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Abstract This numerical study focuses on regularised
Bingham-type and viscoelastoplastic fluids, perform-
ing simulations for 4:1:4 contraction–expansion flow
with a hybrid finite element–finite volume subcell
scheme. The work explores the viscoplastic regime,
via the Bingham–Papanastasiou model, and extends
this into the viscoelastoplastic regime through the
Papanastasiou–Oldroyd model. Our findings reveal the
significant impact that elevation has in yield stress pa-
rameters, and in sharpening of the stress singularity
from that of the Oldroyd/Newtonian models to the
ideal Bingham form. Such aspects are covered in field
response via vortex behaviour, pressure-drops, stress
field structures and yielded–unyielded zones. With ris-
ing yield stress parameters, vortex trends reflect sup-
pression in both upstream and downstream vortices.
Viscoelastoplasticity, with its additional elasticity prop-
erties, tends to disturb upstream–downstream vortex
symmetry balance, with knock-on effects according to
solvent-fraction and level of elasticity. Yield fronts are
traced with increasing yield stress influences, revealing
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locations where relatively unyielded material aggre-
gates. Analysis of pressure drop data reveals significant
increases in the viscoplastic Bingham–Papanastasiou
case, O (12%) above the equivalent Newtonian fluid,
that are reduced to 8% total contribution increase
in the viscoelastoplastic Papanastasiou–Oldroyd case.
This may be argued to be a consequence of strength-
ening in first normal stress effects.
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Introduction and literature review

The concept of viscoplastic material was first intro-
duced by Bingham (1922) (Bingham material) when
describing several types of paints. Viscoplastic fluids
rheology exhibit the so-called ‘yield stress, τ0’ that
governs the transition from solid-like to liquid-like re-
sponse1. These fluids develop stagnation regions, where
the material does not plastically deform due to elastic
resistance from the microstructure. Hence, their ve-
locity gradients vanish in these regions. The yielding
process is depicted in the fluid viscometric response
by a radical transformation in flow (or deformation)
behaviour over a relatively narrow range of stress.
Thus, under ideal Bingham, there is a finite stress level
(yield stress) at vanishingly low shear rates. In areas
of intense deformation, that is, above the yield stress

1To date, the concept of the yield stress and its definition remains
a subject of controversy. Hence, in the literature, doubts are often
expressed whether the yield stress exists in reality (as discussed in
a plenary lecture by K. Walters at the YPF 2009 conference).
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limit, the material is observed to flow and behaves as
a Newtonian fluid. These types of material are known
as Bingham fluids (viscoplastic). It is the presence of
these yielded and unyielded regions across the domain,
which provides the intrinsic discontinuity within the
model representation. From this theoretical basis, more
complex viscoplastic models may be introduced, such
as the Herschel–Bulkley model, with power-law viscous
dependency, and the nonlinear Casson model. All such
models are discontinuous, thus, it is necessary to de-
velop robust numerical techniques which may discretise
problems that manifest yielded and unyielded regions,
and simultaneously their interface.

To handle such sharp discontinuity through numer-
ical methods has posed something of a difficulty and
various attempts have been made to introduce varying
degrees of smooth approximations, cf. several modified
versions of the discontinuous model proposed in
(Burgos et al. 1999; Papanastasiou 1987). Of this type,
Papanastasiou (1987) analysed steady two-dimensional
flows of Bingham fluids based on a single modified
constitutive relation, applicable to both yielded and
unyielded regions. Such an approach proffers the ad-
vantage that it eliminates the need for explicit yield-
surface tracking. Here, a continuation parameter is
introduced to access numerical solutions, which in lim-
iting terms may practically replicate ideal model re-
sults. This modified model has been benchmarked on
several types of problems such as: one-dimensional
channel flow, a two-dimensional boundary layer flow
and a two-dimensional extrusion flow (Papanastasiou
1987). Later, Ellwood et al. (1990) introduced the same
Papanastasiou equation to analyse the steady and tran-
sient behaviour of jets generated by circular and slit
nozzles, to find that the yield stress suppresses the
swelling of the jet. Abdali et al. (1992) studied entry and
exit flows of Bingham fluids to observe unyielded re-
gions, which as anticipated shrink with increasing shear
rate. Nevertheless, applications of the Papanastasiou
model have been somewhat limited to ‘Bingham-type’
materials, which manifest an apparent yield stress and
Newtonian response under flow. Hence, to consider
more complex rheological behaviour with a yield stress,
one must look beyond such a model.

To allow a degree of deviation from viscous
Newtonian behaviour, the power-law model was pro-
posed. This model is widely employed to characterise
shear-thinning/shear-thickening properties of fluids
(inelastic). Further rheological development, incorpo-
rating either shear-thinning or thickening (power-law)
and a yield stress (Bingham model), has been provided
through the popular Herschel–Bulkley (HB) model.
The behaviour of many materials such as colloidal sus-

pensions, plastic propellant doughs (Carter and Warren
1987) and drilling fluids (Azouz et al. 1993) have all
been analysed under HB-model assumptions, which
has enabled a trace of microstructural changes during
processing. In areas of intense deformation, where the
local stress exceeds the yield stress, the microstructural
dynamics lay give rise to non-uniform material prop-
erties (non-linear stress–strain relationship). As such,
there is much debate in the literature as to whether
power-law, Bingham or Herschel–Bulkley models are
physically plausible models. For example, the shear-
thinning power-law fluid predicts an infinite viscosity at
zero strain rate. Moreover, some criticism (Balmforth
and Craster 2001) has been raised with respect to
the yield stress concept itself, as practically, in the
zero shear-rate limit most materials weakly yield, or
creep. From a mathematical perspective, the discon-
tinuous surface defined by the yield condition, τ = τ0

in the HB-model, introduces several complications
associated with the singularity at low shear-rates (as
under Bingham). A principal aspect of this study will
be to investigate the functional variation of the onset
of yield stress and its influence on material system
response (generalised HB). For example to achieve
this, Mitsoulis et al. (1993) and Mitsoulis (2007) pro-
posed a modified HB model by combining the original
Herschel–Bulkley and Papanastasiou models to pre-
dict shear-thinning/thickening behaviour with a yield
stress response. Such methodology is favoured in the
present study also. Today, there is considerable interest
industrially in the rheology of materials exhibiting yield
behaviour and viscoelastic characteristics, such as in
foods processing, paint, foam and bio-fluids. Saramito
(2007) combines the Bingham viscoplastic and the
Oldroyd viscoelastic models to develop a new con-
stitutive viscoelastoplastic model, which theoretically
satisfies the second law of thermodynamics. This
model offers the distinct advantage of defining the
viscoplastic–viscoelastoplastic transition via the stress
variable (and not viscosity), and hence inherits frame
invariance properties. Extensions to this model are at-
tractive and represent a major step forward, exhibiting
for example finite extensional properties and shear-
thinning behaviour.

Our principal focus in this paper is to build upon
the constructions introduced by Papanastasiou (1987)
(and later by Mitsoulis et al. 1993 and Mitsoulis 2007)
and apply this within the viscoplastic–viscoelastoplastic
context, utilising the ‘classical’ Oldroyd-B model to in-
troduce the viscoelastic dimension. The Papanastasiou
modification to the Bingham-model generates the vis-
coplastic function with an exponential stress growth
term, that smoothes the stress discontinuity and is valid
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at all rates of deformation. This functionality provides
the viscous driving terms to replace the constant pure-
Oldroyd shear viscosity function (as in White–Metzner
constructions). Frigaard and Nouar (2005) presented a
detailed analysis of the limitations of various regulari-
sation models including the Papanastasiou model. The
challenge posed to predictive simulation is to depict the
‘appropriate’ level of exponential growth for the defor-
mation in question. Undoubtedly, the subject matter
of viscoplasticity/viscoelastoplasticity remains a hotly
debated and challenging topic, which has provoked
more than a thousand papers prior to 2005 (see Barnes
1999 and Mitsoulis 2007). Moreover, there are many
outstanding questions with regards to experimental
measurement of yield stress that need to be considered.
Barnes and Walters (1985) showed through experimen-
tal data, gathered from a constant stress rheometer, that
in this context the yield stress concept was an idealisa-
tion, and that, given accurate measurement, no ‘actual’
yield stress existed. The argument was that discrep-
ancy in viscometric plots should not be attributed to
wall-slip/wall-depletion effects, once such disturbances
have been removed, or corrected for. These authors
stated that at low stress, material would flow slowly,
introducing in turn the issue of time-scale and the
concept ‘that everything flows’ (Barnes 1999). The non-
existence of yield stress claimed by Barnes and Walters
was challenged by Hartnett and Hu (1989), where a
simple experiment using the falling ball viscometer was
used to demonstrate unambiguously that an aqueous
Carbopol solution exhibited a yield stress (an engineer-
ing reality). The basis of this work was that viscoplastic
material, independently of stress level imposed, can
be approximated uniformly as a liquid, which exhibits
infinitely high viscosity in the limit of low shear rates,
followed by a transition to a viscous liquid state. At
that time and with the experimental means available,
rheologists were faced with considerable difficulty in
accurately measuring any sensible flow below the yield
stress (Barnes 1999). To further complicate the situa-
tion, Møllera et al. (2006) related the uncertainty in
the interpretation of some rheometrical measurement
to material time dependency, i.e. thixotropic behaviour
and time scale. In fact, no single method has been uni-
versally accepted as the standard for measuring yield
stress and it is not unusual to find large variations in
results obtained from different methods with the same
material (Bonn 2009). This is often the case due to
the difficulty of conducting precision measurements at
vanishingly low shear rates. Hence, the debate contin-
ues on the meaning and usefulness of the yield stress
concept—demanding respectable scientific definition
and practical experimental determination.

Governing equations

The relevant equation system, given in non-dimen-
sional terms, for isothermal, viscous, incompressible
flow may be represented via conservation of mass and
transport of momentum equations, as

∇ . u = 0, (1)

Re
∂u
∂t

= ∇ · (τ + 2μsd) − Re u · ∇u − ∇ p, (2)

where field variables u, p and τ represent the fluid
velocity, hydrodynamic pressure and extra-stress. The
rate-of-deformation tensor is defined through the ve-
locity gradient tensor, d = (∇u + ∇u†

)
/2. Here, the

viscosity of the viscous fluid is μs. In addition, the
dimensionless Reynolds number

(
Re = ρU�

/
μ0

)
is in-

troduced based on density ρ, characteristic velocity
scale U (average velocity) and length scale � (radius at
contraction). From this, a time scale is derived (�/U),
the inverse of which defines a characteristic deforma-
tion rate; together with the zero-shear rate viscosity
(μ0), this leads to suitable scaling on stress, yield stress
and pressure (see Aboubacar and Webster 2001). Here,
creeping flow conditions are assumed (Re∼10−2).

Viscoplastic flow equations

For non-Newtonian fluids, the viscosity is considered
as a nonlinear function of the second invariant (�d)

of the rate-of-strain tensor (dij). A Bingham material
remains rigid when the shear-stress is below the yield
stress τ0, (here, equivalent to the Bingham number, Bn,
as in Mitsoulis 2007), but flows like a Newtonian fluid
when the shear-stress exceeds τ0. Thus,

τ =
(

μ + τ0

2 |IId|1/2
)

γ̇ for |IIτ | > τ 2
0 ; and

γ̇ = 0 for |IIτ | ≤ τ 2
0 .

(3)

Papanastasiou (1987) proposed a modified Bingham
model, by introducing a regularisation stress growth
exponent (m) to control the rate-of-rise in stress, in the
form:

τ =
(

μ + τ0
1 − e−m|�d|

2 |IId| 1
2

)

γ̇ . (4)

For consistency, in the present work, the Papanastasiou
model is introduced by modifying the viscous part
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(in the momentum equation) of the extra-stress (4)
through:

τ = 2 φ (IId) β d, (5)

Here, the zero shear viscosity is divided into polymeric
(μp) and viscous (μs) contributions, so that μ0 = μp +
μs with solvent-fraction β = μs/μ0. The function φ (IId)

is defined as:

φ (IId) =
⎡

⎣η0 +
τ0

(
1 − e−m |IId|1/2

)

2 |IId|1/2

⎤

⎦ , and (6)

IId = 1
2

tr
(
d2) (7)

Viscoelastoplastic flow and viscometric functions

From a viscoelastic modeling viewpoint, the governing
Eqs. 1 and 2 should be supplemented by a constitutive
equation for stress. For example, the system for an
Oldroyd-B model may be expressed, viz

De
∂τ

∂t
= 2μpd − τ − De

(
u · ∇τ − τ · ∇u − (τ · ∇u)†)

(8)

An additional dimensionless parameters is introduced
in the form of the Deborah number

(
De = λ1 U

/
�
)

which is a function of material relaxation time, λ1,
characteristic velocity scale U and length scale �.

For reasons of expediency under numerical discreti-
sation, it is often convenient to introduce ‘stress split-
ting’ to extract a stress tensor with viscous τ (1) and
elastic parts τ (2), viz:

τ = τ (1) + τ (2), (9)

τ (1) = 2 β d, and (10)

τ (2) + De
∇(2)

τ = 2(1 − β)d, (11)

where,
∇(2)

τ represents the upper-convected material
derivative of τ defined by re-arranging (8) as:

∇(2)

τ = ∂τ

∂t
+ u · ∇τ − (∇u)† · τ − τ · (∇u) . (12)

The set of Eqs. 9, 10 and 11 represent a respectable
basis upon which to incorporate plastic (yield stress)
behaviour that is through the viscoelastic (Oldroyd-B)

model with the Papanastasiou function, utilising Eq. 5.
Thus

τ = τ (1) + τ (2), (13)

τ (1) = 2 φ (IId) β d, and (14)

τ (2) + De
∇

τ (2) = 2 φ (IId) (1 − β) d, (15)

In its own right, the Oldroyd-B model is often se-
lected as a benchmark to develop numerical solutions in
computational rheology. This popular nonlinear model
manifests sufficient simplicity, being characterised as
a constant shear-viscosity, strain-hardening non-linear
model. Its drawback is that it also supports unbounded
strain-hardening response. As such, the Papanastasiou–
Oldroyd material functions are characterised as:

η = φ (IId) , (16)

ηE = 3β φ (IId) + 3 (1 − β) φ (IId)

×
[

1
1 − De ε̇ − 2De2 ε̇2

]
, and (17)

N1 = 2 φ (IId) (1 − β) De γ̇ 2. (18)

From the expression of extensional viscosity as in
Eq. 17, the extensional viscosity has a singularity at
De ε̇ = 0.5, a contribution that arises due to the princi-
pal stress component. We observe with a more solvent-
dominated fluid (approaching Newtonian state with
β→1), the rise in extensional viscosity is delayed in
De ε̇, and hence, is more steeply represented as it en-
counters the singularity than is the case for a more
polymeric-based fluid (defined as that for which β→0).

Numerical method

The preferred discrete approximation to the steady
incompressible solution of these viscoplastic–visco-
elastoplastic contraction–expansion flow problems is to
adopt a finite element approximation for the mass–
momentum balance equations and a finite volume
approximation for viscoelastic stress. Such a hybrid
formulation has been thoroughly benchmarked on
many different flow problems (steady/transient, con-
fined/open/interfacial, incompressible/compressible, 2D/
3D) and for many different constitutive models
(phenomenological, kinetic, network, FENE, micellar,
fibre-suspensions) (Aguayo et al. 2006; Baloch and
Webster 1995; Tamaddon-Jahromi et al. 2010). The
primary problem variables selected become those of
velocity, pressure and stress. A transient formulation
is adopted from the outset, so that time-stepping
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pervades the discrete description. The momentum-
continuity balance is addressed through a pressure-
correction splitting, so that the continuity equation is
replaced by a Poisson equation governing pressure-
temporal difference over a single time-step, an incre-
mental pressure-correction procedure when 0 ≤ θ1 ≤ 1.
This introduces semi-discrete fractional-staged equa-
tions in time to a theoretical second-order of accuracy,
when coupled to a two-step Lax-Wendroff scheme,
which also draws upon an intermediate half-step
stage. Spatial discretisation completes the approxima-
tion, whereupon the finite element method is utilised
for velocity and pressure components of the system
(elliptic–parabolic subsystem). Taken over triangu-
lar elements, this then resembles a fractional-staged
Taylor–Galerkin pressure-correction (TGPC) scheme
(Donea 1984; Zienkiewicz et al. 1985). The constitutive
equation (hyperbolic subsystem) and stress variable
is then solved by a sub-cell cell-vertex finite volume
technique (see Matallah et al. 1998; Webster et al.
2005). For solenoidal conditions and with a forward
time increment factor θ2 = 0.5, this pressure-correction
scheme attracts second-order temporal accuracy, with
its incremental form (θ1 > 0) proving superior in uni-
form temporal error bounds over its non-incremental
counterpart (θ1 = 0). The three-stage TGPC structure
can be conveniently expressed (cf. Wapperom and
Webster 1999; Webster et al. 2005) in semi-discrete
representation on the single time step [tn; tn+1], with
starting values [un; τ n, pn, pn − 1].

In short, Galerkin fe discretisation is applied to
the embedded Stokesian system components; the mo-
mentum equation at Stage 1, the pressure-correction
equation at Stage 2 and the incompressibility satis-
faction constraint at Stage 3 (to ensure higher order
precision). The fv tessellation is constructed from the
fe grid by connecting the mid-side nodes. Stress vari-
ables are located at the vertices of fv sub-cells (cell-
vertex method, equivalent to linear interpolation). In
contrast, quadratic velocity interpolation is enforced
on the parent fe cell, alongside linear pressure inter-
polation. This interpolation choice manifests piecewise
continuity. Algebraic solvers for such systems are dealt
with extensively elsewhere (Hawken et al. 1990). A
direct solution method is employed at the fe pressure
equation stage 2, whilst a space-efficient element-by-
element Jacobi iteration is preferred over the remain-
ing stages one and three, under the fe components. The
element-by-element iteration avoids full system matrix
construction, and normally, the mass–matrix iteration
that results (mitn) is performed only three to five times.
Semi-implicitness is introduced at Stages 1a,b on pres-
sure and diffusive terms to enhance stability in the

strongly viscous regime. Note, pressure temporal in-
crements invoke multi-step reference across three suc-
cessive time levels [tn − 1, tn, tn+1]. The stress equation
under fv solution appears at stage one and the details of
the discretisation and solution technique are provided
below.

Finite volume cell-vertex scheme for stress

The cell-vertex oriented finite volume method is based
around groupings of terms into flux, source and time
derivative form. In the present context, this may be con-
veniently achieved by adopting a non-conservative rep-
resentation and manipulating the constitutive equation,
with dependency upon flux (R = u.∇τ, ) and absorbing
remaining terms under the source (Q). Cell-vertex fv
schemes are applied to this equation, whereupon up-
winding is implemented through fluctuation distribu-
tion, which both distributes control volume residuals
and provides nodal solution updates (Wapperom and
Webster 1998). We consider each scalar stress compo-
nent, τ , acting on an arbitrary volume � = ∑

l
�l, whose

variation is controlled through corresponding compo-
nents of fluctuation of the flux (R) and the source
term (Q).

For each finite volume triangle (�l), flux and source
variations are evaluated and allocated to its three ver-
tices by the chosen cell-vertex distribution scheme.
Thus, by summing all contributions from its control vol-
ume �l, the nodal update is obtained composed of all
fv triangles surrounding node (l). The flux and source
residuals may be evaluated over two separate control
volumes associated with a given node (l) within the
fv cell T. This generates a contribution governed over
the fv triangle T, (RT , QT), and that subtended over
the median-dual-cell zone, (Rmdc, Qmdc). For reasons
of temporal accuracy, this procedure demands appro-
priate area-weighting to maintain consistency, with ex-
tension to time-terms likewise. A generalised fv nodal
update equation may be expressed per stress compo-
nent in the form,
⎡

⎣
∑

∀Tl

δTαT
l �T +

∑

∀MDCl

(1 − δT) �̂T
l

⎤

⎦ �τ n+1
l

� t

=
∑

∀Tl

δTαT
l b T+

∑

∀MDCl

(1 − δT) b MDC
l (19)

where b T =(−RT +QT) , b MDC
l =(−RMDC+QMDC)l ,

�T is the area of the fv triangle , and is the area of its
median-dual-cell. The weighting parameter, 0≤δT ≤1,
directs the balance taken between the contributions
from the median-dual-cell and the fv triangle. The
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discrete stencil of Eq. 19 identifies fluctuation distribu-
tion and median dual cell contributions, area weighting
and upwinding factors (αT

l − scheme dependent). For
the interconnectivity of the fv triangular cells (Ti) sur-
rounding the sample node (l), the blue-shaded zone of
mdc, the parent triangular fe cell, and the fluctuation
distribution (fv upwinding) parameters

(
αT

i

)
, for i = l,

j, k on each fv cell, see Webster et al. (2004) with
additional details on the scheme.

Numerical results and discussion

Discussion is centred around themes of viscometric
form, pressure drop analysis, vortex behaviour and
stress field configurations.

Viscosity and stress—viscometric form

m Variation Figure 1 illustrates the viscometric re-
sponse in shear stress for the inelastic modified
Bingham–Papanastasiou model, considering paramet-
ric variation through m at fixed τ0 of unity. This in-
formation sets out the initial context to allow clear
segregation of purely viscous and elastic effects. The
relatively elevated level of τ 0 =1.0 is preferred here
to expand trend differences at limiting and low de-
formation rates. Variation is described in the range
between extremes of Ideal Bingham for large m (∼107)

and Newtonian response for m=0. The two plots
(Fig. 1a, b) convey log–log and linear data representa-
tions. From the logarithmic data one observes gradual
stratification through increase in orders of m (expo-
nent), with an order of magnitude shift in shear stress
for each order change in m. The linear plot compacts
the data (hence common preference for log–log view),
so that only m=10 and m=102 plots can be distin-
guished from Ideal Bingham behaviour for shear rates
of unity and below. Figure 1c contains equivalent data
for τ 0 = 10−2 to contrast with the proceeding viscoelas-
tic data.

We next consider the position for the Papanastasiou-
Oldroyd (B) model, providing counterpart data (log–
log plots) for viscosity and stress with 101 ≤ m ≤ 107

and τ 0 = 10−2. Figure 2 conveys this information via
shear stress (a), shear viscosity (b) and extensional
viscosity (c). This is matched in Fig. 3 for N1 with
m variation (a), with τ0-variation (b) and (principal)
first normal stress difference in extension (c). At low
shear-rate levels (∼10−4), the shear data reveals modest
elevation in shear viscosity up to 6 U for m ≤ 103,
thereafter rising more rapidly to 40 at m = 104 and
100 at m = 107. There is no distinction apparent from
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Fig. 1 Shear stress: modified Bingham-Papanastasiou fluids, m
variation, τ0 = 1.0; a log–log plot, b linear plot, c log–log plot
(τ0 = 0.01)

the Oldroyd level (unity) with m = 10. Also with ris-
ing deformation rate, the trend shows unification with
Oldroyd behaviour at rates ∼10−1. Figure 2a captures
this position in shear stress and reflects the proximity
in trends through m variation to the lower limit of
linear Oldroyd behaviour (m = 0) and the upper limit
of pure Bingham behaviour (large m, m ∼107). Note
here, that the τ 0 = 10−2 calibrates the yield stress level
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Fig. 2 a Shear stress, b shear viscosity, c extensional visocity:
Papanastasiou Oldroyd-B, m variation, τ 0 = 0.01

at vanishingly small shear rates, contrasting to that used
in Fig. 2a for example. Data in Fig. 3a, b relates to
trends in N1 in shear. This infers a strengthening of
N1 for shear rates lower than 10−1, beyond the pure
Oldroyd quadratic form. At the extremes of large m
(m ∼107), which matched Bingham behaviour in shear
stress, now an additional contribution from N1 appears.
In effect, N1 behaviour reflects earlier and more promi-
nent levels at lower shear rates than observed with
Oldroyd response.
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Fig. 3 a First normal stress, m variation; b first normal difference,
τ variation; c extensional stress: Papanastasiou Oldroyd-B, m
variation, τ0 = 0.01

The extensional data in Fig. 2c for extensional vis-
cosity and Fig. 3c for extensional stress, are also new
contributions specific to the viscoelastic setting. This
describes elevation with rising m order in extensional
viscosity at vanishing extension rates. The trend with
rising deformation rate shows departure from Oldroyd
behaviour at rates between 10−2 and 10−1. The limiting
envelope is well captured in extensional stress between
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Oldroyd behaviour (m = 0) and the upper limit of
Bingham-Oldroyd behaviour at large m (m ∼ 107). It is
noticeable that there is a shift away from the Oldroyd-
trend with non-zero m ≥ 103 (similar form below this
level for m = 101 and m = 102), conveying a non-linear
elevation thereafter with rise in m, up to the upper
limit of Bingham-Oldroyd behaviour, m = 107. Nev-
ertheless, all Papanastasiou adjusted models (m �= 0),
unite and agree in extensional stress beyond rates
∼3 × 10−2. This is an important observation and ra-
tional for present parameter selection, as to the zone
where matching occurs as seen in extensional viscosity,
which itself adjusts into increasing rates with rise in
τ0 value (cf. Fig. 4c). More precisely, for τ0 = 10−2

and deformation rates between ∼10−1 and unity, there
is correlation with Oldroyd response. As seen in Fig. 4c,
with only a shift of one order in τ0, to τ0 = 10−1,
matching with Oldroyd response is delayed to rates
∼1, which coincides with the complication of meeting
the unbounded limit for the Oldroyd model.

τ0 Variation In contrast to the above, we next consider
the viscometric response for these models through vari-
ation in τ0 (10−2 ≤ τ 0 ≤ 100) at fixed m value (m = 102).
Accordingly, Fig. 4 data demonstrates Papanastasiou–
Oldroyd model response in shear stress, shear viscosity
and extensional viscosity. Here, one is able to detect the
consequence of larger τ0 influence (rising), in contrast
to the data of Figs. 2 and 3 and (for τ 0 = 0.01). So,
for example with [τ 0 = 1.0, m = 102] in shear stress
and at deformation rates ∼10−6, a limiting value is
exposed of ∼5 × 10−5, which equates to that observed
earlier with [for τ 0 = 0.01, m = 104]. The bounding en-
velope is established with the lower limit data and
τ 0 = 0.01 (practically that of Oldroyd, also equivalent
to Newtonian response). In rate, the departure from the
straight-line trend-plot (viewed in decreasing terms),
now shifts by around two decades, from previously
∼10−1 for τ 0 = 0.01 to ∼10+1 for τ 0 = 1. Once this
departure has occurred, straight line trends are again
resumed below rates of ∼10−2. Thus, at any particular
rate below ∼10−2, there is a shift factor of around
two orders in shear stress from data at τ 0 = 0.01 to
that at τ 0 = 1.0. The shear viscosity plot complements
this information for completeness, reflecting elevation
in limiting zero-shear rate values through τ 0 = (10−2,
0.1, 0.5, 1) of (1.5, 6, 25, 50). Similar information is
conveyed through the extensional viscosity, denoting
counterpart elevation in limiting zero-extension rate
values through rising τ0 values of three times that in
shear. Trends in N1 behaviour with τ0 variation are
similar to those observed with m variation, with the
noted difference of departure from Oldroyd response
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Fig. 4 a Shear stress, b shear viscosity, c extensional viscosity:
Papanastasiou Oldroyd-B, τ0 variation, m = 102

with upward shift in deformation rate by two orders
(average rate here ∼10−1 from ∼10−3), accompanied
by significant elevation in N1 order (from ∼10−5 at rate
∼10−3 with extreme m = 107, to ∼10−1 at rate ∼10−1

with τ 0 = 1.0).

Analysis of pressure drop results

Viscoplastic case The viscoplastic (inelastic) data are
reported in terms of the ‘excess pressure drop’ (epd)
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τ0=0.1

ττ0=0.01

Fig. 5 Pressure drop (epd) vs. m, inelastic Bing-Pap, 4:1:4
axisymmetric

definition (used by Rothstein and McKinley 1999, 2001;
Szabo et al. 1997), which gives comparison against the
equivalent Newtonian fluid (m = 0) and corrects for
the fully developed upstream and downstream pres-
sure drop contributions. In this fashion, epd results are
presented, as above, covering variation in both model
parameters m and τ0. The comparison provides direct
insight into the impact upon epd of viscous changes
(i.e., from shear and extensional viscosity). For other
related work on pressure drop and Bingham fluids see
for example de Souza Mendes et al. (2007), who report
on expansion–contraction flow and head loss (�p),
taking into account different geometry dimensions.

epd with m variation Significantly in Fig. 5, relatively
large increases in epd are observed, charateristically
24% above the unity Newtonian reference line, for
τ 0 = 0.1 at its maximum when m = 103. This represents
an increase from the increased level of epd around

Fig. 6 Pressure drop (epd) vs. τ0, inelastic Bing-Pap model, 4:1:4
axisymmetric

Fig. 7 Normalised pressure drop (P∗), Pap-OldB vs. inelastic
equivalent, τ0 = 0.01, β = 0.9

2% for τ 0 = 0.01 and m = 103. Such increases may
be attributed to the elevation observed in shear and
extensional viscosity at low to moderate deformation
rates, as here N1 = 0). Considering τ 0 = 0.1 data, epd
increases rapidly by some 12% up to m = 102 (see on to
viscoelastoplastic case), doubling by m = 5 × 102, rising
to its peak value (∼24%) at m = 103, a level which is
maintained to around m = 2 × 103. Thereafter with
further increase in m, epd values tend to an asymptote
with level of ∼1.22. This information provides the nec-
essary insight to explain limiting trends with rising m at
fixed τ0, to interpret more fully Fig. 6 below on epd with
τ0 variation. With respect to numerical convergence, no
limitation on m value is detected at low values of τ 0 ≤
10−2; whilst mcrit = 3, 500 for τ 0 = 0.1. Upon analysing
limiting m trends for τ 0 = 10−2, a peak of 1.019 is
detected around m = 2, 000, with asymptote of 1.017
reached at m = 104. This gives some credence to the
generally held practical view that for many materials a
reasonable choice is 103 ≤ m ≤ 104 (Walters 2009).

Fig. 8 Normalised pressure drop (P∗), Pap-OldB vs. inelastic
equivalent, m = 102, β = 0.9
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Fig. 9 Normalised pressure drop (epd), Pap-OldB vs. Newtonian
equivalent, m = 102, β = 0.9

epd with τ0 variation Covering edp findings with τ0

variation, results are displayed in Fig. 6, for three
different values of m = [10, 102, 103] and a range for
τ0 of 0 ≤ τ 0 ≤ 0.5. As anticipated functionally and for
any specific m value, the epd trend with rising τ0 is
linear. The key point to note is the elevation in the
rate of epd rise with m value (which is independent

of τ0 setting). So that interpreted in relative terms to
the Newtonian reference line, the percentage increase
is 30% for m = 10 to 60% for m = 102 to 140% for
m = 103.

Viscoelastoplastic case In the viscoelastoplastic in-
stance for the Papanastasiou–Oldroyd model, whilst
following the style above and theoretical discussion in
Walters (2009), pressure drop data are now reported
in dual terms of comparison, P∗ to the equivalent
viscoplastic Bingham–Papanastasiou fluid (unity line
in P∗ terms), and against the equivalent Newtonian
fluid, via epd.The P∗ comparison lies as an extension
to ‘excess pressure drop’ (epd) definition (Rothstein
and McKinley 1999, 2001; Szabo et al. 1997); also used
in Aboubacar and Webster (2001). Once more, these
results are presented separately, covering variation in
both m and τ0 parameters, noting that each parameter
selection implies a different viscoplastic (inelastic) re-
sponse. The P∗ comparison provides direct insight
upon the additional viscoelastic influences upon ‘excess
pressure drop’ (N1 effect) when read against the unity

Fig. 10 Streamlines:
Oldroyd-B, Pap-OldB
(m = 102, 103), β = 0.9
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Fig. 11 Streamlines:
Newtonian, inelastic
Bing-Pap (m = 102, 103),
β = 0.9

viscoplastic line. Furthermore, the epd comparison
against the Newtonian reference yields the combination
of viscoelastic and viscoplastic influences on ‘excess
pressure drop’; thus, by difference and inference, vis-

coelastic additive and viscoplastic contributions may be
quantified. In addition, there is the direct comparison
available against Oldroyd (m = 0 or τ 0 = 0) trends,
devoid of yield stress inclusion.

Fig. 12 Streamlines:
Newtonian, Oldroyd-B,
inelastic and Pap-OldB
(τ0 = 0.01, β = 0.9)
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m Variation The normalised P∗ data with τ0 = 10−2 is
calibrated against Deborah number (De) with rising m
parameter through values (0, 102, 103), see Fig. 7. At
this low level of τ0, these results demonstrate that there
is no discernible difference in P∗ data for m ≤ 102,
from that of the purely viscoelastic Oldroyd data
(nb. P∗ trends for Oldroyd (m = 0 or τ 0 = 0) default to
epd). One may remind here that the trend with rising
De, is one of initial decline in excess pressure drop to
a minimum point (model/fluid dependent), prior to a
monotonic rise thereafter (see Walters et al. 2009a, b)
for fuller explanation). A decline in P∗ level is de-
tectable once m exceeds 103. For P∗ minimum around
De = 2, this equates to adjusting a 3% Oldroyd drop
to a 5% Papanastasiou–Oldroyd (m = 103) drop. From
earlier reasoning for purely viscoelastic models under
constant shear viscosity setting (Walters et al. 2009c),
reduction in N1 gave enhancement in excess pressure
drop measures, whilst conversely increases in ηe gave
enhancement in excess pressure drop. Adopting this
line of argument, this decline in P∗ level may consis-
tently be associated with increased N1 effects.

τ0 Variation With τ0 rise at fixed m = 102 in Fig. 8,
P∗ data follow similar declining trends to that observed
under m parameter variation. The upper limit for the
viscoelastic Oldroyd model is meaningful, as this rep-
resents the relative τ 0 = 0 position and the vanishing
yield stress position. Quantifying outcomes for P∗ min-
imum around De = 2, this implies adjustment from
3% Oldroyd drop (τ 0 = 0), to a 4% Papanastasiou–
Oldroyd (τ 0 = 0.1) drop, to a 6.5% Papanastasiou–
Oldroyd (τ 0 = 0.5) drop. Clearly, beyond τ 0 = 0.1, the
drop levels are becoming increasingly more significant.
As above, the same rational of explanation holds true
once more—where decline in P∗ level may consistently
be associated with increased N1 effects.

In contrast, based on epd comparison for τ0 variation
data (Fig. 9), one may consider the relative position for
the Papanastasiou–Oldroyd (τ 0 = 0.1) model against
the Newtonian reference line for epd minimum around
De = 2. This data reveals an 8% total contribution
increase in epd. From this result one may infer a 12%
pressure-drop increase due to viscoplastic contributions
from shear and extensional viscosity (as for purely vis-
coplastic). This evidence is confirmed via direct cross-
check with the Oldroyd data; the difference from the
Papanastasiou–Oldroyd (τ 0 = 0.1) value is 12% in epd
minimum around De = 2. As anticipated, the increases
in extensional viscosity (ηe) would only be expected
to provide enhancement in excess pressure drop; as
likewise would the similar-form shear viscosity (ηs) ele-
vation above the base Newtonian reference line taken.

Vortex behaviour—upstream
and downstream activity

Comparison may be made with rising De over three
vortex measures, governing upstream and downstream
activity—vortex intensity (ψ int), vortex length on chan-
nel wall (X) and vortex length on contraction wall face
(L), measurement procedure of tangent line to outer
vortex line that is orthogonal to intercept with centre of
vortex and projected sharp corner. Of this data, vortex
intensity is perhaps the most revealing measure, as
portrayed via stream function field data in Figs. 10, 11,
12, 13 and 14. Here, preference is given to parametric
change in τ0 first, taking m parameter findings subse-
quently and in contrast, appealing to cross-reference
across figures. In alternative vortex length measures
at either fixed m or τ0, it noticeable that (X) does
not adjust much with De rise; whilst there is slight
rise seen in (L). Comparing upstream and downstream
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Fig. 13 Salient-corner vortex intensity: a upstream, b down-
stream, Pap-OldB, (m = 102, τ0 = 0.01, β = 0.9)
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Fig. 14 Salient-corner cell-size: a horizontal, c vertical upstream; b horizontal, d vertical downstream, Pap-OldB (m = 102, τ0 = 0.01,
β = 0.9)

characteristics, these trends replicate in vortex length
(X); this is also true, in vortex length (L) trends.

τ0 variation, τ 0 rise at f ixed m = 102, 103 Figure 10,
provides field data for Papanastasiou–Oldroyd (De = 1,
left column; De = 5, right column) with rising τ0 values
(0, 0.01, 0.1). An additional Fig. 11, (De = 0), covers
the Newtonian fluid (τ 0 = 0) to inelastic Bingham–
Papanastasiou solutions, through the same range of τ0

values. Considering downstream vortex intensity in the
graph of Fig. 13b, at this level of heavy solvent frac-
tion (β = 0.9) for the base-reference Oldroyd (τ 0 = 0)
fluid, there is initial decline from De = 0 (Newtonian)
to the minimum point (De = 2, ψ int = 0.36 × 10−3),
prior to recovery and vortex growth with De rise up
to (De = 5, ψ int = 0.65 × 10−3). This finding lies in
distinct contrast to the more common observation of
downstream vortex reduction with De rise for highly
polymeric Oldroyd fluids (β = 1/9, (Aguayo et al.
2008)) with De rise. The balance in symmetry be-
tween upstream and downstream vortices is maintained
for viscous/viscoplastic (Newtonian/inelastic Bingham–

Papanastasiou) fluids (also seen in X and Lof Fig. 14).
Introduction of elasticity disturbs this balance. The
trend in downstream vortex behaviour with De rise,
and as τ0 rises, is one of similar form to that of the
purely viscoelastic fluid (initial decline, minimum at
De = 2, recovery thereafter), but with ever increasing
suppression as yield stress level rises (cf. Fig. 13). This
is still apparent in the data at τ 0 = 0.01, but must be
zoomed to be observed at τ 0 = 0.1 (insert). The relative
starting values of ψ int can be gathered at the De = 0
(Newtonian/viscoplastic) position. By τ 0 = 0.1, the
downstream vortex is extremely weak (in strength, two
orders lower than Newtonian/Oldroyd) and has been
almost completely suppressed (in size). In addition,
according to Fig. 10, there is a clear statement to be
made here through change in m level from m = 102

to m = 103; notably the vortex intensity decreases as
the parameter m rises, so that at τ 0 = 0.01 and with
m = 103, there is little evidence of any vortex behaviour
remaining. At the larger level τ 0 = 0.1 and m = 103,
there is no evidence of any vortex behaviour at all,
whilst at the same level of τ 0 = 0.1 and one of order of
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magnitude lower in m (m = 102), there are still signs of
vortex activity. For inelastic Bingham–Papanastasiou
streamline patterns (Fig. 11), similar trends in vortex
activity are observed when changing τ0 (from 0.01 to
0.1) and m (from 102 to 103) parameters.

Turning next to consider trends of change in up-
stream vortex intensity, Fig. 13a, one may observe
monotonic increase with De rise for the base-reference
Oldroyd (τ 0 = 0) fluid; ψ int increases from 0.54 × 10−3

to 0.72 × 10−3. Then, with supplementary yield stress
influence, once more gradual suppression of ψ int in-
crease is realised, to be practically flattened and re-
moved by τ 0 = 0.1 (see zoomed insert to detect actual
rise, but at much lower magnitudes, two orders lower
than Newtonian/Oldroyd).

In L measure at extremes (De = 5 of Fig. 15): L-
upstream halves from 1.77 at τ 0 = 0 to 0.86 at τ 0 = 0.1;
L downstream reduces by one third equivalently, see
Fig. 14. In X measure there is similar adjustment: X
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Fig. 15 Velocity profiles at a z = 0 (contraction zone); b z = 10
(inlet zone), inelastic Bing-Pap, m = 103, β = 0.9

upstream falls from 1.33 at τ 0 = 0 to 0.63 at τ 0 = 0.1; X
downstream falls from 1.24 at τ 0 = 0 to 0.53 at τ 0 = 0.1.

m variation, m rise In field solutions, Fig. 12 focuses,
in one place for ease of reference, upon a selection of
inelastic (left column) versus Papanastasiou–Oldroyd
(De = 1, right column) results, at fixed τ 0 = 0.01 with
rising m values (0, 102, 103). In Fig. 14, one is looking
at the same data in m change or τ0 change for (τ0, m)

pairings of (0, 0) and (0.01, 102). Hence, trends in
vortex response are found only to differ when compar-
ing data at pairings (τ 0 = 0.01, m = 103) and (τ 0 = 0.1,
m = 102). Downstream vortex intensities differ by one
order of magnitude: for (τ 0 = 0.01, m = 103), initial,
minimum and maximum are (0.48, 0.25, 0.60) × 10−4;
whilst for (τ 0 = 0.1, m = 102), initial, minimum and
maximum are (0.55, 0.27, 0.60) × 10−5. For upstream
vortex intensities, the trend in one order of magnitude
shift is similar, yet reflecting practically no change with
De at each setting. This is noted in the shift from a
characteristic initial value of 0.48 × 10−4 for (τ 0 = 0.01,
m = 103) to 0.54 × 10−5 for (τ 0 = 0.1, m = 102).

Revisiting vortex length measures at extremes (De =
5 of Fig. 14) for mvariation in contrast to τ0 variation:
bothLandXmeasures again reduce at upstream and
downstream locations. Yet, this reduction is practically
halved over results with τ0 variation reported above;
for example, L upstream now falls from 1.77 at m = 0
(as for τ 0 = 0) to 1.40 at m = 103, τ 0 = 0.01 (when
compared to 0.86 at m = 102, τ 0 = 0.1).

Velocity profiles are also included for reference
(Fig. 16, m = 103), sampled separately at the contrac-
tion centre plane (z = 0) and the inlet zone (z = −10).
Variation is typified and represented for the viscoplas-
tic Bingham–Papanastasiou fluid, over τ0 elevation
through values (0, 0.01, 0.1). At the inlet zone, there
is the core flow flattening of the flow profile, and the
sharpening of the wall region, to approximate a plug
flow. Maxima at core centre reduce by almost one half
from Uz of 0.125 at τ 0 = 0 to 0.093 at τ 0 = 0.1; at the
contraction zone, reduction levels in Uz are consider-
ably lessened (∼5%).

Stress fields—yielded and unyielded regions

Considering normal stress effects, first with τ0 changes
and at m = 102, we can interrogate field structures in
first and second normal stresses. N1 influence at De = 1,
see Fig. 17, shows a drop in N1 with rising τ0, in both
recess corners upstream and downstream, otherwise
little differences apparent across the field. N1 maxima
magnify some 20 times from De = 1 to De = 5 (at
any τ 0 level). From inference of cut-off zero-stress N1
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Fig. 16 Second normal stress
difference (N2) field:
Oldroyd-B, Pap-OldB,
m = (102, 103), β = 0.9

contour-line (which ties in with N2 solutions), there is
little change detectable in upstream vortex dynamics
with De change (in contrast to τ0 change); whilst to the
contrary, downstream dynamics are expanded in size.
In terms of vortex capture, more can be gathered from
N2 data directly, as in N2 influence at De = 1 of Fig. 16,
where a clear decline in N2 is now seen with rising
τ0, in both recess corners, upstream and downstream.
N2 maximum levels magnify some 10 times to De = 5
from De = 1. From inference of cut-off zero-stress N2

contour line, there is significant reduction in upstream
vortex size and dynamics with rise in τ0 (here, little
effect due to De rise); likewise, there is prominent
reduction in downstream vortex activity (again there is
little effect due to De rise). Nevertheless, De rise does
have a major influence on N2, as noted just beyond
the contraction and close to the obstruction (maximum
values); yet this viscoelastic feature appears unaffected
by yield stress influences.

Next with m change and observations between m =
102 and m = 103, data in Fig. 16 for N2 begin to show
some differences at higher elasticity levels (De ≈ 5);
again, this is particularly noted in the corner recess
zones (negative values of N2) and across the central

constriction plane. On the contrary under N1 data of
Fig. 17 and away from corner recesses, there are no
significant differences detected in field solutions at the
level of De ≈ 5 between the two values of m at τ 0 = 0.1.
This is consistent with above comments. The maximum
and minimum values of N1 reflect this position, being
in the same order for m = 102 and m = 103 solutions.

Across models and settings, it is instructive to ex-
amine the divide between yielded and unyielded re-
gions, as depicted in Fig. 18, where the cut-off cri-
terion is based on the magnitude of stress (derived
from its second invariant, see Mitsoulis 2007) exceeding
the set level of τ0 in each instance. We consider first
data for the inelastic Bingham–Papanastasiou model
(m = 103). Here we follow Mitsoulis (2007) in acknowl-
edging that strictly speaking, vortex activity would not
be expected within the unyielded regions, since these
areas are denoted for their lack of deformation. Never-
theless, the vortex activity shown in the present work
is a consequence of using the regularised Bingham
model, according to the Papanastasiou modification,
which renders the model valid in all flow zones and
deformation rates, both yielded and unyielded, see
also Dimakopoulos and Tsamopoulos (2003, 2007) for
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Fig. 17 First normal stress
difference (N1) field:
Oldroyd-B, Pap-OldB,
m = (102, 103), β = 0.9

prediction of unyielded regions in the corners of a
sudden contraction or expansion.

Consistent with Mitsoulis and Huilgol (2004) work
on 2:1 expansion flow problem, the relatively yielded
(red-white) region for τ 0 =0.01 occupies the zones close
to the channel walls and that through the contraction–

Fig. 18 Growth of the unyielded region (black) inelastic
Bing-Pap, m = 103

expansion. The unyielded regions (black) are then
restricted to the core flow complement zones and
the corner recess zones. Once τ0 has risen to 0.02,
the core central unyielded zones have expanded out
sufficiently towards the channel walls to link with
the enlarged unyielded recess zones. With further rise
in τ0 to 0.1, both core and recess unyielded regions
have merged and swelled out to reach the walls.
Now, only the enlarged doughnut-shaped contraction–
expansion zone remains yielded (where gradients are
high), swelling out before and after the contraction
to cover a region over thrice its inner area. We take
pains to emphasise that the last retained case in Fig. 18
with τ 0 = 0.1 presents a solution well beyond the va-
lidity of the Papanastasiou model, from the data this
being anticipated to be closer to τ 0 = 0.02. Here, the
entire domains of entry and exit pipe flow are inter-
preted as unyielded (relatively motionless, τ less than
τ 0), whereas in the constricted region the material is
yielded and flows. This simply reveals the properties of
the Papanastasiou model, which allows flow in regions
where the second invariant of the rate of strain is
non-zero, whilst simultaneously the second invariant
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of stress falls below the yield stress. These comments
are moderated by a scaling on τ0 with the exponential
multiplicative term (factor m = 103), so that by con-
struction, the model is always viscous (flowing to some
time scale) tending to Ideal Bingham as m tends to
infinity. Still further amplification of τ0 (not shown,
due to model approximation limitations) shrinks the
yielded contraction–expansion zone to occupy solely
the space within the contraction itself. Results for
the Papanastasiou–Oldroyd (De = 1) with τ0 rise do
not differ in appearance from those for Bingham–
Papanastasiou. Hence, for brevity, these are not shown.
These findings concur with those of Mitsoulis and
Huilgol (Mitsoulis and Huilgol (2004)) (downstream
correspondence to the present contraction–expansion
problem), who also noted the dead recess zones near
the expansion corners, where the material remains rel-
atively unyielded. As their Bingham number increased,
the central core unyielded region became larger (more
solid region), so that it began to impinge towards
the expansion entrance itself. Finally, for very high
Bingham number values, only the high-gradient areas
near the entrance to the expansion remained unyielded.

Conclusions

The overall conclusions from this work point to
the significant impact that yield stress inclusion has
upon nonlinear flow behaviour, considered here in
the context of contraction–expansion flow. Here, this
has been explored through the viscoplastic regime
(Bingham–Papanastasiou) and extended into the vis-
coelastoplastic regime (Papanastasiou–Oldroyd). Our
findings reveal the significant impact that eleva-
tion has in yield stress parameters of (m,τ 0), and
in sharpening of stress singularity from that of the
Oldroyd/Newtonian models to the ideal Bingham form.
Such aspects are covered in field response via vor-
tex behaviour (upstream–downstream, enhancement–
suppression), pressure drops, stress field structures and
yielded–unyielded zones. Vortex trends reflect sup-
pression, with rising mor τ0, in both upstream and
downstream vortices (more exaggerated in τ0 change
than m change). Elasticity, via viscoelastoplasticity, dis-
turbs upstream–downstream vortex symmetry balance.
For such solvent dominated fluids considered: at low
De = 1, upstream vortices dominate downstream vor-
tices; at high De = 5, this position is reversed. With
De rise and in vortex intensity, upstream growth trends
are monotonic; downstream trends are non-monotonic,
showing first a decline to a minimum (at De = 2), prior
to growth thereafter.

With respect to the cut-off between yielded–
unyielded flow zones (yield-front), rapid adjustment
occurs for 0 ≤ τ 0≤ 0.02, and once again between 0.02 ≤
τ 0≤ 0.1. Unyielded regions begin by being restricted to
the core flow complement zones and the corner recess
zones. The core central unyielded zones have expanded
out sufficiently towards the channel walls by τ 0 = 0.02,
to link with the enlarged unyielded recess zones. This
eventually leads to merger of core and recess unyielded
regions by τ 0 = 0.1, reaching the walls, leaving only the
enlarged doughnut-shaped contraction–expansion zone
yielded.

Analysis of pressure drop data reveals increases in
the viscoplastic case, through epd and m variation, of
some (12%, 24%) above the unity Newtonian reference
line, for τ 0 = 0.1 when m = (102, 103). In this inelastic
context, N1 = 0, and such epd increases may be at-
tributed to the elevation observed in shear and exten-
sional viscosity at low to moderate deformation rates.
In the viscoelastoplastic case, the P∗comparison pro-
vides direct insight upon the additional N1 viscoelas-
tic influences upon ‘excess pressure drop’, when read
against the unity viscoplastic line. Furthermore, the epd
comparison against the Newtonian reference yields the
combination of viscoelastic and viscoplastic influences.
Characteristically, for the Papanastasiou–Oldroyd data
(τ 0 = 0.1, m = 102), the 12% pressure drop increase
due to viscoplastic contributions, is observed to reduce
to 8% total contribution increase in epd (confirmed
independently via cross-check against Oldroyd data).
This may be argued to be a consequence of strength-
ening in N1 (above Oldroyd) at low deformation rates,
as corresponding increases in extensional and shear
viscosity only tend to promote enhancement in excess
pressure drop. One may comment that for an additive
viscoelastic component to pressure drop increase, the
appropriate property to seek is the converse, weaken-
ing of N1.
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