
Rheol Acta (2010) 49:213–219
DOI 10.1007/s00397-009-0408-2

RAPID COMMUNICATION

On secondary loops in LAOS via self-intersection
of Lissajous–Bowditch curves

Randy H. Ewoldt · Gareth H. McKinley

Received: 31 August 2009 / Accepted: 18 November 2009 / Published online: 12 December 2009
© Springer-Verlag 2009

Abstract When the shear stress measured in large
amplitude oscillatory shear (LAOS) deformation is
represented as a 2-D Lissajous–Bowditch curve, the
corresponding trajectory can appear to self-intersect
and form secondary loops. This self-intersection is a
general consequence of a strongly nonlinear material
response to the imposed oscillatory forcing and can be
observed for various material systems and constitutive
models. We derive the mathematical criteria for the
formation of secondary loops, quantify the location of
the apparent intersection, and furthermore suggest a
qualitative physical understanding for the associated
nonlinear material behavior. We show that when sec-
ondary loops appear in the viscous projection of the
stress response (the 2-D plot of stress vs. strain rate),
they are best interpreted by understanding the corre-
sponding elastic response (the 2-D projection of stress
vs. strain). The analysis shows clearly that sufficiently
strong elastic nonlinearity is required to observe sec-
ondary loops on the conjugate viscous projection. Such
a strong elastic nonlinearity physically corresponds to
a nonlinear viscoelastic shear stress overshoot in which
existing stress is unloaded more quickly than new de-
formation is accumulated. This general understanding
of secondary loops in LAOS flows can be applied to
various molecular configurations and microstructures
such as polymer solutions, polymer melts, soft glassy
materials, and other structured fluids.
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Introduction

Large amplitude oscillatory shear (LAOS) is a class of
flow that is commonly used to characterize nonlinear
viscoelastic material responses (Giacomin and Dealy
1993). In strain-controlled LAOS deformation, the im-
posed strain takes the form γ (t) = γ0 sin ωt, which
consequently subjects the sample to a corresponding
oscillatory strain rate, γ̇ = γ0ω cos ωt. The steady-state
material stress response oscillates with the same funda-
mental period as the imposed deformation, T = 2π/ω,
but with a viscoelastic phase shift, as well as higher
harmonic contributions when the imposed strain is high
enough to induce material nonlinearity (Wilhelm 2002).

LAOS responses can be visualized as parametric
curves (properly termed Lissajous–Bowditch curves)
of the oscillating stress σ(t) vs. strain γ (t) or, alter-
nately, stress σ(t) vs. strain rate γ̇ (t). More generally,
this response can be represented in terms of closed
space curves within a 3-D coordinate system with strain
γ (t), strain rate γ̇ (t), and stress σ(t) as the orthogonal
coordinate axes (Fig. 1a). The 2-D Lissajous–Bowditch
curves commonly represented in papers are then read-
ily understood as projections of the fully 3-D coordinate
space that describes the material response to oscillatory
shearing. The 2-D projection onto the stress σ(t) vs.
strain γ (t) plane views the material response from an
elastic perspective (Fig. 1b), and a purely elastic mater-
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Fig. 1 LAOS simulation of the single-mode Giesekus model,
Eq. 1, (λ1ω = 1, γ0 = 5.62). Only the time-periodic steady-state
response is shown, with arrows indicating the path trajectory. a
3-D Lissajous–Bowditch curve showing the stress response as a
function of the orthogonal inputs, σ(γ (t), γ̇ (t)), b 2-D projection
onto the plane of stress σ(t) and strain γ (t), including the instan-
taneous elastic stress σ ′(γ (t)) (dashed line), and c 2-D projection
onto the plane of stress σ(t) and strain rate γ̇ (t), including the
instantaneous viscous stress σ ′′(γ̇ (t)) (dotted line). The viscous
Lissajous–Bowditch curve in (c) shows apparent self-intersection
at points I1 and I2, although the full-space curve represented in
(a) does not intersect at these points

ial response would be a single-valued function of strain
on this plane, σ(γ ). The viscous perspective is achieved
by projecting the 3-D material trajectory onto the plane

of stress σ(t) vs. strain rate γ̇ (t) as shown in Fig. 1c. In
this work, we focus on the long-time steady-state oscil-
latory material response that is represented by a closed
space curve; however, time-varying material responses
associated with thixotropy, shear-induced migration,
rheological aging, etc. can also be represented in this
material-phase space by trajectories that slowly decay
towards the corresponding periodic attractor.

We are interested here in the self-intersection of
Lissajous–Bowditch curves which form “secondary
loops” (Fig. 1c, points I1 and I2), a visually prominent
phenomenon that quickly draws questions from the
rheological observer. The interpretation of secondary
loops has, to date, been limited to the study of spe-
cific material examples, being related to physical mi-
crostructural features such as non-affine deformation
(Jeyaseelan and Giacomin 2008) and the absence of
long-chain branching in polymer melts (Stadler et al.
2008). However, such secondary loops have been ob-
served for many different material systems including
micellar solutions (Ewoldt et al. 2008), a polystyrene so-
lution (Jeyaseelan and Giacomin 2008), several molten
polymers (Tee and Dealy 1975; Stadler et al. 2008),
star-polymer networks (Rogers SA, Vlassopoulos D
2009, personal communication), as well as xanthan
gum solutions and an invert-emulsion drilling fluid
(Ewoldt et al. 2009). Nonlinear constitutive models
can also show secondary loops; examples include a
non-affine network model (Jeyaseelan and Giacomin
2008), a tube-based model of entangled linear polymers
(Leygue et al. 2006; Stadler et al. 2008), and a single-
mode Giesekus model (demonstrated here). Owing to
the variety of systems which show secondary loops,
we seek to provide a general interpretation of this
nonlinear rheological phenomenon.

The mathematical criteria for the appearance of
self-intersecting viscous Lissajous–Bowditch curves of
stress σ(t) vs. strain rate γ̇ (t) have been considered
previously by Stadler et al. (2008) and Burhin et al.
(2008), who have identified multiple criteria which must
be simultaneously satisfied by the higher harmonic
components of the stress response. Here, we derive
a single criterion which, for the most commonly ob-
served case, is related to a single viscoelastic parameter
G′

M ≡ dσ
dγ

|γ=0 < 0. The parameter G′
M is the minimum

strain elastic modulus as defined by Ewoldt et al.
(2008). The criterion is understood through the con-
nection between the 3-D Lissajous–Bowditch curves
and the corresponding Chebyshev decomposition of
the LAOS response. Furthermore, we address the
theoretical possibility (unobserved to date) of self-
intersection of the elastic projection of stress σ(t) vs.
strain γ (t) and show, by analogy, that a single cri-
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terion η′
M < 0 can be used to identify the conjugate

phenomenon.
A general physical interpretation of the phenom-

enon is achieved, because the derived mathematical
criteria are related to nonlinear viscoelastic material
parameters. Our analysis suggests that a broad class of
molecular and microstructural configurations can show
this nonlinear rheological behavior; this short note,
therefore, assists in the systematic interpretation of
measured LAOS responses in terms of constitutive
models and molecular structure.

Giesekus model example

A single-mode Giesekus model is used here as a canoni-
cal example in which secondary loops arise within a cer-
tain range of the Pipkin parameter space represented
by frequency and strain amplitude (ω, γ0). The consti-
tutive equation for the Giesekus model, as presented by
Bird et al. (1987), is given by

σ = σs + σp

σs = ηsγ̇

σp + λ1σp(1) + α
λ1

ηp

{
σp · σp

} = ηpγ̇ . (1)

Here, σs is the solvent stress tensor, σp is the polymer
stress tensor, σp(1) is the upper convected time deriva-
tive of the polymer stress, ηs is the solvent viscosity, ηp

is the polymer viscosity, λ1 is the relaxation time, and α

is the mobility factor which gives rise to a nonlinear vis-
coelastic response (for α �= 0). The LAOS simulation
is performed as described by Ewoldt et al. (2008) using
the following model parameters, λ = 1 s, ηs = 0.01 Pa s,
ηp = 10 Pa s, and α = 0.3. These four independent
parameters result in a retardation time scale λ2 =
λ1ηs/(ηs + ηp) = 0.001 s and a polymeric shear modulus
G = ηp/λ1 = 10Pa. A wide range of frequencies and
strain amplitudes were simulated (Ewoldt et al. 2008),
0.001 ≤ γ0 ≤ 100. Within this range, secondary loops
were observed for a range of frequencies, λ1ω = 0.01 −
100, at sufficiently large strain amplitude γ0. Figure 1
shows the steady-state Lissajous–Bowditch curves as-
sociated with λ1ω = 1, γ0 = 5.62, for the single-mode
Giesekus model, Eq. 1. Arrows are used to indicate the
trajectory for each curve. Note that in the absence of
secondary loops, elastic curves are traversed in a clock-
wise direction (Fig. 1b) whereas the corresponding vis-
cous curves propagate counterclockwise (Fig. 1c). The
viscous projection onto the 2-D plane of stress σ(t) and
strain rate γ̇ (t) appears to intersect at points I1 and I2.

Criteria and interpretation of self-intersection

It is impossible for a full 3-D Lissajous–Bowditch curve
to intersect itself within one period, since the controlled
input coordinates (γ (t), γ̇ (t)) are orthogonal and al-
ways occupy unique values throughout a single cycle,
i.e., the 2-D projection onto the plane of (γ (t), γ̇ (t))
does not intersect. However, a 2-D projection onto the
other coordinate planes of (σ (t), γ (t)) or (σ (t)γ̇ (t)) has
the opportunity to self-intersect because the individual
inputs of strain γ (t) or strain rate γ̇ (t) take repeated
values within a single period T = 2π/ω. A sufficiently
nonlinear response may thus result in a 2-D response
curve projection that intersects itself and forms sec-
ondary loops, such as those which appear in the curve
of Fig. 1c.

To proceed with the evaluation of a suitable quan-
titative criterion for self-intersection, we must intro-
duce a mathematical representation of LAOS response
curves. For an oscillatory strain input, γ (t) = γ0 sin ωt,
the viscoelastic stress response at steady-state can be
written as a time-domain Fourier series of odd harmon-
ics (Giacomin and Dealy 1993),

σ (t; ω, γ0) = γ0

∑

n:odd

{
G′

n (ω, γ0) sin nωt

+ G′′
n (ω, γ0) cos nωt

}
. (2)

For sufficiently small strain amplitude γ0, a linear mate-
rial response is observed such that only the fundamen-
tal harmonic appears, n = 1 with a temporal phase shift
δ1 given by tan δ1 = G′′

1/G′
1. For larger deformation am-

plitudes, higher harmonics appear, and the response is
nonlinear. We argue that it is more meaningful to math-
ematically represent the measured material stress as
a function of the time-varying kinematic inputs, strain
γ (t) and strain rate γ̇ (t), rather than time itself. This is
consistent with the closed space curve shown in Fig. 1c,
σ(γ (t), γ̇ (t)). The stress response can be decomposed
into a superposition of instantaneous elastic and viscous
components (Cho et al. 2005), which are single-valued
functions of normalized strain x(t) = γ (t)/γ0 and nor-
malized strain rate y(t) = γ̇ (t)/γ̇0, respectively. We
write the superposition as σ(t) = σ ′(x(t)) + σ ′′(y(t)).
The decomposition into the elastic stress σ ′(x(t)) and
viscous stress σ ′′(y(t)) can then be written as a series of
Chebyshev polynomials of the first kind (Ewoldt et al.
2008),

σ ′ (x; ω, γ0) = γ0

∑

n:odd

en (ω, γ0) Tn (x)

σ ′′ (y; ω, γ0) = γ̇0

∑

n:odd

vn (ω, γ0) Tn (y) (3)
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in which the elastic and viscous coefficients, en (ω, γ0)

and vn (ω, γ0), have a physical interpretation and are
directly related to the time-domain Fourier coefficients
of Eq. 2 via the expressions en = G′

n(−1)
n−1

2 and
vn = G′′

n/ω (n : odd).
The (apparent) intersection locations, I1 and I2

(Fig. 1), are defined by the criterion that the shear
stress in the material takes repeated values at the same
shear rate but at different values of strain, σ(γ̇ , γ1) =
σ(γ̇ , γ2). If we consider the decomposition of stress
into purely strain-dependent and rate-dependent con-
tributions, then it is clear that this equality requires
the total stress to be independent of the instantaneous
strain at I1 and I2; therefore, the elastic stress must
be instantaneously zero at these points (Fig. 1b). Thus,
self-intersections of stress σ(t) vs. strain rate γ̇ (t) occur
when

σ ′ (x (t)) = 0, x �= 0 (4a)

where x(t) = γ (t)/γ0. By analogy, self-intersection of
the curve of stress σ(t) vs. strain γ (t) would occur if the
decomposed viscous stress is instantaneously zero,

σ ′′ (y (t)) = 0, y �= 0 (4b)

where y(t) = γ̇ (t)/γ̇0. The criteria expressed in Eq. 4a, b
are sufficiently general that they apply for any number
of self-intersection or overlap points, e.g., for extreme
nonlinearity in which multiple self-intersections occur.
The criterion for a single self-intersection point (which
has mirror symmetry about the origin) on a viscous
response curve can be readily visualized in Fig. 1b
which shows that the elastic stress is instantaneously
zero, σ ′(γ (t)) = 0, at the apparent intersection points
I1 and I2. Correspondingly, Fig. 1c shows that the total
stress is equal to the instantaneous viscous stress at
points I1 and I2, i.e. σ(t) = σ ′′(γ̇ (t)).

Any self-intersection of the viscous projection there-
fore occurs when the instantaneous value of the
decomposed elastic stress passes through zero at a
non-zero value of the scaled strain x(t) = γ (t)/γ0. This
intersection point can be located by expanding the elas-
tic stress in terms of the Chebyshev polynomials of the
first kind (Eq. 2), σ ′′(x) = γ0{e1x + e3(4x3 − 3x) + ...}.
For a single self-intersection point with mirror sym-
metry, the criteria that σ ′(xI) = 0 at points I1 and I2

results in the leading order non-zero solution that the
intersection points I1 and I2 occur at

xI = ∓1

2

√

3 −
(

e1

e3

)

yI = cos
[
sin−1 (xI)

]
. (5)

in which xI is required to be real, xI ∈ R, and |xI | < 1.
These conditions for xI are achieved for e3/e1 > 1/3
or e3/e1 < −1,1 i.e., the self-intersection of viscous
curves results from sufficiently strong elastic non-
linearity. The visually dominant feature of the material
nonlinearity thus appears as secondary loops on the
viscous Lissajous–Bowditch projection, but it is best
interpreted physically as a consequence of a nonlinear
elastic phenomenon.

The general criterion in Eq. 4a applies for any num-
ber of possible self-intersections. Equation 5, however,
must be extended to capture multiple intersections,
since it was derived from a truncated polynomial ex-
pansion (to n = 3). For example, an expansion up to
n = 5 can represent two mirror-symmetric intersection
points. In this case, xI is the solution to a biquadratic
equation (omitted for sake of brevity), still subject to
the conditions that xI ∈ R and |xI | < 1. This imposes
combined constraints on the magnitudes of both e5/e1

and e3/e1 to identify zero, one, or two mirror-symmetric
self-intersections. If this is extended further to an infi-
nite series representation (see Eq. 2) then the quan-
titative criteria for just a single intersection would
include the infinite set of coefficients en. Fortunately,
such complicated criteria can be simplified for the most
commonly observed self-intersection of the type shown
in Fig. 1, as we show in the following discussion.

Without requiring truncation or leading order es-
timates, we now identify a single material parameter
which corresponds to the formation of a single self-
intersection with mirror symmetry, with the assumption
that the total stress is positive at maximum positive
strain γ (t) = γ0 (e.g., a material response of the generic
form shown in Fig. 1). Rather than searching the de-
composed stresses for zero crossings (roots), we con-
sider the general criterion for self-intersection, Eq. 4a,
σ ′(x) = 0 for x �= 0, combined with the fact that the
elastic stress σ ′(x) has odd symmetry about x = 0 with
a necessary zero crossing at x = 0 (so that when the
imposed strain γ = 0 we have an instantaneous elastic
stress σ ′ = 0). Loops form when σ ′(x) = 0 at locations
other than x = 0, i.e., when multiple zero crossings are
present. At the point of incipient loop formation, three
real zero crossings (repeated roots) appear due to the
odd symmetry of the elastic stress (Fig. 3). For three dis-
tinct zero crossings, the slope of the elastic stress σ ′(x)

must change sign from positive, to negative, and back

1e3/e1< −1 corresponds to negative total stress at maximum pos-
itive strain γ = γ 0, i.e., the material does not resist deformation
but rather pushes towards further deformation. We are unaware
of any observation of this type of behavior.
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to positive (corresponding to an inflection point at the
critical conditions for incipient loop formation). There-
fore self-intersection is equivalent to development of
a region in the center of the elastic stress curve which
has negative slope, and which must occur at x = 0 to
retain odd symmetry. Therefore, a sufficient quantita-
tive criterion for a single self-intersection of a viscous
Lissajous curve is a negative slope in the decomposed
elastic stress located at x = γ (t)/γ0 = 0,

dσ ′

dx

∣∣∣∣
x=0

< 0. (6)

By analogy, it is possible for the elastic projection of
stress σ(t) vs. strain γ (t) to form secondary loops when
sufficient viscous nonlinearity is present. The criteria
for self-intersection of elastic Lissajous projections is

dσ ′′

dy

∣∣∣∣
y=0

< 0. (7)

From a geometric viewpoint, the tangent slopes of
the stress at these locations (Eqs. 6 and 7) corre-
spond to viscoelastic material parameters introduced by
Ewoldt et al. (2008). The minimum-strain elastic mod-
ulus G′

M, and the minimum-rate dynamic viscosity η′
M,

are given in terms of the Chebyshev coefficients by the
expressions

G′
M ≡ dσ

dγ

∣∣∣∣
γ=0

= dσ ′

dγ

∣∣∣∣
γ=0

= e1 − 3e3 + 5e5 − 7e7 + · · ·

(8a)

η′
M ≡ dσ

dγ̇

∣∣∣∣
γ̇=0

= dσ ′′

dγ̇

∣∣∣∣
γ̇=0

= v1 − 3v3 + 5v5 − 7v7 + · · ·

(8b)

where G′
M ≡ G′ and η′

M ≡ η′ for a linear viscoelastic
response, but in LAOS generally represent the instan-
taneous elastic modulus and dynamic viscosity at the
minimum strains and strain rates, respectively. Note
that these specific graphical definitions in terms of the
local slopes of the decomposed stresses are equivalent
to the local slopes of the total stress, as shown in
Eq. 8a, b. Thus, G′

M < 0 and η′
M < 0 are equivalent to

Eqs. 6 and 7. We remark that in extremely nonlinear
cases multiple zero crossings may occur; therefore, mul-
tiple self-intersection points may appear theoretically.
In such a case, the criteria given in Eq. 4a, b are still
satisfied but the local slope at the origin will alternate
between negative and positive with each additional
loop. The criteria that G′

M < 0 and η′
M < 0 apply to the

most commonly encountered experimental situation in
which a single intersection point with mirror symmetry

exists, and the total stress is positive at the extrema of
loading, γ (t) = γ0 and γ̇ (t) = γ̇0.

The criterion G′
M < 0 can also be interpreted geo-

metrically with reference to the 3-D material response
shown in Fig. 1. Points α and β are labeled in Fig. 1
to identify points at small finite strains ∓dγ immedi-
ately before and after the strain is instantaneously zero,
respectively (see Fig. 1b). Since the strain and strain
rate inputs are related, points α and β also occur just
before and just after the maximum positive strain rate
is achieved, γ̇ (t) = + γ̇0 (c.f. Fig. 1c). The geometrical
criterion for apparent self-intersection of a 2-D viscous
projection (σ(t) vs. γ̇ (t)) is that the stress at point β,
denoted σβ , must be smaller than the stress σα at point
α. This corresponds to the constraint that dσ

dγ
|γ=0 ≡

G′
M < 0 (Fig. 1b).
In terms of the higher harmonic coefficients, in or-

der to meet the criterion G′
M = e1 − 3e3 + 5e5 − ... < 0,

the third-harmonic elastic Chebyshev coefficient, e3,
must be sufficiently large and positive to induce appar-
ent self-intersection of the viscous Lissajous–Bowditch
curves,

e3

e1
>

1

3

(
1 + 5

e5

e1
− · · ·

)
. (9)

For completeness, we note that the corresponding cri-
terion derived from Eq. 7 for self-intersection of the
elastic curves would be

v3

v1
>

1

3

(
1 + 5

v5

e1
− · · ·

)
. (10)

Figure 2 shows the normalized Chebyshev spectrums
for the Giesekus simulation of Fig. 1. Dashed lines are
shown at e3/e1 = 1/3 and v3/v1 = 1/3 which indicate
the leading order expressions for secondary loops to
appear in either the viscous or elastic projection, re-
spectively (however, we re-emphasize that the criteria
for single-loop formation given by G′

M < 0 and η′
M < 0

are quite general and not limited to leading-order ex-
pressions such as Eqs. 9 and 10). As shown in Fig. 2,
the third-harmonic elastic Chebyshev coefficient is suf-
ficiently large and positive (i.e., e3/e1 > 1/3), that
G′

M < 0 and secondary loops appear in the viscous
Lissajous–Bowditch curves.

The fundamental physical interpretation is to recog-
nize that a single self-intersection point appearing in the
viscous projection of the material response corresponds
to G′

M < 0. A negative slope indicates that the material
is unloading elastic contributions to the instantaneous
stress faster than new deformation is being accumu-
lated (Ewoldt et al. 2008). If we consider the direction
in which the space curve in Fig. 1 is traversed, then
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Fig. 2 Single-mode Giesekus model simulation, λ1ω = 1, γ0 =
5.62; a the elastic Chebyshev spectrum shows that e3/e1 is suf-
ficiently large and positive to create the secondary loops which
appear in the viscous Lissajous–Bowditch curve (Fig. 1c). b The
viscous Chebyshev spectrum. The horizontal dashed lines show
the leading-order dimensionless criteria developed in Eqs. 9 and
10 for appearance of secondary loops

it is clear that from γ = −γ0 to γ = 0 the strain rate
γ̇ (t) monotonically increases from zero to its maximum
value. Self-intersection corresponds to the existence of
a local maximum in stress (e.g., Fig. 1b) within this
quadrant of the deformation cycle and is, therefore,
interpreted as a viscoelastic stress overshoot. This over-
shoot is similar to the overshoot in the shear stress
that may occur during startup of steady shear flow.
Many nonlinear systems can show stress overshoot in
the startup of steady shear. For example, the shear-
enhanced disentanglement of polymer melts and solu-
tions or the rupture of physical network structures can
show strong stress overshoots. This overshoot behavior
is characteristic of significant microstructural change
which requires sufficiently large rates of deformation in
concert with sufficient amplitude of deformation (Bird
et al. 1987).

The Giesekus model exhibits stress overshoots dur-
ing the inception of steady shear flow (Bird et al. 1987),
and also in LAOS as indicated by G′

M < 0 and the
appearance of secondary loops (Fig. 1, 3). In LAOS,
we observe that a critical strain amplitude is required,
e.g., for λ1ω = 1, secondary loops are not observed
for γ0 ≤ 3.16, but at γ0 = 5.62 we observe G′

M < 0 and
secondary loops (Fig. 3). Additionally, we observe that
a critical shear-rate is required. For lower frequencies,
progressively larger strain amplitudes are needed such
that λ1ωγ0 � 10 (for instance at λ1ω = 0.01 the range
of strain amplitude was extended to γ0 = 1000 in order

Fig. 3 Incipient secondary loop formation for the single-mode
Giesekus model LAOS simulation, λ1ω = 1. a The elastic
Lissajous–Bowditch projection, in which the criterion G′

M < 0
developed in the text corresponds to the appearance of re-
peated roots in the nonlinear elastic stress (red curve) and self-
intersection and secondary loop formation in (b), the conjugate
Lissajous–Bowditch projection of stress vs. shear rate

to observe G′
M < 0 and the formation of secondary

loops). The combined criteria of large strain amplitude
and large strain rate amplitude are consistent with the
typical criteria for stress overshoot in startup of steady
shear (Bird et al. 1987). From the arguments and obser-
vations above, we conclude that stress overshoot is
responsible for the appearance of secondary loops in
viscous response curves with controlled-deformation
oscillations.

An important distinction between LAOS and startup
of steady shear is the periodic reversal of the flow field
in LAOS. As we have noted, the oscillatory responses
shown here are the steady periodic waveforms, thus
any stress overshoot (i.e., a local maximum in elastic
stress σ ′(x) which does not occur at x = ±1) must be
reversibly achieved. Microstructures which breakdown
irreversibly and cannot reform on the time scale of
oscillation would not be expected to show stress over-
shoot and the corresponding secondary loops in steady-
state LAOS deformations (although related features
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may be observed in the initial transient response). For
example, some polypropylene/organoclay nanocom-
posites show stress overshoot in reverse startup ex-
periments only for sufficient rest times before reversal
(Letwimolnun et al. 2007). Stress overshoots in LAOS
would only be expected if the thixotropic restructur-
ing timescale is smaller than the oscillatory deforma-
tion timescale. When this is the case, stress overshoot
in steady-state LAOS tests may be anticipated, and
LAOS may serve as a probe of thixotropic restruc-
turing timescales. For example, disentangled polymer
chains may have sufficient time to re-entangle, or soft
glassy systems may find time to restructure during
flow reversal and display reversible stress overshoot
behavior.

Our analysis can be extended to controlled loading
oscillations, e.g. σ(t) = σ0 cos ωt, with appropriate de-
composition of the resulting oscillatory strain response.
It has recently been reported (Laeuger et al. 2009) that
4 wt.% aqueous xanthan gum solutions show loops in
the stress response to strain-controlled inputs; however,
such loops are absent in the strain response to stress-
controlled inputs. This can be rationalized by our re-
sults here, since stress overshoots are a response to
deformation inputs (just as in startup of steady shear),
whereas strain overshoots typically do not arise in re-
sponse to a stress input (e.g., creep loading at constant
stress) unless the inertial effects are significant.

To summarize, we have shown that the apparent self-
intersection of 2-D Lissajous–Bowditch curves corre-
sponds to sufficiently large values of the third-harmonic
components (Eq. 9) and that a single self-intersection
point with mirror symmetry corresponds to G′

M or
η′

M < 0 (Eqs. 6 and 7). More generally, any number of
self-intersections can occur when the decomposed elas-
tic or viscous stresses cross zero away from the origin,
e.g., σ ′(x(t)) = 0, x �= 0, Eq. 4b. We find that self-
intersection of 2-D Lissajous–Bowditch curve projec-
tions is most readily interpreted in terms of the com-
plementary curve, i.e., the self-intersection of viscous
projections is caused by a strong elastic nonlinearity. In
this conjugate representation, the loops correspond to
viscoelastic overshoot in the shear stress in the mate-
rial and are analogous to the stress overshoot which
occurs during the startup of steady shear flow. The
distinction for LAOS is that the structural change asso-
ciated with the overshoot must be at least partially re-
versible on the timescale of the oscillatory deformation
and reoccur periodically. The signature of secondary
loops may therefore act as a means of distinguishing
various molecular and microstructural systems which
show reversible stress overshoot behavior from those
that exhibit nonlinearities originating from aging and

thixotropy. This interpretation helps explain why sec-
ondary loops have been correlated with (and used to
indicate) a lack of long-chain branching in polymer
melts (Stadler et al. 2008), since branching may strongly
modify stress overshoot behavior in an entangled
material.

Finally, we note that apparent self-intersections
and the appearance of secondary loops in the elastic
Lissajous–Bowditch projections (i.e., plots of stress vs.
strain) would correspond to pronounced overshoots in
the instantaneous dissipative nature of a material (see
Eq. 8b); for example a non-monotonic shear-thickening
response. We are unaware of any experimental obser-
vations of such phenomena to date but they do not
appear to be prohibited in principle.
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