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Abstract We describe an improved damage function
model for bread dough rheology. The model has rela-
tively few parameters, all of which can easily be found
from simple experiments as discussed in this paper.
Small deformations in the linear region are described
by a gel-like power-law memory function. Then, we
consider a set of large non-reversing deformations—
stress relaxation after a step of shear, steady shearing
and elongation beginning from rest and biaxial stretch-
ing. With the introduction of a revised strain measure
which includes a Mooney–Rivlin term, all of these
motions can be well described by the damage function
described previously. For reversing step strains, larger
amplitude oscillatory shearing and recoil we present
a discussion which shows how the damage function
model can be applied in these cases.

Keywords Dough rheology · Biaxial strain ·
Damage function · Viscoelasticity

Introduction to the damage function concept

According to a well-known review by Bloksma (1990),
dough rheology plays an important role in determining
the processing behaviour and final quality of baked
products. Dough is not a simple material; it is a poly-
meric network with about 60% by volume of starch
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filler particles, and constitutive models for such mate-
rials are still being sought.

Clearly, a model should have as few parameters as
possible, and these can then be studied for various
mixes of dough with various breeds of wheat. Some
progress towards this end has been made with a so-
called damage function model (Tanner et al. 2007,
2008a), and the model has been applied to the de-
scription of JANZ dough (a hard Australian wheat),
Rosella (a softer Australian wheat) and two Iranian
wheat breeds (Amirkaveei et al. 2009).

Here, we suggest an improved version of the model;
we draw together previously scattered results for the
model and present some new results. We also indicate
ways of determining the model parameters from avail-
able testing procedures.

The general form of the model relates the stress
(σ) to the strain (S) by a viscoelastic memory integral
over all past history of deformation. We write, for the
stresses at time t:

σ + PI = f

t∫

−∞
m(t − t′)S(t′)dt′ (1)

in which σ is the total stress tensor, P is the pressure, f
is the damage function, m is the memory function and
S is the strain tensor to be defined later (Eq. 7).

Here, we assume the dough is incompressible (see
Wang et al. 2006 for a discussion of the bulk modulus of
dough), so the pressure P (multiplied by the unit tensor
I) has to be introduced; P must be found from the
equations of motion if needed. The memory function m
in Eq. 1 is a function of the difference of the prior time
t′ from the present time t; in this paper we assume, fol-
lowing earlier work (Gabriele et al. 2001; Tanner et al.
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2007, 2008a; Ng and McKinley 2008; Leroy et al. 2010)
that a simple gel-like power-law form is applicable:

m(t) = pG(1)t−(1+p). (2)

This form contains only two parameters, p and G(1).
The ‘damage function’ f is unity for very small strains
(no damage) and decreases sharply as the strain in-
creases from zero. (In the work of Ng and McKinley
(2008), it is not clear how their ‘damping function’ is to
be used in complex flows, and in any case the idea does
not seem to be equivalent to the damage function of
Eq. 1).

The Finger strain measure (C−1(t′)) was used in our
previous work (instead of S). This strain measure is
computed relative to the current configuration at time t
which places a dough particle at x(t); the previous place
of the particle at time t′ is denoted by r(t′). We define
(Tanner 2000) the deformation gradient F as

F = ∂r
∂x

(3)

Then the Cauchy–Green strain tensor (C(t′)) is
defined as

C = FTF (4)

where FT denotes the transpose of F. The Finger tensor
is then C−1.

We shall mainly deal here with shearing and elonga-
tional/biaxial deformations. It is well-known (e.g. Tanner
2000) that, for a shear of amount γ , the C tensor is

C =
⎡
⎣ 1 −γ 0

−γ 1 + γ 2 0
0 0 1

⎤
⎦ (5)

and the Finger tensor C−1 is

C−1 =
⎡
⎣ 1 + γ 2 γ 0

γ 1 0
0 0 1

⎤
⎦ (6)

In the present paper we will use a strain S that is a linear
combination of C and C−1, so that we define the strain
S (Eq. 1) as

S = 1
1 + a

(C − aC−1) (7)

where a is a constant. We shall often be concerned
with the shear stress response and so the square-law
(normal stress) terms in Eqs. 5 and 6 are not used here.
For a shear displacement in the x-direction the (xy)
component of the strain S is then, from Eqs. 5–7

Sxy = γ (8)

which is unchanged from the Finger tensor component
used previously (Tanner et al. 2008a) regardless of the
value of a.

It is desirable to test the model in a wide range of
deformation patterns. We have considered:

1. Small-strain deformations;
2. Relaxation of stress after a single suddenly applied

step of shear;
3. Simple shearing beginning from rest;
4. Biaxial stretching beginning from rest;
5. Constant-rate elongation beginning from rest;
6. Sequences of step strains;
7. Larger amplitude sinusoidal strains;
8. Recoil after elongation;
9. Creep.

Creep will not be discussed here; it will be treated
in another paper. Of these tests, 2 to 5 and creep are
non-reversing deformations, whilst 1 and 6 to 8 involve
reversal of strain. We will mainly be concerned with
categories b to f above. One needs to be careful in
evaluating the integral in Eq. 1. For example, the case
of a steady simple shear of rate γ̇ s−1, beginning at t = 0,
we need to find γ (t′) for all values of t′ to compute the
integral in Eq. 1. There are two regions:

1. If 0 < t′ < t then γ (t′) = γ̇ (t − t′) (9)

2. If − ∞ < t′ ≤ 0 then γ (t′) = γ̇ t (10)

The part of strain history in Eq. 10 must not be ignored.
A further discussion of the calculation methods used is
given in Appendix B.

These results follow from Eqs. 5 and 6 above. The
calculation of the integral in Eq. 1 using Eqs. 9, 10 and
the memory function (2) gives, for the shear stress τ (t),
the result:

τ = pf G(1)γ̇

⎧⎨
⎩

t∫

0

(t − t′)−pdt′ + t

0∫

−∞
(t − t′)−(1+p)dt′

⎫⎬
⎭

(11)

The model shear stress response can be put in the form
(shear rate)p × function of shear strain:

τ = f
1 − p

G(1)γ̇ t1−p = f
1 − p

G(1)γ̇ pγ 1−p (12)

where the shear strain γ = γ̇ t, and f , the damage func-
tion, are functions of γ . (The result (12), with f = 1,
was first given by Winter and Mours 1997.)

For other steady flows beginning from rest results
similar to Eq. 12 hold (Tanner et al. 2008a). The
stresses are always found to be of the form (rate of



Rheol Acta (2011) 50:75–86 77

deformation)p times a function of strain; the explicit
result for elongational flows beginning from rest has
been given previously (Tanner et al. 2008a). We shall use
these results to assist in finding the damage function f .

Finding the model parameters

It is important that the deduction of the parameters of
the model is simple and accessible. We can proceed as
follows:

1. Small strain oscillatory testing

A standard set of tests at small sinusoidal-in-time shear
strains at various frequencies (ω rad/s) can be used
to find p and G(1) (Eq. 2). In this case, for strain
amplitudes of 0.001 or less, the response of dough is
linear, f = 1, and the shear response can be shown to
be given (Pipkin 1986) by the power-law in-phase (G′)
and out-of-phase (G′′) modulus functions. The values
of G′, G′′ are proportional to ωp and the slope of the
logarithmic plots finds p. An example for JANZ dough
is shown in Fig. 1. To find G(1), we note (Pipkin 1986)
that if we measure the value of G′(ω) at ω = 1 rad/s,
equal to G′(1), then

G(1) = 2G′(1)(p!)
pπ

sin
pπ

2
(13)

which enables G(1) in Eq. 2 to be found (we use
the notation p! to denote the factorial function of p
(Abramowitz and Stegun 1965): for those who prefer
the gamma function notation the relation between the
two is simply z! = �(1 + z)).
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Fig. 1 Showing experimental data G′ and G′′ for JANZ dough
(circles) have a power-law form (solid lines). Here, p = 0.27,
G(1) = 10.7 kPa s0.27, G′(1) = 12.2 kPa s0.27

For the data of Fig. 1 (JANZ dough), we find p ∼
0.27, G(1) = 10.7 kPa s0.27. Also, the value of G′′ is then
easily found; we have

tan δ = G′′

G′ = tan
pπ

2
(14)

In this case, tan δ ≈ 0.45 and G(1)/G′(1) ∼ 0.88. Since
G′ > G′′, the material behaviour is solid-like. The per-
sistence of the power-law region at high frequencies (up
to 400 kHz) is surprising as has been shown by Leroy
et al. (2010).

2. Stress relaxation after a step of shear

In this case, we suppose a step of shear of magnitude γ

is suddenly applied at t = 0. The shear stress response
τ(t) is given by

τ(t) = γ G(1) f (γ )t−p (15)

For small strains f = 1, and we see that the logarithmic
slope of the τ(t) curve is −p, and G(1) can also be de-
duced; for these samples G′(1) = 12.2 kPa s0.27. Agree-
ment with the data found from G′(ω) via Eq. 13 occurs.

We have already found G(1) and p, so a plot of
τ/γ against time finds f (γ ). Figure 2 shows the time
response for JANZ dough for step amplitudes up to
0.3. For very small times, the rheometer response (Paar
Physica MCR 300 model) is not a sudden step, and
there is a delay of nearly 1 s in reaching the final strain
amplitude. Details including the slow start-up are given
by Tanner et al. (2007). Making allowance for this we
find the damage function shown in Fig. 3. As is well
known, marked softening of dough occurs even for
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Fig. 2 Stress relaxation modulus (τ/γ ) after initial step shear
deformation for step sizes of 0.01% to 30%. The final strain (γ )

is reached after t � 1 s. The decay curves are fairly well described
by power-law curves of the form f (γ )G(1)t−p for t � 1 s. The
ordinate is τ/γ , the apparent shear relaxation function. The f itted
lines all have the same form t−0.27
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Fig. 3 Damage function f as a function of the Hencky strain
εH from stress relaxation measurements (circles), steady shear-
ing (inverted triangles) and steady elongation results (squares).
For small εH (<0.05), the full line shows f = −0.0847 −
0.2344 log εH ; for larger εH values, the values for shear and
elongation are shown in Fig. 7

small strains. In Fig. 3, we have used the Hencky strain,
εH , related to γ by Eq. 33. For small strains (<0.2), we
have εH ∼ γ /2.

From Fig. 3, the data from relaxation tests only go
up to about εH ∼ 0.15. For larger strains, we can use
suddenly started steady shearing.

3. Suddenly started steady shearing

For the shear stress response to a shear rate γ̇ , begin-
ning at t = 0, we can use the result in Eq. 12, which
shows that τ/γ̇ p is a function of strain only.

Figure 4 shows some data for JANZ dough at four
shear rates ranging from 0.001 to 1.0 s−1. The γ̇ p depen-
dence is well shown. Using the solid line, the damage
function f (εH) can be found out to εH ∼ 3.5, (γ ∼ 30).
After this the sample fractures. The values of f from
shearing are plotted in Figs. 3 and 7.

Hence, we have succeeded in defining all the para-
meters in Eq. 1 in shear motions. It remains to be seen
how the model behaves in other situations.

4. Biaxial stretching beginning at t = 0

We have generally followed Charalambides et al.
(2002a) in doing spherical bubble-stretching experi-
ments to deduce the stresses in biaxial deformations.
We have also used almost planar deformations in
“sausage” bubbles, which are nearly cylindrical.

A significant problem in our previous work (Tanner
et al. 2008b) was the response in biaxial stretching.
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Fig. 4 Shear stress data for JANZ dough plotted as τττ/γ̇γγ p as a
function of the Hencky strain εH (see Eq. 30). Fracture occurs at
εH ∼ 3+; p = 0.27. The mean line through the data shown is used
for damage analysis

Using the model Eq. 1 with a = 0 (Eq. 7) as in our
previous work, the predicted stresses were only about
50% of the measured values (Fig. 5). In the previous
paper, we used a complex damage function to fit the
biaxial data, but paradoxically, the complex damage
function eventually increased with biaxial strain, which
is not satisfactory. The introduction of the C-term in the
strain improves matters, as was found by Charalambides
et al. (2002b). If we assume a = 0.038 in Eq. 7, the
agreement is satisfactory (Fig. 5). No change in the
damage function f found above is needed. Hence, we
prefer this solution to our previous one. [We have also
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Fig. 5 Effect of changing the strain tensor from the Finger tensor
to (C−1 − aC)/(1 + a) on biaxial stress (C−1 is the Finger strain
tensor, C is the Cauchy–Green tensor). Here, a = 0.038
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done squeeze-film tests which are formally equivalent
to biaxial stretching. However, the maximum stretches
there (εH ∼ 0.85) are less than in the bubble experi-
ments and so the effect of the C-term (Mooney–Rivlin
term) was quite small.] The “sausage” bubble tests
are also well-described using the model (Tanner et al.
2008b). The “sausage” bubble film thickness is similar
to that of the spherical bubbles. Hence because of
the good prediction in the “sausage” bubble case, we
believe that evaporation of water from the dough is not
a significant factor in the hardening of dough films—the
rapid hardening in the biaxial case is simply a feature of
the biaxial stretching.

5. Uniaxial elongation

We now consider steady elongation at a strain rate ε̇

beginning from rest (we note that ε̇ > 0 for elongation;
in biaxial stretching ε̇ < 0). In this case we have that the
axial stress σ is of the form (Tanner et al. 2008a)

σ

ε̇p
= f (εH)h(εH) (16)

where εH = ε̇t (t > 0) in this case. From our previous
work (Tanner et al. 2008a), where a = 0, we find that
for large εH we have, approximately

σ

f ε̇p
∼ G(1)ε

−p
H (e2εH − e−εH ). (17)

Now for elongation the C tensor is of the some form as
C−1 provided λ−1 is substituted for λ (Eqs. 27 and 28).
In the present case, the stretch λ = eε̇t = eεH . Hence,
the asymptotic result for the composite strain S can
be found by subtracting a term like Eq. 17 but with
negative εH . We find, for large strains

σ

G(1) f ε̇p
∼ ε

−p
H

1 + a

{
e2εH − e−εH − a(e−2εH − eεH )

}
(18)

Since the first term always dominates for large εH , the
change in stress σ is only of order a from the case
a = 0, and since a ∼ 0.038 for JANZ dough, this is not
important. (It can also be seen that if εH < 0, as in
biaxial stretching, that the term ae−2εH will eventually
dominate the response. This is why the introduction of
the C-term assists in describing biaxial stretches).

The tensile tests were carried out on an Instron 5564
machine: we have previously described (Tanner et al.
2008a) the test method and the specimen geometry; the
relation between the crosshead exponential movement
setting and the actual measured rate of elongation de-
duced from diameter measurements (made using CCD
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Fig. 6 Elongational stress data for JANZ dough plotted as σσσ/ε̇εεp

as a function of the Hencky strain εH . p = 0.27 here. Fracture
occurs when εH ∼ 3.2. The solid mean line is used in damage
function discussions

cameras) was satisfactory, the two rates differ by only
about 1%. The axial stress was obtained from the
force and the measured diameter; as shown previously
(Tanner et al. 2007, 2008a) the specimen cross-sections
remained circular.

We show the elongational response in Fig. 6; the
ε̇p behaviour is evident, and the agreement of the f -
function with that deduced from shearing is also clear,
which is a fortunate simplification (Fig. 7). This figure
compares f values deduced from elongation and shear;
they are quite close, at least in the case of JANZ dough.
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Fig. 7 Showing the damage reduction function f as a function
of Hencky strain for shear and elongation of the JANZ dough.
Points are experimental data; the mean curve is fitted using f =
−0.103 log εH + 0.067
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Further consideration of the damage function concept

So far, we have studied large increasing strains with-
out reversal. Now we consider cases where reversal
appears.

6. Step histories of shear strain

All of the previously considered cases were for non-
decreasing strains—except for the small-strain oscilla-
tory motions where f = 1 in any case. We have tested
the behaviour of JANZ dough in square-wave on–off
shear strains (Fig. 8) with a strain amplitude of 10%.
By assuming that the dough is permanently damaged
by the first step of shear, the results shown in Fig. 9
are obtained. Here, the f values of Eq. 21 are used
for the calculations. Whilst the agreement between the
calculations and experiment is broadly good, the high
measured overshoot at the step time is noticeable. We
have previously attributed these experimental spikes to
machine dynamics (Tanner et al. 2008b), but we will
now examine the problem more closely.

The machine response for the Paar Physica MCR301
machine now needs to be considered. The actual strain
found as a function of time for the first 200 ms after a
10% step command is shown in Fig. 10; there are two
curves, one with a dough specimen, and the other with
no specimen. The actual strains are modelled as a ramp
of γ̇0 = 2.5 s−1 up to t0 = 40 ms, followed by a constant
strain (γ0) of 0.1. Then the response can be shown to be

τ(t) = G(1)

1 − p
f (γ )γ̇0t1−p (t < 0.04 s) (19)
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Fig. 8 Step strain (on–off) pattern. The rise and fall times are
about 40 ms, so the steps are fairly steep. The strain magnitude
(γ ) is 0.1; and the delay between steps is 100 s
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Fig. 9 Showing comparison between theory and experimental
measurements for the on–off strain pattern. The calculations use
the damage function of Eq. 21, and a 10-s delay time. Symbols are
experimental measurements; the solid line represents calculated
results with f as in Eq. 21. The overshoot values at the step change
points are mainly machine artifacts

and for t ≥ 0.04 s

τ(t) = G(1)

1 − p
f (γ0)γ̇0

[
t1−p − (t − t0)1−p] (20)

We use γ̇0 = 2.5 s−1, t0 = 0.04 s, G(1) = 14.2 kPa sp,
p = 0.22, and for f we use εH ∼ γ /2 and (note: log
implies a base 10 logarithm)

f = −0.227 log εH + 0.092, (21)

The damage function, from Eq. 21, reaches 0.387 after
40 ms. The computed points for stress are shown in
Fig. 11 as a solid line. The experimental data are shown
as circles (©). Clearly for the first 20 ms, there is no
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Fig. 10 Time response of rheometer to a 10% step shear com-
mand. Symbols: triangles with dough specimen; circles with no
specimen. For the first 40 ms, there is a ramp response
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Fig. 11 Early shear stress response for JANZ dough undergo-
ing a 10% step. Circles uncorrected experimental data, squares
experimental data corrected by subtracting the false transient
data of Fig. 12, solid line calculated result using Eq. 21, dashed
line calculated result using ft from Eq. 22 with the delay time
� = 0.02 s

agreement between data and theory. A main reason
is found from Fig. 12 where the machine response
without a specimen is shown—there is a large inertial
transient. One can subtract the apparent stress data
due to inertia found from Fig. 12 to compensate for
the initial transient in the first 40 ms—the results are
shown in Fig. 11 (solid squares �). There is still some
divergence in Fig. 11 between the corrected data and
the predictions. Some of this is probably due to the
large correction needed, but it also seems possible that
the simple damage function concept is inadequate for
very short times. If we wish to pursue this by looking at
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Fig. 12 Response with dough specimen (circles) and without
dough specimen for two tests (triangles and inverted triangles).
The large false inertia transient is clear
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Fig. 13 As for Fig. 9, but the delay time is 100 s. Overshoots at
switch times have been omitted

a ‘delay’ of �, we can use a modified time-dependent
damage function:

ft = f + (1 − f )e−t/� (22)

� is approximately 0.02 s (see Fig. 11). However, in
view of the uncertainty in the inertia correction, we
shall not use Eq. 22; in Figs. 13, 14, 15 and 16, we have
deleted the large initial spikes.

When the reverse strain is applied, the system be-
haves as if it were undisturbed, and the response is a
machine dynamics negative spike of magnitude 3 kPa,
plus the residual stress at 10 s (0.33 kPa). The sub-
sequent behaviour is also correctly predicted (Figs. 9,
13–16). Alteration of the dwell time from 10 to 100 s
(Fig. 13) and 1,000 s shows no qualitative difference
(Tanner et al. 2008b).
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Fig. 14 ‘Stair case’ step strain test; the delay here is 1,000 s
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Fig. 15 Response to stair case strain with 100 s delay. Stresses
are computed using the damage function Eq. 21 which continues
to decrease as the strain increases after the first step. Symbols are
experimental measurements; the solid line represents calculated
results. Machine artifacts for times up to 20 ms after step changes
have been omitted

Similarly, for the staircase strain function (Fig. 14)
the results can be correctly predicted (Fig. 15) by using
Eq. 21. False spikes at each step occur as discussed
above, and have been deleted. Here the damage func-
tion changes with each step. It is not accurate to assume
that after the first step complete recovery occurs; if this
is done the agreement with experiment is poor (Fig. 16).

The results are reminiscent of the behaviour seen
by Hibberd and Wallace (1966). They subjected dough
samples to a certain time of small-strain oscillation, and
then a period of larger-strain oscillation, followed by a
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Fig. 16 As for Fig. 15, but here the damage function f is main-
tained at the same value (∼0.387) that it acquires after the first
step. The agreement with experiment is worse than in Fig. 15

return to small-strain conditions. The application of the
larger strains showed an almost immediate softening,
consistent with the simple damage theory, but during
the subsequent small-strain period there was seen a
slow, partial recovery of the moduli. Thus it appears
that reversing strains, large amplitude oscillatory mo-
tion and recoil exhibit fairly complex responses, as
foreshadowed in our previous work on recoil (Tanner
et al. 2007).

In summary, for the step strain series experiments
a picture emerges of a population of strands ( f ) that,
after the first step of strain, supports the stress in the
material, plus a population (1 − f ) that is unstressed.
When a new strain occurs, the latter part of the material
responds as if it were in the virgin state, and the f –
fraction also responds, but from the stressed state at
t = 10 s. The high peaks observed are believed to be
mainly machine artifacts.

Thus, we are led to behave that the damage is quasi-
permanent and that the damage function f should
be regarded as a function of the maximum principal
Hencky strain (see Appendix A) encountered by a
dough particle in its strain history; however, the partici-
pation of the unstressed strands and partial recovery of
structure need to be considered in reversing flows.

7. Large amplitude sinusoidal oscillations

We have done tests at moderate strains, 0.001, 0.01,
0.05 and 0.1 (Tanner et al. 2008a) and the original
damage model above would simply reduce the values
of G′ and G′′ by a constant. The change in shape of
G′ and G′′ with frequency is not well predicted, and
the predicted magnitudes of the change at 1 Hz are
not always correct. Further, if one plots the stress ver-
sus strain in the cyclic deformation, the characteristic
spikes seen by Phan-Thien et al. (2000) do not appear,
and the response is close to sinusoidal. To clarify this
problem, we note the work of Hibberd and Wallace
(1966) who subjected their dough samples to two levels
of oscillatory strain at 10 Hz frequency. The results
(their Fig. 2) show clearly that when the linear region
(∼0.1% strain amplitude) is exceeded, by the amplitude
of 0.026, G′ is reduced to about 0.37 of the small-strain
value. In our terms, the damage function f ∼ 0.37. (The
dough used was not JANZ, but our f – function at
γ ∼ 0.026 (εH ∼ 0.013), would be, from Eq. 21 ∼ 0.52,
not too different). The recovery was not complete when
the level of excitation returned to the linear level but
was at the 70% to 90% of that level. These observations
have been repeated with our JANZ dough samples.
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Hence, the oscillatory test needs to take into account
the passive strands which do not bear load.

8. Recoil after stretching

In this test, the specimen is cut after elongation to a
strain ε0 and the recoil strain is computed. In a previ-
ous paper (Tanner et al. 2007), we found that it was
essential to consider the non-load bearing strands, in
a way similar to that outlined for step shears. We let
the axial stress be σ , and the strain difference S11 − S22

(elongation is along the 1 – direction) be S, finding

σ = f

t∫

−∞
m(t − t′)S(t′)dt′ (23)

Let the specimen be elongated for a time from zero to
t0; for t > t0, σ = 0, and recoil occurs. If we consider the
‘unbroken’ strands, amount f , and the ‘broken’ strands
(amount 1 − f ), we have (Tanner et al. 2007)

σ = f

t0∫

−∞
mSdt′ + f

t∫

t0

mSdt′ + β(1 − f )

t∫

t0

mSdt′

+ β(1 − f )S(t0)

t0∫

−∞
mdt′ (24)
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Fig. 17 The function β in Eq. 24 in terms of total strain ε0 for
various strain rates ε̇0. Values were deduced from experiments
(Tanner et al. 2007). β goes to zero for strains less than about 0.1
as suggested by the dotted lines; this is in agreement with the work
of Schofield and Scott Blair (1933a)
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Fig. 18 The mean values of the recovery strain as a function
of strain rate ε̇0 and total strain ε0 applied before cutting the
specimen. Note that complete recovery occurs for Hencky strains
of order 0.1 and less as indicated by the dotted lines

We have introduced the fraction β to show what pro-
portion of the “idle” strands participate in the back-
stress on recoil. If β = 0, then recoil is always complete;
if 0 < β < 1, incomplete recoil occurs, which is clearly
more realistic in general.

For (t > t0)

0 = f

t0∫

−∞
mSdt′ + [ f + β(1 − f )]

t∫

t0

mSdt′

+ β(1 − f )S(t0)

t0∫

−∞
mdt′. (25)

(Note that β = 0 if t < t0). In the last term of Eqs. 24
and 25, S(t0) is constant since t′ < t0: and the damage
function f is now also a constant, f (εH) = f (ε0).

We showed (Tanner et al. 2007) that it was necessary
to assume β was a function of ε̇0 and ε0 (Fig. 17). Thus,
we were able to reproduce our recoil data (Fig. 18) and
be in agreement with the pioneering work of Schofield
and Scott Blair (1932, 1933a, b, 1937), who showed that
recoil was complete for εH ≤ 0.25. The dotted lines in
Figs. 17 and 18 are suggested extrapolations consistent
with their findings.

9. Creep. In shear creep, a constant shear stress is
applied and the strain is measured as a function
of time. A full discussion of this case will be given
elsewhere.
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Conclusions

We have shown that for a wide variety of non-reversing
strains (monotonically increasing strains) the simple
strain-dependent damage function model of bread
dough rheology is successful. The damage function re-
duces the stresses by a factor f , which is a function of
the maximum strain encountered by a dough particle.
We indicate how the parameters can be found from
standard test procedures. The improved model dis-
cussed here uses a strain measure that is a linear com-
bination of the Finger strain tensor used previously and
the Cauchy–Green strain tensor. The small Cauchy–
Green contribution enables us to describe uniaxial and
biaxial stretching with the same damage function de-
rived from shear data.

In the application of the model to reversing strains,
we see the need to recognize the partial recovery of the
microstructure after deformation and damage in order
to have accurate predictions of behaviour. We consider
that further work is needed in this area.
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Appendix A: Strain measures used

In the concept of strain, one needs to define a reference
geometry and another, the new (or strained) geometry.
The deformation of the body in moving from the refer-
ence state to the new state leads to the development
of the three strain forms used here (C, C−1 and the
Hencky strain εH). The necessary derivations for gen-
eral flows can be found in Tanner (2000) and in other
texts; here, we give needed results only.

The tensor C(t′) and its inverse, C−1(t′), termed the
Finger strain tensor, will be used here; it was explained
by Lodge (1964) that C−1 is of major importance in
describing the mechanics of rubbery materials. These
tensors use the current configuration x(t) as the refer-
ence state; the location of a particle that is at x at time
t, is denoted by r at time t′, as assumed in Eqs. 3 and
4 above. Examples of the calculation of C and C−1 for
shear are given in Eqs. 5 and 6 above. For elongation
along the x-axis, lengths along the x-direction in the
strained state are λ times the lengths in the reference
state. Because of incompressibility, the y and z coordi-
nates shrink by a factor 1/

√
λ. Hence

rx = λx, ry = y√
λ

, rz = z√
λ

. (26)

Hence, the F tensor is diagonal, with entries λ, 1/
√

λ,
1/

√
λ for the diagonal elements, (and zero for the off-

diagonal entries), so that

C = diag
[
λ2,

1
λ

,
1
λ

]
(27)

and its inverse is

C−1 = diag
[
λ−2, λ, λ

]
. (28)

In the damage function f we use the Hencky strain
magnitude εH as its argument. This strain is calcu-
lated from the initial rest state. Let the initial state
be described by X (Xi in coordinate notation). Then
the strain relative to X at time t, (the particle is now
at location x) can be written, following the equations
discussed above as

C = FT(t)F(t) (29)

where the component Fij is now ∂xi/∂ X j. The Hencky
strain tensor H is defined as

H = 1
2

ln C. (30)

We will use the largest principal positive eigenvalue
of H as the measure of strain from rest (εH). In this
Appendix, we will consider elongation and shear in
detail.

In elongation, using Eq. 27

H = 1
2

ln

⎡
⎣λ2 0 0

0 λ−1 0
0 0 λ−1

⎤
⎦ =

⎡
⎢⎢⎢⎣

ln λ 0 0

0 −1
2

ln λ 0

0 0 −1
2

ln λ

⎤
⎥⎥⎥⎦ .

(31)

Since λ > 1 for elongation, the largest positive eigen-
value of H is ln λ, and hence we use it as a measure of
damage εH , where

εH = ln λ. (32)

Clearly, ln λ is the classical Hencky or logarithmic
strain for a stretch λ (Tanner and Tanner 2003). For
compression (equivalent to biaxial stretching) λ < 1, so
ln λ is negative and the largest positive eigenvalue is
now − 1

2 ln λ.
In shear, the matter is more complex since C is not

diagonal. However, the principal values of C are well

known to be 1 and 1 + γ 2

2 ± |γ |
√

1 + γ 2

4 (Kitoko et al.
2003). Hence, the largest positive principal strain here
defines the Hencky strain in terms of γ as

εH = 1
2

ln

(
1 + γ 2

2
+ |γ |

√
1 + γ 2

4

)
. (33)
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In more complex deformations, it is generally necessary
to find the largest principal strain at each point numer-
ically.

Appendix B: Method of calculation

The value of the integral in Eq. 1 is not always easy
to compute accurately, and hence we have devised an
alternative method for stress computation which uses
only a standard Runge–Kutta routine. The method is
limited to those cases where the stress is uniform in the
material, so σ is a function of time, but not of space.

We consider Eq. 1 with a single exponential memory
function, so that

m(t) = − gi

λi
e−t/λi . (34)

We define

τ i =
t∫

−∞
m(t − t′)C−1(t′)dt′ (35)

and

τ ∗
i =

t∫

−∞
m(t − t′)C(t′)dt′. (36)

Then it is well known (Tanner 2000) that Eq. 35, using
Eq. 34, is equivalent to

λi
�τ i

�t
+ τ i = 2giλid (37)

where d is the rate of deformation tensor, defined dij =
1
2 ( ∂vi

∂x j
+ ∂v j

∂xi
), and the upper convected derivative �τ /�t

is given by

�τ i

�t
= ∂τ i

∂t
+ (v · ∇)τ i − τ iLT − Lτ i (38)

where L is the velocity gradient tensor, so Lij = ∂vi/∂x j.
For the case when there is no spatial dependence on
x, (v · ∇)τ i is zero, and (B4) is a set of six ordinary
differential equations in time for finding τi, which may
be solved using a standard Runge–Kutta routine.

Similarly, we have for τ ∗
i the lower convected deriv-

ative Maxwell model:

λi

[
∂τ ∗

i

∂t
+ (v · ∇)τ ∗

i + τ ∗
i L + LTτ ∗

i

]
+ τ ∗

i = 2giλid (39)

which also, for (v · ∇)τ ∗
i = 0, gives a set of six ordinary

differential equations in time for τ ∗
i . This result can be

extended to any number of relaxation times λi (i = 1, 2 ·
· · · · ·n) and the sum of τ + aτ∗ divided by (1 + a) finds
the total stresses (σ + PI).

To approximate well the power-law memory func-
tion m(t) in Eq. 2 we have used 14 or 16 relaxation
times (Tanner et al. 2007). These are evenly spaced
logarithmically at 0.5-decade frequency, so the ratio of
two successive relaxation times (λi+1/λi) is 3.162 (≡ r).

Then from Pipkin (1986), we find

gi = H(λi)
r p/2 − r−p/2

p
(40)

where p is the exponent in Eq. 2 and

H(λi) = G(1)λ
−p
i

(p − 1)! . (41)

Hence, there is no need for more constants—only the
p and the G(1) are needed to describe the complete
memory function. Table 1 shows typical results for
JANZ dough (We have inflated the contribution of the
largest relaxation time to allow for the fact that there is
no real cutoff of the spectrum).

Having these data, and initial stresses at t = 0 being
assumed to be zero, we can solve for the stresses once
the behaviour of the Lij (t) components is known (in
these spatially homogeneous flows, we are only inter-
ested in differences of stress, or in shear stress, so we do
not have to find the pressure P). Once the τ i and τ ∗

i are
found, the total stress can be found by summing over
the modes (1, 2 · · · · · ·n) and multiplying by the damage
function f :

σ + PI = f (εH)

1 + a

[
n∑

i=1

τ i + a
n∑

i=1

τ ∗
i

]
. (42)

For spatially varying flows, further work is needed; one
is left to solve sets of first-order partial differential
equations.

Table 1 Discrete 14-mode
spectra for JANZ dough
G(1) = 14.2 kPa sp, p = 0.22

The adequacy of our line
spectrum can be judged from
Tanner et al. (2007)

Relaxation Modulus
time λi (s) gi (Pa)

0.00316 14,017.56
0.01 10,879.37
0.0316 8,446.42
0.1 6,555.47
0.316 5,089.47
1.0 3,950.06
3.16 3,066.71
10.0 2,380.15
31.6 1,847.87
100.0 1,434.18
316.2 1,113.30
1,000.0 864.18
3,162.0 670.83
10,000.0 2,326.84
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