑

i=1

f (t, ξi)�ξi (46)

E(t)≈E∞

+
n∑

i=1

⎛
⎝1
π

m∑
j=1

Ej

(
ξi/τ j

)α j sin
(
πα j

)
1 + 2

(
ξi/τ j

)α j cos
(
πα j

)+(
ξi/τj

)2α j

⎞
⎠

×�ξi

ξi
exp

(−t
/
ξi

)
(47)

Where n is the number of Prony series parameters and
m is the number of fractional Maxwell elements in the
GFMM. Equation 47 is the Prony series representation
of the relaxation modulus with Prony series coefficients
given by Eq. 48.

Ci =
⎛
⎝ 1

π

m∑
j=1

Ej

(
ξi/τ j

)α j sin
(
πα j

)
1+2

(
ξi/τ j

)α j cos
(
πα j

) + (
ξi/τ j

)2α j

⎞
⎠ �ξi

ξi

(48)

In Adolfsson et al. (2005) the parameters Ci were de-
termined from a uniform distribution on a linear time
scale. In this case, the convergence of the Prony series
expansion to the fractional model was slow (with data

spanning only three decades and use of 1,000 Prony
series parameters the difference between the Prony
series and the fractional relaxation modulus is still vi-
sually noticeable in a plot). The convergence can be
significantly improved using a uniform distribution on a
logarithmic time scale and rewriting Eq. 31 in the form
presented in Eq. 49.

E (t) − E∞ =
∫ ∞

−∞
H (ln ξ) exp

(−t
/

ln ξ
)

d ln ξ (49)

In this case, Prony series parameters are given by
Eq. 50.

Ci =
⎛
⎝1

π

m∑
j=1

Ej

(
ξi/τ j

)α j sin
(
πα j

)
1+2

(
ξi/τ j

)αj cos
(
πα j

)+(
ξi/τ j

)2α j

⎞
⎠� ln ξi

(50)

Numerical examples

We present a numerical example using the fractional
viscoelastic model to determine linear viscoelastic
properties of asphalt concrete. Asphalt concrete is con-
sidered thermorheologically simple, and the GFMM is
simultaneously determined with the time–temperature
shift factors using asphalt concrete dynamic complex
modulus test results at different temperatures and fre-
quencies to construct the dynamic modulus master
curve. From the GFMM we obtain the GFKM and use
the norm of dynamic complex moduli of both models

Fig. 1 Measured storage and
loss moduli
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Fig. 2 Storage modulus and
loss modulus master curves
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to evaluate the accuracy of our calculation. We then
obtain the continuous and discrete relaxation spectra
and evaluate the sources of errors that result in ap-
proximating the integral in Eq. 31 with a Prony series
expansion.

Asphalt concrete dynamic modulus master curve
construction

The construction of the asphalt concrete dynamic
modulus master curve using the GFMM as pre-
sented in Section “Model determination from dynamic
modulus test measurements” was performed in Katicha
and Flintsch (2011). It was found that a GFMM com-
prising two fractional Maxwell elements was needed
to provide an accurate representation of the storage
modulus, loss modulus, and phase angle master curves.

We illustrate the construction of the master curve
for uniaxial dynamic modulus tests performed at five
different temperature levels (−10◦C, 4.4◦C, 21.1◦C,
37.8◦C, and 54.4◦C) and six different frequencies (0.1,
0.5, 1, 5, 10, and 25 Hz). Test results for the storage and
loss moduli are shown in Fig. 1. The resulting storage
modulus and loss modulus master curves (reference
temperature of 21.1 ◦CC) presented in Fig. 2 show good
agreement between the fractional viscoelastic model
and experimental data. Model parameters and shift
factors are provided in Table 1.

Determining the GFKM from the GFMM

From the GFMM, the relaxation modulus can be ob-
tained using Eq. 7. To evaluate the creep compliance,
conversion can be used to determine the GFKM. This
conversion is obtained analytically and therefore is ex-
act. In the case of a GFMM containing two fractional
Maxwell elements, the GFKM parameters can be ob-
tained as follows:

λ1 = x1/α
1

λ2 = x1/α
2

Where x1 and x2 are the roots of the second-degree
polynomial

X2 + BX + C = 0

B =
[
τ−α

1 (E∞ + E2) + τ−α
2 (E∞ + E1)

]
(E∞ + E1 + E2)

C = E∞τ−α
1 τ−α

2

(E∞ + E1 + E2)

and D0, D1, and D2 are obtained as

D0 = 1
(E∞ + E1 + E2)

λ−α
1 D1 + λ−α

2 D2 = D0
[(

τ−α
1 + τ−α

2

) − (
λ−α

1 + λ−α
2

)]

Table 1 GFMM parameters and time–temperature shift factors

Moduli (MPa) Relaxation Times (sec) Shift Factors [log10(aT )]

α E∞ E1 E2 τ 1 τ 2 −10◦C 4.4◦C 21.1◦C 37.8◦C 54.4◦C

0.342 145 11,745 14,375 3.01E-06 0.0145 3.75 2.13 0 −1.74 −3.36
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Table 2 GFKM parameters

Compliances (MPa−1) Retardation times (s)

α D0 D1 D2 λ1 λ2

0.342 3.81E-05 2.52E-05 680 1.50E-05 1.14E04

D0 + D1 + D2 = 1
E∞

The GFKM parameters are presented in Table 2 while
the creep compliance and relaxation modulus of the
fractional viscoelastic model are presented in Fig. 3.

To verify the accuracy of the conversion of the
GFMM to the GFKM, we compare the magnitude
of the dynamic complex modulus calculated using the
GFMM to the magnitude of the dynamic complex mod-
ulus calculated using the GFKM. The dynamic complex
modulus of the GFKM can be obtained from the dy-
namic complex compliance using Eq. 51.

E∗ (ω) = 1
D ∗ (ω)

(51)

The metric used to evaluate the accuracy is:

M =
∣∣E∗

GFMM (ω)
∣∣ − ∣∣E∗

GFKM (ω)
∣∣∣∣E∗

GFMM (ω)
∣∣ (52)

The results were obtained using MATLAB. The cal-
culation of M was performed for frequencies ranging
from 10−5 to 106 Hz, and the results are presented in
Fig. 4. The values of M are of the order of 10−16, which
is the order of error due to rounding in double precision
floating point arithmetic.

Continuous and discrete relaxation spectra

Equation 32 was used to obtain the relaxation spectrum
of the GFMM. The relaxation spectrum is shown in
Fig. 5. Because the GFMM comprises two fractional
Maxwell elements, the relaxation spectrum is the sum
of the relaxation spectra of each fractional Maxwell el-
ement. Note that the relaxation spectrum is completely
defined by the GFMM, and therefore, it is obtained
from the construction of the master curve.

The continuous relaxation spectrum can be dis-
cretized to obtain the discrete relaxation spectrum
and Prony series parameters. Figure 6 shows the dis-
cretization of the relaxation spectrum for uniformly
distributed relaxation times every one decade. Prony
series parameters are equal to the individual rectangu-
lar areas under the discrete relaxation spectrum defined
by the region of the constant relaxation spectrum.

As discussed earlier, the Prony series representation
can be made arbitrarily close to either the GFMM or
GFKM given appropriate values of c and δ. We first
evaluate the effect of c, which is the largest relaxation
time considered in evaluating the integral. Figure 7
shows the GFMM in the case c→∞ compared to the
cases where c = 102 and c = 106 s. As larger relaxation
times are considered, the approximation of the im-
proper integral improves. Note that if we are only inter-
ested in the relaxation modulus at times less than 102 s,
the approximation with c = 106 is reasonably accurate.
This is due to the fact that the truncation error that
is equal to the integral

∫ ∞
c=106

[
H (ξ)/ξ

]
exp (−t/ξ) dξ

is relatively small compared to g(t) for t < 102 s.
The error term related to c is independent of the
error term related to δ. That is, with c chosen, the
Prony series expansion converges to the proper integral∫ c

0

[
H (ξ)/ξ

]
exp (−t/ξ) dξ rather than the improper in-

Fig. 3 Relaxation modulus
and corresponding creep
compliance of the fractional
viscoelastic model
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Fig. 4 Accuracy of
converting the GFMM to the
GFKM evaluated using the
metric of Eq. 52
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tegral. This means that in the cases presented in Fig. 7,
the Prony series expansion converges to the full curve
(red color) for c = 106 s and to the dashed curve (green
color) for c = 102 s.

The effect of δ on the accuracy of the discretization
is presented in Fig. 8. In this example, the discretization
is uniform on a logarithmic scale. To ensure that the
error due to the approximation of the improper inte-
gral is negligible a value of c = 1010 s was used. As
seen in Fig. 8, relatively few numbers of Prony series
parameters per decade are sufficient to provide a good
approximation, with two parameters per decade giving
excellent results. Furthermore, the convergence of the
Prony series approximation is relatively fast. Figure 9
shows the percent error of the Prony series approxima-
tion. The largest percent error for one parameter per
decade is less than 2% while that of two parameters
per decade is less than 0.6%. However, it was found
that the largest error for two parameters per decade is
mainly due to c rather than the number of Prony series

parameters. Increasing c to 1016 s, the largest error for
two-parameters-per-decade Prony series reduces to less
than 0.03%. Note that Fig. 9 presents results of one
parameter per decade instead of the one parameter per
four decades presented in Fig. 8.

As mentioned earlier, the parameter c was set to
1010 s; this means that Prony series parameters with
relaxation times up to 1010 s must be included in the
series expansion. This results in a series with too many
parameters. The Prony series can, however, be approx-
imated as follows:

E (t) = E∞ +
n∑

i=1

Ci exp
(−t

/
ξi

) ≈ E∞ +
n∑

i=m+1

Ci

+
m∑

i=1

Ci exp
(−t

/
ξi

)

= E∞+ +
m∑

i=1

Ci exp
(−t

/
ξi

)
(53)

Fig. 5 Continuous relaxation
spectrum
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Fig. 6 Discrete relaxation
spectrum
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Fig. 7 Effect of c on the
accuracy of the Prony series
approximation
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Fig. 8 Effect of δ on the
Prony series approximation
to the relaxation modulus. δ is
measured on a logarithmic
scale and equal to the inverse
of the number of parameters
per decade
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Fig. 9 Percent error of the
Prony series approximation
as a function of δ. δ is
measured on a logarithmic
scale and equal to the inverse
of the number of parameters
per decade
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This approximation results from the fact that for ξ i � t,
exp

(−t
/
ξi

) ≈ 1. Therefore, Prony series parameters
that have relaxation times much larger than the time
range of interest can be omitted from the summation
and directly added to the equilibrium modulus E∞. The
resulting approximation error per parameter is about
10% for t/ξ i = 0.1 and decreases to about 1% for t/ξ i =
0.01.

Conclusion

This paper presents a comprehensive linear viscoelastic
material characterization using fractional viscoelastic
models. The advantage of this characterization is that
constructing the master curve results in the complete
linear viscoelastic characterization of the material. We
have shown under which condition an analytical so-
lution for interconversion between different viscoelas-
tic functions of the fractional viscoelastic model can
be obtained. Although numerical implementation of
fractional viscoelastic models has proven difficult, we
have shown that fractional viscoelastic models can be
approximated to any desired level of accuracy using
a Prony series expansion. This allows the numerical
implementation of fractional viscoelastic models using
efficient methods that have been developed for Prony
series.
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