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Abstract Rheology of isothermal suspensions of com-
pletely exfoliated silicate lamellae in polymer melts is
investigated. In order to express more faithfully the
physics involved in low shear rates and low frequencies,
we model the polymer molecules composing the melt
as chains whose motion is confined to a tube formed
by surrounding chains and lamellae. In the absence of
lamellae, the model reduces to the mesoscopic model
of reptating chains developed in Eslami and Grmela
(Rheol Acta, 2008). If the chains are seen only as
FENE-P dumbbells, the model reduces to the model
developed in Eslami et al. (J Rheol 51:1189–1222,
2007). Responses to oscillatory, transient, and steady
shear flows are calculated and compared with available
experimental data. Particular attention is payed to the
region of low shear rate and low frequency.
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Introduction

The physical system investigated in this paper is the
same as in Eslami et al. (2007). It is an incompress-
ible and isothermal suspension of homogeneously dis-
tributed and completely exfoliated clay lamellae in
polymer melts. In the model formulated in Eslami
et al. (2007) (hereafter called model I), the polymer
macromolecules composing the melt are represented by
FENE-P dumbbells. The model includes the lamella–
lamella and lamella–polymer interactions, it is formu-
lated on a mesoscopic level on which conformation
tensors serve as microstructural state variables and
in the modular framework of GENERIC. As for the
results, predictions of nonlinear rheology are relatively
easily calculated (the calculations consist of solving a
system of ordinary differential equations) and show
a good agreement with results of experimental ob-
servations except for the measurements revealing the
long-range structures (i.e., low-deformation nonlinear
rheology and low-frequency linear rheology). The ob-
jective of this paper is to extend model I to include the
physics involved in the larger structures.

We make two modifications of model I. First, we
replace the FENE-P dumbbells with reptating chains.
The motion of one selected chain is constrained by
a tube formed by surrounding chains and surround-
ing lamellae. On the mesoscopic level of description
adopted in this paper, the reptating motion is expressed
mathematically as a diffusion alongside the backbone
of the chain and the lamellae participation in the repta-
tion as a coupling of the diffusion to the conformation
of the plates. Microscopic details about the influence
of the lamellae on the motion of the chains is out of
the reach of the mesoscopic description. The second
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modification that we are introducing in model II is
that the renormalization of the number densities of
the polymer molecules and the lamellae are allowed
to depend on the concentration of the lamellae. The
renormalization is needed in model I, as well as in
the model developed in this paper (hereafter called
model II) in order to resolve in the mathematical for-
mulation, which uses only one-chain and one-lamella
characterizations, the disparity of sizes of lamellae and
polymer molecules. As in (Eslami et al. 2007), model II
is constructed in the framework of GENERIC. In the
absence of lamellae, model I reduces to the FENE-P
model and model II to the mesoscopic tube model
developed in Eslami and Grmela (2008).

The paper is organized as follows. In the “Model
formulation” section, we formulate the governing equa-
tions of the model. In the “Results and discussion”
section, we present the results and compare them
with results of experimental observations (in particular,
the results collected in the low deformation nonlinear
rheology and low-frequency linear rheology).

Model formulation

Classical hydrodynamics begins with a general frame-
work for the time evolution equations whose solutions
are guaranteed to agree with the observed conserva-
tion of the total mass, the total energy, and the total
momentum. The framework (the local balance laws) is
then filled with the particular physics of the particular
fluid under consideration in the second step, called a
specification of constitutive relations. The second step
becomes very difficult for complex fluids (for example,
for the suspensions discussed in this paper). In order to
simplify it, we may suggest to begin by modifying the
first step. This type of extension of the strategy of clas-
sical hydrodynamics, suitable in particular to complex
fluids, is called GENERIC (Grmela and Ottinger 1997;
Ottinger and Grmela 1997).

Instead of requiring just mass, energy, and momen-
tum conservations, we require more. Solutions to the
governing equations are required to be compatible
with mechanics and with thermodynamics. The former
requirement means that, in the absence of dissipa-
tion, the dynamics is Hamiltonian; the latter means
that solutions of the governing equations approach
(in the absence of external forces) equilibrium states
at which the equilibrium thermodynamics is applicable.
The framework for equations possessing the properties
mentioned above is called GENERIC. Its main advan-
tage is the wide range of applicability. The GENERIC
framework is formulated for any set of state variables,

while the framework of classical hydrodynamics is for-
mulated only for the classical hydrodynamic fields. The
complex fluids are complex because they have an inter-
nal structure that evolves in time on a scale comparable
to the scale on which the classical hydrodynamic fields
evolve. The internal structure has to be thus repre-
sented in the state variables and in the time evolution.
Consequently, the framework of classical hydrodynam-
ics (a set of local balance laws for the classical hydrody-
namic fields) does not apply to complex fluids.

The GENERIC framework is recalled in the
Appendix. The GENERIC constitutive relations rep-
resenting the nano suspension are discussed in the next
section.

GENERIC constitutive relations

Hereafter, we limit ourselves to isothermal fluids. In
order to transform Eq. 18 into equations governing
the time evolution of the nano suspension discussed in
this paper, we have to express the particular physics of
the suspension in the specification of x, L, �, �, called
GENERIC constitutive relations. We shall make the
specifications, one after the other, below.

State variables

Beside being isothermal and incompressible, we con-
sider the suspension under consideration in this paper
to be spatially homogeneous. The state variables are
thus independent of the position vector r.

The polymer molecules composing the polymer
melts are regarded as chains. States of the melt in
tube theories (De Gennes 1971; Doi and Edwards 1986;
Likhtman and McLeish 2002; McLeish 2002) are char-
acterized by one chain configuration space distribution
function ψ(R, s), where R is the vector tangent to the
chain and −1 ≤ s ≤ 1 is the coordinate on the backbone
of the chain. We follow (Eslami and Grmela 2008) and
choose the conformation tensor c(s) to characterize
states of chains. The conformation tensor is a symmet-
ric positive definite three-by-three tensor. It has the
physical interpretation of the deformation tensor. It can
also be interpreted as a second moment of ψ(R, s).
By choosing c instead of ψ , we gain the simplicity
in solving the governing equations but we loose the
richness of details of the physics that we can express.
Results reported in Eslami and Grmela (2008) indicate
that the details we lose are of lesser importance in the
investigation of the rheological behavior of our interest.

Now, we have to decide what the variables that we
shall use to describe states of the lamellae are. In this
paper, we make the simplest choice. Let n be a unit
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vector perpendicular to the lamella. The distribution
of the lamellae for homogeneous distribution is de-
scribed by the distribution function ψ(n). Its second
moment is a tensor denoted by the symbol a (i.e., aαβ =∫

dnnαnβψ(n)). The constraint |n| = 1 is expressed on
the conformation tensor level as tra = 1. This means
that the surface area of one lamella remains unchanged
during the time evolution.

Altogether, the state variables considered in this
paper are:

(u(r), c(s), a) ; tr(a) = 1, (1)

where u(r) is the field of momentum. In the context of
rheology, the momentum field is imposed from outside.
In accordance with our assumption of spatial homo-
geneity, we shall consider below only u that depends
linearly on r.

Kinematics

We use the same kinematics for c(s) as in Eslami and
Grmela (2008) and for a as in Eslami et al. (2007).
We therefore write directly the nondissipative time
evolution equations, i.e., the first term on the right-hand
side of Eq. 18:

∂uα

∂t
= −∂β

(
uαuβ

ρ

)

− ∂α p − ∂βσαβ (2)

∂cαβ

dt
= −1

2
(� · c − c · �)αβ + 1

2
(γ̇ · c + c · γ̇ )αβ (3)

da
dt

= −1

2
(� · a − a · �)

+ ξ

(

−1

2
(γ̇ · a + a · γ̇ ) + tr(a . γ̇ )a

)

(4)

and the expression for the extra stress tensor σ corre-
sponding to them

σαβ = −2
∫ 1

−1
ds cαε�cεβ

+ 2 ξ aαε�aεβ

− 2 ξ aαβ tr(a . �a) (5)

By γ̇ αβ = ∂�uα

∂rβ
+ ∂�uβ

∂rα
and �αβ = ∂�uα

∂rβ
− ∂�uβ

∂rα
, we

denote the strain rate and the vorticity tensor, respec-
tively; α, β = 1, 2, 3. We use in Eq. 5 and in the rest
of the paper the summation convention (i.e., summa-
tion over repeated indices). Note that Eq. 4 implies
dtra/dt = 0.

The advection of c(s) and of a is different because
of the following three differences in the tensors c(s)
and a: (1) the tensors c(s) are unconstrained and the
tensor a is constrained by tra = 1; (2) c(s) are the
second moments of the vector that itself is advected by
the flow, while a is the second moment of the vector
that is perpendicular to the plate that is advected by
the flow; and (3) the advection of c is affine and the
advection of a, involving the parameter ξ , is nonaffine.
The nonaffine modification of the advection makes
the nondissipative time evolution non-Hamiltonian.
It should be seen as an approximation of an active
advection, introduced in Gu and Grmela (2008), that
is Hamiltonian. The formula Eq. 5 arises as a conse-
quence of the Hamiltonian structure. In the case of
the nonaffine (i.e., non-Hamiltonian) advection, the
formula Eq. 5 can be derived from thermodynamic con-
siderations (Grmela 1985). In this paper, we consider
ξ to be a phenomenological parameter. We note that
it is the only phenomenological parameter entering the
nondissipative time evolution. All the other parameters
expressing the individual nature of the suspension will
enter in the dissipative part.

Dissipation

From the general formulation (see Appendix), we
know that the dissipation potential � is a function of
�c(s) and �a satisfying certain properties. The physics
that we want to express in it is that the chain whose
states are described by c(s) is confined to a tube formed
by surrounding chains, and also surrounding plates.
Inside the tube, the chain moves predominantly along
its backbone. This motion, also called a reptation mo-
tion, can be seen as a diffusion along the backbone.
The force generating diffusion in R3 is a gradient with
respect to the position coordinate r ∈ R3. The force
generating diffusion along the backbone is thus a gradi-
ent with respect to s. In addition to the thermodynamic
force �c , we thus introduce a new force (�c)s (denot-
ing the derivative of �c with respect to s).

The thermodynamic force generating dissipation in
the motion of the plates has to be chosen in such a way
that the constraint tra = 1 remains unchanged during
the time evolution (Edwards et al. 2003). We can easily
verify that the force

Aij = �aij −
1

3
tr�a δij (6)

has this property. Indeed, da/dt = −∂�/∂�a implies
dtra/dt = −tr (∂�/∂�a) = 0, provided the dissipation
potential � is a function of Å (i.e., it depends on �a
only through its dependence on Å).
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If we limit ourselves to states that are not too far
from equilibrium (i.e., the states for which �c and
�a are not too large), we can choose the dissipation
potential � to be the following quadratic function of
the thermodynamic forces:

� = (
�cij ,

(
�cij

)
s , Aij

)
�

⎛

⎜
⎜
⎜
⎜
⎝

�ckl

(
�ckl

)
s

Akl

⎞

⎟
⎟
⎟
⎟
⎠

, (7)

where

� =

⎛
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⎜
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α(1−α)
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α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(8)


11, 
22, 
33, 
13, and 
23, hereafter called mobility
tensors, are phenomenological parameters represent-
ing the suspension in the model. By α, we denote the
volume fraction of the suspended lamellae. In order
for Eq. 7 to satisfy the properties required from the
dissipation potential (see Appendix), the matrix � has
to be positive definite. This then serves as a constraint
for the phenomenological parameters 
11, 
22, 
33,

13, and 
23.

In the absence of the lamellae (i.e., in the absence of
the thermodynamic force Å), the dissipation potential
Eq. 7 reduces to � introduced in Eslami and Grmela
(2008). The thermodynamic force (�c)s generates the
reptation motion of the polymer chains. Now, we
introduce the lamellae into the polymer melt. In the
mathematical formulation, we express it by coupling
the reptation force (�c)s to Å (i.e., 
23 �= 0). From
the physical point of view, the coupling represents a
modification of the diffusion along the backbone of the
chain (i.e., the reptation motion) by the presence of
the lamellae. The microscopic details of the lamellae–
chain interactions are outside the scope of the meso-
scopic formulation adopted in this paper. The newly
introduced parameter 
23, quantifying the influence
of the lamellae on the reptation, is considered as a
phenomenological material parameter whose value is
obtained by fitting experimental data.

As for the choice of the mobility tensors �, we follow
Beris and Edwards (1990, 1994) and use polynomial
functions of c and a. More specifically, we choose:

�11 = 
11
0

[
f1 ĉδ + f2 ĉc

]
(9)

and

�22 = 
22
0

(
1 + 
̃22

0

(
trc − trceq

)2
) [

f1 ĉδ + f2 ĉc
]

(10)

�33 = 
33
0

(
f3 âδ + f4 âa + f5 âaa

)
(11)

�13 = 
13
0 ĉa

�23 = 
23
0 ĉa (12)

The coefficients fi(i = 1 − 5) appearing in Eqs. 9, 10,
and 11 equal either 0 or 1. We are introducing them
in order to be able to explore in the next sections
consequences of choosing linear and/or quadratic de-
pendence on c and higher-order dependency of a.
If ( f3 = 1, f4 = 0, f5 = 0) [respectively, ( f4 = 1, f3 =
0, f5 = 0) or ( f5 = 1, f3 = 0, f4 = 0)], we call �33 a
first-order (respectively, the second or third order) mo-
bility tensor. The symbol ceq arising in Eqs. 9 and 10
denotes the conformation tensor c at equilibrium. � are
all fourth-order tensors;̂ means symmetrization in the
four indices, and 
11

0 , 
22
0 , 
̃22

0 , 
33
0 , 
13

0 , and 
23
0 are

phenomenological coefficients.
The physical interpretation of the coefficients 
0

is the following: (
0)
−1 ∼ λ0 where λ0 are relaxation

times. In the two component fluids under consideration
(polymers and lamellae), we need a mixing rule for the
relaxation times. We choose the simplest one. We pass
from λ11

0 to (1 − α)λ11
0 , from λ33

0 to αλ33
0 , and from λ13

0

and λ23
0 to α(1 − α)λ13

0 and α(1 − α)λ23
0 . The volume

fraction α of the lamellae is related to the weight frac-
tion w by α = ρcw/(ρa − (ρa − ρc)w), where ρc (respec-
tively, ρa) is a mass density of the polymer (respectively,
lamellae). The other place where the volume fraction α

enters the governing Eqs. 3 and 4 is in the free energy
discussed below.

Free energy

Finally, we turn to the specification of the free energy
�. We write it as a sum of four terms:

� = �kin + �c + �a + �ca (13)

where �kin = u2

2ρ
is the kinetic energy part, ρ is the mass

density assumed to be a constant, and �c and �a are the
free energy of the polymer matrix, and the lamellae,
respectively. The term �ca is the contribution to the
free energy due to the polymer–plate interaction.
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As for the free energy of polymer matrix �c, we
follow what we have done in Eslami and Grmela (2008)
by considering locally a FENE-P dumbbell model:

�c = 1

V

∫
dr

∫ 1

−1
ds

[

− nc HQ2
0 ln (1 − tr c)+Ktr(cs · cs)

−1

2
nckBT ln(det c)

]

(14)

By cs, we denote dc
ds .

The first term is the FENE-P intramolecular energy,
H is the modulus of the local spring, and R0 its maximal
length.

The second term represents a nonlocal (in s) con-
tribution to the intramolecular energy. In the case
when the local FENE-P dumbbell is replaced by a rigid
dumbbell, it is the energy associated with the bending
of the chain. The coefficient K is the modulus of this
type of intramolecular interaction.

The third term represents the entropy S multiplied
by the temperature T. By nc, we denote the number
density of the polymer chains (nc = (1−α)ρc NA

Mc
; α is the

volume fraction of the lamellae, NA is the Avogadro
number, and Mc is the molecular weight of the
polymer).

As for free energy of lamellae �a, its energy part will
be neglected. The entropy part is chosen to be a linear
combination of the classical Boltzmann entropy and the
Khokhlov–Semenov entropy (Khokhlov and Semenov
1985; Grmela 1990) accounting for the flexibility of the
plates:

�a = G tra − 1

2
na (1 − Kflex) kBT ln(det a)

+ na KflexkBTtra−1 + κn2
akBT

(
(tra)2 − tr(a . a)

)

(15)

where na is the number density of plates (na = α
A0h ; A0

is the surface area of the lamella and h is its thickness),
Kflex denotes a parameter characterizing the flexibility
of plates ( 0 < Kflex < 1), and κ is a modulus of the
plate–plate interaction. The first term in the free energy
expresses the constraint tra = 1, and the parameter G
is the Lagrange coefficient.

Finally, the polymer lamellae interaction free energy
�ca, is chosen as follows:

�ca = κ ′ ncnakBTtr(c . a) (16)

where κ ′ is phenomenological parameter measuring the
polymer–plate topological interactions. The expression
in Eq. 16 is the Onsager entropy adapted to the plate–
chain topological interactions expressed in terms of the

conformation tensors rather than distribution functions
(see more in Eslami et al. 2007).

The choice of the parameters entering the free en-
ergy is restricted by requiring the thermodynamic sta-
bility, i.e., by requiring that the matrix

⎛

⎝
�c

cc �ca
ca

�ca
ca �a

aa

⎞

⎠

is positive definite. We use the notation: �c
cc = ∂2�c

∂c2 ,
�a

aa = ∂2�a

∂a2 , and �ca
ca = ∂2�ca

∂c∂a .
When we are combining the free energies �a, �c,

and �ca, we have to face the problem of the disparity
of shapes and sizes of the polymer macromolecules and
the lamellae. Due to the large surface area of the rigid
lamellae, one lamella interacts simultaneously with not
one but a whole group of macromolecules. In other
words, the particular shape and the rigidity of the lamel-
lae makes its interaction with surrounding macromole-
cules (that are flexible and have a very different shape)
very nonlocal. To account for this effect, we rescale
na. We multiply it by a factor χ . After the rescaling,
we can regard the lamellae and the macromolecules
as equal partners in the interactions. In Eslami et al.
(2007), the scaling parameter χ was assumed to be a
constant. In this paper, we let it depend appropriately
on the volume fraction α. The other parameters enter-
ing the free energy will, in general, also depend on α.
However, we expect this dependence to be of lesser
importance and leave it out of our consideration in this
paper.

Material parameters

At this point we have completed the formulation of
the governing equations of the model. In the next
sections, we turn to their solutions. Before engaging
ourselves in the process of finding solutions, we make
a general comment about the parameters introduced in
them. Every theory, formulated on any level of descrip-
tion, needs parameters (called material parameters)
expressing the individual features of the systems under
consideration. For instance, in classical mechanics, it
is the mass and all the parameters entering the char-
acterization of the forces; in hydrodynamics of simple
fluids, the material parameters are the viscosity and the
heat conductivity coefficients and all the parameters en-
tering the local fundamental thermodynamic relation.
The mapping physical systems → material parameters
can be obtained by following two routes: (route 1) by
staying inside the level, or (route 2) by investigating
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relations to other levels. Below, we shall make a few
brief comments about both routes.

Route 1

Let the level on which we place ourselves be denoted by
the symbol L0. Among all experimental observations
made on the level L0 (we shall denote them by the
symbol O0), we select some (Ometr

0 ⊂ O0) that will be
regarded as measurements of the material parameters.
The values of the parameters are obtained by fitting the
results of the observations Ometr

0 with predictions of the
theory. The success or the failure of the theory is then
seen in comparison with the results of the remaining
O0 \ Ometr

0 observations with predictions of the theory.
This route is traditionally followed on all well estab-
lished levels as, for example, in classical thermodynam-
ics, classical mechanics, and classical hydrodynamics.

Route 2

Let the level L1 be more microscopic (i.e., involving
more details) than the level L0. For instance, let L0 be
the level of classical hydrodynamics and L1 the level of
Boltzmann kinetic theory. Both levels L0 and L1 are
autonomous (i.e., neither of them needs the other to
be formulated and applied), but since the level L1 is
more microscopic, we can anticipate that an analysis
of solutions of the governing equations on the level L1

can lead to a derivation of the theory on the level L0.
The process of the derivation can be seen as a pattern
recognition process in the set of solutions (trajectories)
obtained on the level L1. For instance, in the case
of L1 being the Boltzmann kinetic theory and L0 the
hydrodynamics, such passage L1 → L0 is provided by
the famous Chapman–Enskog method. Let the mate-
rial parameters associated with the level L1, respec-
tively, L0, be denoted P1, respectively, P0. The passage
L1 → L0 induces the passage P1 → P0. The material
parameters P0 can be thus obtained by independent
measurements made on the level L1. For example,
by using the Chapman–Enskog method, we obtain
the viscosity and the heat conductivity coefficients ex-
pressed in terms of the material parameters used in the
Boltzmann kinetic theory.

In the context of the model introduced in this paper,
we note first that the material parameters all have a
clear physical meaning. Each of them appears in either
the free energy or the dissipation potential; each of
them is associated with specific physics expressed on
the mesoscopic level on which the model is formulated.
We do not attempt in this paper to see the suspensions
under consideration from a more microscopic point of

view (e.g., from the point of view of kinetic theory), and
consequently, our only option to specify the material
parameters is route 1. The main problem is that we
do not have in our disposition a large enough pool of
experimental data to both measure and predict. The
post processing of the model, i.e., a systematic analysis
of the influence of the material parameters on the
results that are compared with results of experimental
observations, that we do in the next section, is found
to be very useful in the determination of the mapping
physical systems → material parameters.

Results and discussion

As for the imposed flows, we consider shear flows and
oscillatory flows. We calculate both the linear and the
nonlinear viscoelastic behavior.

A simple shear flow is given by the momentum field
u1 = γ̇(t)x2, u2 = u3 = 0. The velocity gradient γ̇(t) is,
in general, a function of time. The absolute value of
γ̇(t) is called a shear rate. In this paper, we follow the
standard notation for the viscosity coefficient η, the
shear stress σ , and the first normal stress differences
N1. The governing equations of the model represent,
from the mathematical point of view, a system of partial
differential equations (PDEs). The initial conditions
are the equilibrium solutions (i.e., �c = 0 and �a = 0).
As for the boundary conditions of PDEs, we follow
Eslami and Grmela (2008). We solve the time evolution
equations numerically by using the MATHEMATICA
software package (Wolfram 1991).

In the linear viscoelastic regime with small sinusoidal
strain γ (t) = γ0 sin ωt, the shear stress tensor is pre-
sented by σ(t) = γ0

(
G′ sin ωt + G′′ cos ωt

)
, where G′

and G′′ are the storage and loss moduli, respectively.
Again, in order to model the linear viscoelastic behav-
ior of nanocomposites, we shall follow the procedure
used in Eslami and Grmela (2008) and express the con-
formation tensors c and a as a linear function of γ0 ω.
Finally, we solve the reduced equations numerically to
find the linear viscoelastic functions.

Model predictions

We turn now to the postprocessing of the model, i.e.,
to finding the relation between model parameters and
rheological measurements in different flows.

It is useful to regard rheological models as input–
output systems. The input is the microscopic or meso-
scopic physics used in its formulation and the output
are predictions of the observed rheological behavior.
Both input and output have many components. In the
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input, they are the particular physical features involved
(e.g., the local extensibility, the constraints, tube forma-
tion, etc.), and in the output, they are the features of the
observed behavior (e.g., the length of the plateau in the
curve η vs γ̇ for pure polymer, the slope of this curve
as γ̇ → ∞, the slope of this curve at low shear rate
which is an indication of yield stress, etc.). The passage
between the input and the output is made by solving
the (in general, very nonlinear) governing equations
of the model. An understanding gained by the model
is often measured by the success in establishing direct
passages between individual components of the input
and individual components of the output. For example,
as we shall see below, the nonlinear dependence of
the dissipative kinetic coefficients is seen to influence
mainly the length of the plateau in the case of pure
polymer, the nonlocal intramolecular interactions in-
fluence mainly the linear rheological behavior, depen-
dency of rescaling parameter to clay volume fraction
influences the material function at low shear rate and
low frequency, etc. A word of caution is in order.
The input–output passage involves solutions of com-
plex nonlinear equations. In general, the input–output
relation is very complex, and simple passages between
single components of the input and the output do not
exist. Having this in mind, we proceed to investigate
the input–output passage of the model presented in this
paper.

In the following calculations of model predictions,
the model parameters are chosen as follows: 
11

0 =
10−5, 
22

0 =10−7, 
̃22
0 =1.75×105, 
33

0 =10−8, 
23
0 =10−8,


13
0 =10−8, b = 2HQ2

0
kBT =2.5, K=3 × 105, κ = 10−24, κ ′ =

10−24, Kflex = 0.1, χ = 6000 α0.75 and ξ = 0.99. Predic-
tion of transient material functions is made at γ̇ =
0.1s−1 and 5 wt.% clay.

Effects of the shear rate on transient material functions

Figure 1a, b depicts the effects of shear rate on the
transient material functions, η+ and N+

1 , respectively.
The results show that, for small shear rates, the viscosity
reaches its steady state value monotonically.

As the shear rate increases, the curve of viscosity
vs time shows an overshoot. The size of the overshoot
increases and the time at which the overshoot appears
decreases when the shear rate increases. Similar re-
sults are obtained for the first normal stress differences
(see Fig. 1b). The overall qualitative features of the
curves are essentially the same as the ones seen in
the experimental data collected for polymer melts and
solutions (Bird et al. 1987; Eslami et al. 2003), misci-
ble polymer blend (Eslami et al. 2004), and polymer

a

b

Fig. 1 Effect of shear rate on stress growth material functions.
a Shear stress and b first normal stress differences

nanocomposites (Wu et al. 2005; Ayyer and Leonov
2004).

Effects of the mobility coefficients on the material
functions

Figure 2a, b depicts the influence of the plate mobility
coefficient 
33

0 on the transient material functions, η+
and N+

1 , respectively. As seen in Fig. 2a, both the
stationary value and the size of the overshoot increase
with decreasing 
33

0 . Figure 2b indicates that similarly
as the shear viscosity, the stationary values of the first
normal stress difference increase with decreasing 
33

0 .
However, N+

1 is less sensitive to increasing the size
of the overshoot than η+ (the size of the overshoots
becomes visible more clearly if the curves are drawn in
the normalized form).
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a

b

Fig. 2 Effect of plate mobility coefficient 
33
0 on stress growth

material functions. a Shear viscosity and b first normal stress
differences

Changing the plate mobility coefficient means, from
the physical point of view, changing the friction among
the plates. With the plate mobility coefficient increas-
ing, the friction among the platelets decreases, which in
turn means a decrease in the obstacles in the suspension
and, thus, a decrease in the viscosity.

As for the overshoot in the viscosity curve, we can
interpret it as follows: With decreasing plate mobility
coefficient, the friction among platelets increases which
then means that the suspension is more anisotropic and
consequently the overshoots are more pronounced. It
should be also noted that we let the plate mobility
depend on the plate orientation tensor a (see Eq. 11).
From the physical point of view, the higher the order
on the nonlinearity of the function 
(a) is, the more
anisotropic the suspension is.

Figure 3a, b presents the influence of the polymer
plate mobility coefficients 
13

0 and 
23
0 on the stress

growth viscosity. The former is related to the classical
dissipation mechanism and the latter to the reptation
mechanism.

Again, one can relate the interaction mobility coef-
ficient to the friction among the macromolecules and
plates: 
13

0 is related to the friction among polymer
chains and platelets, while 
23

0 can be interpreted as
the level of friction between the chain segments and the
platelets.

Figure 3a shows that, with increasing 
13
0 , the sta-

tionary values of the shear viscosity increase. One can
also see slight changes in the size of the overshoot with
increasing 
13

0 . As mentioned above, increasing 
13
0

means increasing the interaction between chains and

η+ (,
γ 0)      Λ

0

      
      
      
      

a

b

Fig. 3 Effect of polymer plate interaction mobility coefficient on
stress growth viscosity. a Effect of 
13

0 and b effect of 
23
0
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platelets. Depending on the morphology of the chain,
this interaction manifests itself differently. At low shear
rates the coil-like morphology of the chains offers more
obstacles for the motion of the platelets, and, conse-
quently, we see the viscosity increase (i.e., the friction
among polymer chains and platelets increases). How-
ever, at high shear rates, where the chains are more
extended and oriented, increasing the interaction mo-
bility coefficient of polymer and plate means decreasing
the friction among polymer chain and platelets, which
then decreases the viscosity of the suspension (results
for high shear rates are not shown here for the sake of
brevity).

Figure 3b shows that, with increasing 
23
0 , the sta-

tionary value of the shear viscosity decreases while
the size of the overshoot does not change. The same
interpretation as above can also explain this behavior.
As mentioned earlier, 
23

0 is related to the interaction
between chain segments and platelets, and since we
assume that the segments are very small (for more
detail, see Eslami and Grmela 2008), the flow situation
(low or high shear rates) does not change the overall
behavior of this curve.

Effects of the nanoparticle loading
on the material functions

As mentioned earlier, the volume fraction of nanopar-
ticle α is introduced in three places: in the dissipation
potential, in the free energy, and in the rescaling para-
meter. The reason why we let the rescaling parameter
be a function of the volume fraction of the silicate plates
is that the number of polymer macromolecules that
are in contact with a plate changes when the number
of plates changes. At this point, we assume a simple
dependency of the rescaling parameter to α.

The transient shear stress and the first normal stress
differences of polymer nanocomposites at different
contents of nanoparticles are presented in Fig. 4a, b. As
expected, the rheology of polymer nanocomposites is
significantly influenced by the nanoparticle loading. As
it increases, i.e., as α increases, the effects become more
significant. These results show that both the stationary
values and the size of the overshoots increase with
increasing the nanoparticle loading. The dependence of
the overshoots on α is more pronounced in σ+ than in
N+

1 . The stationary values of N+
1 (i.e., N+

1 |t→∞) depend
on α more sensitively than the stationary values of the
shear stress. From the physical point of view, this is
because, by increasing the clay loading, the elasticity
increases, which then shows itself in the overshoot in
the shear stress and in the absolute values of the first
normal stress differences.

σ+ (,
γ 0

) 

           1%
           2%
           3%
           5%

a

b

Fig. 4 Effect of the nanoparticle weight fraction on stress growth
material functions. a Shear stress and b first normal stress
differences

Figure 5a shows the steady state viscosity of polymer
nanocomposites for a wide range of shear rates and dif-
ferent nanoparticle contents. It is found that increasing
the clay loading results in a significant increase in the
viscosity at low shear rates and, to a lesser extent, at
high shear rates. In other words, when the nanoparticle
loading increases, the behavior for all ranges of shear
rates becomes non-Newtonian (shear thinning). The
model prediction shows that, at high shear rates, the
viscosity is almost independent of the silicate loading
and is comparable to that of the polymer matrix. This is
because, at high shear rates, the plates are all oriented
in the direction of the flow and the viscosity of the
suspension is dominated by the polymer matrix. The
effect of the clay loading at low shear rates is depicted
in the small figure imbedded in Fig. 5a. As it is clearly
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a

b

Fig. 5 Effect of the nanoparticle weight fraction on the a steady
state viscosity and b Cox-Merz relation

seen in this figure, the slope of the curve of shear stress
vs shear rate decreases with increasing clay loading,
and at high clay loading, it almost becomes a plateau,
which indicates a large value of the yield stress. We will
discuss this issue in Fig. 8, where we compare the model
with experimental data.

The empirical Cox–Merz relation, which requires
η∗(ω) = η(γ̇ ) where ω = γ̇ , is proved to be applicable
for homopolymers. Figure 5b shows that the rule fails
for polymer nanocomposites. Even though our model
does not predict well the Cox–Merz relation for the
polymer matrix at high shear rates, it does predict
it for low and medium shear rates. In the case of
nanocomposites the Cox–Merz rule fails in the whole
range of shear rates. Such a failure has been previously
observed for filled polymer systems. The reason for the

failure is that, by applying steady shear flow, the silicate
layers become preferentially oriented in the direction
of the flow, even at low shear rates. The failure of the
Cox–Merz rule can also be related to the formation of a
network structure of silicate layers. An extension of the
Cox–Merz rule concentrated suspensions and materials
with a yield stress has been introduced by Doraiswamy
et al. (1991). We hope to discuss this issue in near
future.

Figure 6a, b represents the linear viscoelastic behav-
ior as a function of the angular frequency for polymer
nanocomposites at different nanoparticle loading. As
we have already seen in Fig. 5a, the flow behavior
of nanocomposites differs significantly from the one
corresponding to the pure matrix fluid in the non-
linear viscoelastic zone. Results of Fig. 6a show that

a

b

Fig. 6 Effect of the nanoparticle weight fraction on the a storage
modulus G′ and b loss modulus G′′
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the storage modulus G′ is dramatically influenced by
the presence of silicate platelets, while Fig. 6b shows
a lesser sensitivity of loss modulus G′′ on the clay
loading. As seen from Fig. 6a, the slopes of log G′
vs log ω are much smaller than 2, which is normally
expected to be the case for noncrosslinked polymer
melts. Such large deviation, which normally occurs in
the presence of a small amount of layered silicate load-
ing, may be due to the formation of a clay network
structure. In general, the model predictions are quali-
tatively consistent with experimental data for polymer
layered silicate nanocomposites (Wu et al. 2005; Ayyer
and Leonov 2004; Krishnamoorti et al. 2001; Ren and
Krishnamoorti 2003).

Comparison with experimental data

Model predictions are compared with a complete set
of experimental data for polymer/layerd silicate nano-
composites in steady and oscillatory shear flows. The
experimental data has been taken from Krishnamoorti
et al. (2001) and Ren and Krishnamoorti (2003) where
the rheological tests were performed over a wide range
of shear rate and angular frequency. In the comparison
between model predictions and experimental data,
the model parameters are considered to be: 
11

0 = 2 ×
10−7, 
22

0 = 3 × 10−6, 
̃22
0 = 1.5 × 104, 
33

0 = 8 × 10−10,


13
0 =2 × 10−10, 
23

0 =5 × 10−10, b =2.5, κ =10−25, κ ′ =
10−25, Kflex =0.15, χ =800 α0.75, ξ =0.98, K=3 × 105.

Figure 7a, b shows the effect of clay loading on the
steady state viscosity and first normal stress differences,
respectively. As can be seen in Fig. 7a, this set of
experimental data is very well predicted by the model
over the whole range of extended shear rates. In order
to faithfully compare model I and model II, we use the
same experimental data that have been used in Eslami
et al. (2007). We found that the prediction of model
II is much closer to experimental data than model I,
especially at high silicate loading.

The melt elasticity of polymeric systems can be mea-
sured by the first normal stress differences N1. The
effect of silicate loading on the elasticity of polymer
nanocomposites has been previously investigated by
measuring the dependence of N1 on the clay loading
(Gupta et al. 2005; Krishnamoorti et al. 2001; Ren and
Krishnamoorti 2003). According to Gupta et al. (2005),
in the case of exfoliated nanocomposites, the melt elas-
ticity of nanocomposites decreases with an increase in
clay loading. The authors claimed that this reduction
of the elasticity may be related to the high interaction
between clay layers and polymer chains in the case of
exfoliated nanocomposites.

a

b

γ 

c

Fig. 7 Model predictions and comparison with experimental data
in steady shear flow. a Steady viscosity, b steady first normal stress
vs shear stress, and c steady first normal stress vs shear rate
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Krishnamoorti et al. (2001) and Ren and
Krishnamoorti (2003) also measured the first normal
stress differences N1 as a function of the shear stress
at different clay loading. They reported that N1 is
independent of the silicate loading (see Fig. 7b).
The authors suggest that this observation can be a
consequence of the flow-induced orientation of silicate
layers.

We also compared our model predictions with ex-
perimental data reported in Krishnamoorti et al. (2001)
and Ren and Krishnamoorti (2003). As seen in Fig. 7b,
our predictions do not agree with their observations.
In other words, with an increase in clay loading, the
first normal stress difference N1 increases. We suggest
that the increase of the value of N1 is a consequence
of the solid-like behavior of nanocomposites (becoming
stronger with an increase in clay loading). Our results
show that, at high shear stress (high shear rates), N1

is nearly independent of the clay loading. This obser-
vation at high shear stress is in agreement with experi-
mental observation in Krishnamoorti et al. (2001) and
Ren and Krishnamoorti (2003). It should also be noted
that an unusual decrease in N1 is observed at very low
shear rates.

In Fig. 7c, we plot N1 vs shear rate, where the
model predictions are compared with experimental
data. Again, we see a less satisfactory agreement be-
tween the model predictions and the experimental data,
especially at low shear rates.

One of the highlighted characteristics of the rheology
of the filled polymer system, especially at high concen-
tration, is the emergence of the yield stress. This means
that, at stresses that are lower than yield stress, the
suspension behaves like a solid (it deforms only elas-
tically), while at stresses that are higher than the yield
stress, it behaves like a liquid. From the physical point
of view, the emergence of the yield stress is related
to high filler–filler interactions, which become impor-
tant at concentrated suspensions. According to Casson,
the yield stress can be determined by the following
equation (Malkin 1990):

σ
1/2
12 = σ

1/2
0 + β γ̇ 1/2, (17)

where σ0 is yield stress and β is an arbitrary constant.
Figure 8a shows the prediction of the model for the

shear stress vs shear rate at low shear rates where we
calculate the yield stress. The yield stress is calculated
by fitting Eq. 17 for different clay loading (see the small
graph imbedded in Fig. 8a).

σ

γ1/2 1/2

γ1/2 1/2

σ

γ 

σ

σ

a

b

Fig. 8 Model predictions and comparison with experimental
data. a Yield stress at different silicate loading, model predic-
tions. b Yield stress, comparison between model and experimen-
tal data

Yield stresses predicted by the model are also com-
pared with experimental data (see Fig. 8b). The results
indicate that the model predictions overestimate the
yield stress, especially at high silicate loadings. These
results are qualitatively in agreement with highly shear
thinning behavior of nanocomposites with high silicate
loading at low shear rates (upward viscosity at low
shear rates).

Model predictions are also compared with linear
viscoelastic properties of polymer/layerd silicate nano-
composites obtained by Krishnamoorti et al. (2001)
and Ren and Krishnamoorti (2003). The extension of
the experimental angular frequency ω window was
obtained using the time temperature superposition.
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a

b

7

7

8

-4-4 -3 -2 -1 0 1 2

-4-4 -3 -2 -1 0 1 2

Fig. 9 Model predictions and comparison with experimental data
in oscillatory shear flow. a Storage modulus G′ and b complex
viscosity η∗

The storage modulus G′ and complex viscosity η∗
are presented at the reference temperature T0 =85◦C.
Figure 9a, b shows the model predictions with this
set of experimental data. As it is clear from these
figures, the model is able to capture qualitatively the
overall feature of polymer/layerd silicate nanocom-
posites, namely, plateau in G′ at low frequency and
upward complex viscosity at low frequency. However,
the quantitative agreement is less satisfactory. In gen-
eral, the reasons for the less satisfactory agreement
may be partially due to the fact that the silicate lamel-
lae in experimentally prepared suspensions are rarely
completely exfoliated, and consequently, some new
physical processes, that are not included in our model,
become important.

Conclusion

A mesoscopic rheological model of a spatially homoge-
neous and isothermal suspension of completely exfoli-
ated clay lamellae in polymer melts is formulated. Due
to polymer–polymer and polymer–plate interaction,
macromolecules of the polymer melt are effectively
confined into tube formed by other macromolecules
and the plates. The mesoscopic formulation does not
allow us, however, to enter into microscopic details
of the mechanism involved in the lamellae participa-
tion in the reptating motion. The model is constructed
by combining the mesoscopic rheological model of
polymer/layered silicate nanocomposites (Eslami et al.
2007) with the mesoscopic rheological model of melts
composed of reptating macromolecules (Eslami and
Grmela 2008). Having chosen the state variables, the
model is formulated by, first, writing down a framework
for the governing equations (guaranteeing the com-
patibility with mechanics and thermodynamics) and,
second, filling the framework by specifying the kine-
matics of the state variables, the free energy, and the
dissipation potential. The mesoscopic level of descrip-
tion chosen in this paper appears to be a good compro-
mise between microscopic details and overall simplicity
of the governing equations. On the one hand, we are
able to express in the model important features of
the physics involved (like, for example, reptation of
polymer chain, polymer–plate and plate–plate inter-
actions) and, on the other hand, the governing equa-
tions are easily solved numerically by standard software
packages. The calculated rheological data for steady,
transient, and oscillatory shear flows are reported.
Particular attention is payed to the region of low shear
rate and low frequency. The results show that the model
is able to capture the overall rheological behavior of
polymer-layered silicate nanocomposites.

An important issue that still remains to be consid-
ered in more detail is the case when the lamellae are
not completely exfoliated. The challenge is to identify
the physical processes that become important in this
situation and to express them in the model. The frame-
work of the model will remain unchanged since we shall
again require the agreement of model predictions with
the observed compatibility with thermodynamics.
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Appendix: GENERIC framework

Let x denote the state variables. If we limit ourselves to
isothermal and incompressible fluids, then the compati-
ble with thermodynamics and mechanics time evolution
of x is governed by Grmela (1984, 1986, 1991, 2002),
Beris and Edwards (1994), Grmela and Ottinger (1997),
Ottinger and Grmela (1997), and Ottinger (2005)

ẋ = L�x − ∂�

∂�x
(18)

called in Grmela and Ottinger (1997) and Ottinger and
Grmela (1997) GENERIC. By ẋ, we denote the time
derivative of x. The first term on the right-hand side
of Eq. 18 expresses the compatibility with mechan-
ics, the second the compatibility with thermodynamics.
The symbols appearing in Eq. 18 have the following
meaning.

Free energy

�(x), a real valued function of x, has the physical
meaning of the total free energy. By �x, we denote the
derivative of � with respect to x.

Kinematics

The operator L, hereafter called a Poisson bivector,
transforms a covector (a gradient of a potential) into
a vector. From the physical point of view, L expresses
kinematics of the state variables x. In the particular case
of classical mechanics of particles (the state variables in
this case are x = (p, q), where q are position vectors

and p the momenta of the particles), L =
(

0 1
−1 0

)

.

This is the Poisson bivector transforming in classical
mechanics the gradient of energy E(q, p) into a vec-
tor field. In the general setting, L is required to sat-
isfy the following properties: {A, B} =< Ax, LBx > is
a Poisson bracket, i.e., {A, B} = −{B, A}, and sat-
isfies the Jacobi identity {A, {B, C}} + {B, {C, A}} +
{C, {A, B}} = 0; A, B, C are sufficiently regular real
valued functions of x; and <, > denotes the inner prod-
uct.

Dissipation

�(�x), called a dissipation potential, is a sufficiently
regular real valued function of �x satisfying the follow-
ing properties: (1) �(0) = 0, (2) � reaches its minimum
at 0, (3) � is concave in a neighborhood of 0.

Properties of solutions of Eq. 18

The properties required from L, � appearing in Eq. 18
imply that solutions to Eq. 18 satisfy the following
inequality:

d�

dt
≤ 0 (19)

The free energy � can thus only remain unchanged
or decrease during the time evolution. To see that
Eq. 19 indeed holds, we note that d�

dt =< �x, L�x >

− < �x,
∂�
∂�x

>≤ 0. The last inequality follows from
< �x, L�x >= 0 and from the properties required
from the dissipation potential �. The inequality Eq. 19
together with the thermodynamic stability requirement
(i.e., � is a convex function of x) allows us to consider �

as a Lyapunov function. This then means that solutions
to Eq. 18 tend, as t → ∞, to states that minimize the
free energy (i.e., the states, called equilibrium states,
that are solutions of �x = 0).
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