
Introduction

An aqueous foam is a random packing of gas bubbles
in a relatively small amount of liquid containing sur-
face-active macromolecules, such as surfactants. These
bubbles are separated by thin liquid films which are
stabilized against rupture by physical–chemical effects
arising from the presence of the liquid. Generally, if
the volume fraction of liquid is greater than about
5%, the bubbles are nearly spherical; for drier foams,
by contrast, the bubbles are more polyhedral, as dic-
tated by the competition between surface tension and
interfacial forces.

A good fundamental understanding of the proper-
ties of dry and static foams, such as coarsening and
drainage, is well established ([1, 2, 3, 4] provide good
general references on these topics). By contrast, wet
foams provide a number of challenges to physicists
and rheologists [5]. The rigidity loss for large values of
the liquid fraction of the foam, the existence of a yield
stress, and the possibility of convective bubble motion
are just a few examples. Although the computation
of the three-dimensional structure of foam is well
advanced [6], a retreat to two dimensions still appears
advantageous when foams with a high liquid content
are studied. An example of such a 2-D foam,
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Abstract Liquid foam is a dense
random packing of gas bubbles in a
small amount of immiscible liquid
containing surfactants. The liquid
within the Plateau borders, although
small in volume, causes considerable
difficulties to investigations of the
physical properties of foams, and the
situation becomes even more com-
plicated if the flow of the liquid
through the foam is considered too.
Here we propose a fresh approach to
tackling these issues by introducing
a discrete two-dimensional hybrid
lattice gas model of liquid foams.
While lattice gas models have been
used to model two-phase liquids in
the past, their application to the
study of liquid foams is novel and
proves promising. We represent
bubble surfaces by a finite number of
nodes, and model the surrounding
liquid as a lattice gas (with a finite

number of liquid particles). The gas
in the bubbles is treated as an ideal
gas at constant temperature. The
model is tested by choosing an
arbitrarily shaped bubble that
evolves into a circular shape in
agreement with Laplace’s law. The
model is then employed to simulate
periodic ordered and disordered dry
and wet foams. Since our model is
specifically designed to handle wet
foams up to a critical liquid fraction
of 0.16 (void fraction of random
packing of disks), we are able to
compute the variation in coordina-
tion number (average number of
neighbours of a bubble) over the
whole range of liquid fractions, and
we find it to be a linear function of
the shear modulus.
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computed using our new simulation method, is shown
in Fig. 1.

Previous work includes a geometrical model based on
Laplace’s law [7] and a dynamical model where bubbles
are represented as interacting soft disks [8]. These two
models, with their specific application ranges will be
analysed, in the following.

In wet foams, the bubbles experience more freedom
to move than in dry foams where they are jammed
together. This allows for the possibility of modelling a
foam as individual bubbles interacting with nearest
neighbours. The first such model was presented by
Durian [8]. In this model, the bubbles constituting a
foam are treated as interacting disks (similar to the
treatment in granular dynamics [9] and their positions
and velocities are determined by the contact forces using
Newton’s equations of motion. Fluid flow in the chan-
nels between bubbles (Plateau borders) results in an
additional viscous force acting on the bubbles. An
obvious issue is the choice of an appropriate spring force
between touching bubbles. Also, the model is only
approximate when bubbles begin to jam into a foam
structure as the liquid fraction is decreased. However,
although not suitable for the simulation of dry foams,
the model has proved valuable to the computation of
rheological properties, such as yield strain and shear
modulus, close to the rigidity loss transition.

Two-dimensional dry foams may be accurately sim-
ulated due to the simplicity of the underlying geometry
(cell walls are arcs of circles due to Laplace’s law).
Bolton and Weaire [7] used this as their basis, together
with the decoration theorem [10], to simulate wet foams.
The decoration theorem states that any two-dimensional
dry foam structure can be decorated by small three-sided

Plateau borders at each vertex, to give an equilibrated
wet foam structure, provided such Plateau borders do
not overlap. Wet foams can be successfully simulated for
liquid fractions of up to u=0.12–0.13, but numerical
difficulties are encountered at higher values where the
bubbles come apart to form a bubbly liquid. Neverthe-
less, this model was used extremely successfully to
compute the mechanical properties of foams as a func-
tion of liquid fraction [11], and, more recently, to
examine the effect of dilatancy in foams [12].

The shortcomings of the above models make it highly
desirable to design a model that is equally suited to
modelling both wet and dry foams. We used the concept
of a lattice gas to achieve this. In addition, since the
liquid in the foam is represented as fluid particles, this
should also enable us to study aspects of foam drainage,
although we have not yet undertaken such studies.

Lattice gas models are frequently used for flow situ-
ations involving moving interfaces, possibly due to the
interaction with the fluid. This presents a problem that is
difficult to handle with conventional fluid dynamics.
Instead of considering the large number of individual
molecules in a fluid (the molecular dynamics approach),
a much smaller number of fluid particles are considered
in the lattice gas method. A fluid particle represents a
large group of molecules, which is still considerably
smaller than the smallest length scale of the flow situa-
tion that is to be modelled. This is justified on the
grounds that the macroscopic properties do not directly
depend on the microscopic behaviour of the fluid. The
fluid particles are restricted to move on the links of a
regular lattice and their positions are updated in discrete
time-steps. Mass and momentum conservation are
incorporated into the update rules that are applied at
each discrete time step. The FHP-III lattice gas has
seven possible states for a fluid particle (movement in
one of six possible directions, or rest) and 128 collision
rules [13, 14]. At the start of each time step, the particles
at each site collide according to the FHP-III collision
rules, which are computed using either Boolean algebra
[15] or using a table [16]. After these collisions, each
particle travels at a new velocity along one of the lattice
links (unless it is a particle at rest). Again the collision
rules are applied, which determines the new particle
velocities. After a sufficient number of time steps (which
is dependent on the number density of fluid particles) the
fluid evolves to an equilibrium state. Lattice gas models
may be mapped exactly onto the incompressible Navier–
Stokes equations [17], and so they are a valid represen-
tation of fluid flow.

Although there are various lattice gas models of
binary liquids, none of these specifically address the
problems of foams. Generally these models may be
classified into ‘‘immiscible lattice gases’’ (ILG) and
‘‘liquid-gas models’’ [17]. In the former, two different
types of fluid particles (distinguished by their ‘‘colour’’)

Fig. 1 Lattice gas simulation of a two-dimensional liquid foam
containing 30 bubbles, with liquid fraction u=0.078. Four periodic
units are shown
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move along the lattice. While interactions of particles
still conserve mass and momentum, the interaction rules
are altered so as to favour the separation of the two
particle types. This leads to phase separation. In liquid–
gas models [18], there is only one species of particle, but
two collision steps. While the first step is the same as in
the standard lattice gas model, the second step considers
interactions of particles over a specified distance.
Choosing this interaction distance appropriately leads to
the formation of coexisting areas of high or low number
density of particles. These areas are identified as liquid
or gas phases respectively.

Our work does not concern the modelling of foam
formation (modelling the formation of high and low
density regions) but the properties of a foam once it has
been formed. We therefore start with the separation into
a dispersed gaseous and continuous phase and design a
model to specifically deal with this. We model the liquid
between bubbles using the FHP-III lattice gas, while
treating the gas inside the bubbles as ideal gas. The
interface separating these two phases is modelled by a set
of attracting surface nodes, mimicking the effect of
surface tension. The resulting foam model may therefore
be called a hybrid lattice gas model.

In the following, we shall provide details of our
method and the test case of a bubble of arbitrary shape
developing into a circle, demonstrating Laplace’s law.
Finally we will present simulations of wet and dry
foams.

A discrete model of liquid foams

Modelling Plateau borders: the lattice gas method

As mentioned in the introduction, the liquid in a foam is
mainly contained in its Plateau borders. These are three-
sided for values of liquid fraction u £ 0.03, but will
eventually percolate throughout the entire foam as the
foam reaches its critical liquid fraction uc�0.16, corre-
sponding to the void fraction of a random packing of
hard disks [5]. To allow for such a complicated geome-
try, we have chosen to model this liquid using a FHP-III
lattice gas.

Lattice gas models are an example of a cellular
automata where lattice sites can take on a finite number
of states and are updated in discrete time steps, based on
the state of neighbouring sites at the previous time step.
The FHP-III model of Frisch et al [14] consists of a
hexagonal lattice and considers only the six nearest
neighbours of a site in order to update its sites. Fluid
particles (with unit mass) move along the hexagonal
lattice with constant speed with the restriction that at
most one particle moves along a particular direction at
each site. The state of a site is given by the velocity
directions of its occupying particles. An update consists

of moving all of the particles to the next lattice site in the
direction of their respective velocities, followed by a
change in these velocities according to a set of defined
collision rules [14]. These rules are designed to conserve
both mass and momentum at each site. Some examples
are shown in Fig. 2. Note that these also include rest
particles—particles with velocity zero before a collision.
Such rest particles lead to higher collision rates and so a
faster relaxation to equilibrium [17].

The gas inside the bubbles

At the beginning of our simulations, the bubbles are
usually set as circles. N surface nodes are placed equi-
distantly along the bubble surface, and the bubble radius
is given by

r ¼ d0
2p

N ð1Þ

where d0 is the distance between neighbouring surface
nodes. In our simulations, d0 is 0.4, about three lattice
length units.

The internal gas is treated as an ideal gas at constant
temperature,

PA ¼ P0A0 ð2Þ

where P and A are the bubble pressure and area, and P0

and A0 are the initial values of these quantities.

The gas–liquid interface

The most challenging aspect of our foam model is the
treatment of the gas–liquid interface. We decided on a
dynamic model, involving a finite set of surface nodes
that are subject to a number of different forces, due to

or

or

or
(a)

(b)

(c)

Fig. 2 Shown are three of the total of 128 collision rules used in the
FHP-III. Small solid circles denote lattice sites and open circles are
rest particles (particles with zero velocity). All collision rules
conserve momentum. A random choice is taken if there are two
possible outcomes of a collision
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(1) surface tension, (2) internal gas pressure, (3) colliding
liquid particles, and (4) the disjoining pressure in the
vicinity of other interfaces. Positions and momenta of
the surface nodes are then updated according to New-
ton’s equations of motion, followed by relaxation of the
liquid particles within their new boundaries. Our itera-
tive algorithm then computes the forces at the new
positions and moves the surface nodes accordingly. This
process will eventually converge to an equilibrated,
converged foam structure.

Figure 3 shows a gas–liquid interface (small dots)
represented by a set of surface nodes, marked as big
solid circles. In our treatment of the interface as a flex-
ible skin, the effect of surface tension is then a constant
force that acts between neighbouring surface nodes. A
similar approach can be found in the work of [19] for the
model of a soap film. However, we model the film
between two bubbles using two interfaces, since this
enables us to simulate wet foams by inserting liquid
particles between these interfaces.

In our simulation, we treat the gas contained in the
bubbles as ideal gas. From the pressure acting on a
surface element, we can compute the magnitude of the
gas pressure force fp on a surface node as fp ¼ 2A0P0

N

ffiffiffi

p
A

p

:
This force acts at all surface nodes in directions per-
pendicular to their links with neighbouring surface
nodes.

The pressure force due to the liquid contained in the
Plateau borders is given by the change in momenta of
the fluid particles that collide with the interface. Since in
our model the distance between neighbouring surface
nodes is generally much larger than one lattice spac-
ing, this requires the introduction of supplementary

intermediate boundary sites, drawn as solid squares in
Fig. 3. These are positioned on the lattice and are each
associated with a specific nearby surface node. The
velocities of the lattice gas particles colliding with these
intermediate boundary sites are updated according to
the link-bounce-back boundary condition (particles that
are encountering a solid surface are reflected back in the
direction from which they came from [20, 21, 22]). The
force acting on the boundary is then given by the change
in momentum.

Finally we have to consider the disjoining force due
to other nearby interfaces. Neglecting the details of its
physical origin (steric, electrostatic, and so on), we shall
simply introduce the disjoining force as a mutual
repulsive force between two neighbouring surfaces (as
represented by the intermediate boundary sites) required
to prevent them from overlapping. It is of a short-range
nature and only active when bubbles are in contact. We
model the force by a step function; it is only active when
the distance between two supplementary boundary
points (belonging to two different surfaces) is less or
equal to one lattice unit. We find a magnitude of the
order of the gas pressure forces to be a good heuristic
choice.

Liquid pressure forces and disjoining forces are
computed for the intermediate boundary sites. These
forces are then added up and applied to the corre-
sponding surface nodes, together with the forces due to
surface tension and gas pressure.

Positions and velocities of the surface nodes are then
updated using an Euler method. This propagation of the
gas–liquid interface is followed by 500 steps of lattice gas
calculations in order to allow for equilibration of the
liquid particles and for the computation of the liquid
pressure acting on the interfaces. This concludes one
iteration. We find that several thousand such iterations
are required for the computation of an equilibrium
foam. Here we use the total interface length, which
settles down to a constant (dependent on the number of
bubbles and the liquid fractions) as a criterion of con-
vergence.

Effect of discretisation on Laplace’s law

Since in our model we replace continuous boundaries by
a finite number of surface nodes, it is essential to
establish the minimum number of nodes required for a
realistic simulation. This can be estimated by the fol-
lowing argument.

Let us consider the surface node A of a circular
bubble (with neighbouring nodes A¢ and A¢¢) as shown in
Fig. 4 (here we have set the external pressure to zero).
The net surface tension force and the gas pressure force
on AA¢ and AA¢¢ point in opposite directions and their
magnitudes fs and fp are given by:

c c'

b b'

a a'

 Interactions between liquid and bubble two surfaces at close contact

(a) (b)

Fig. 3 a The liquid–gas interface is represented by discrete surface
nodes (solid circles). Solid squares are an approximation of this
surface using only lattice sites. Open squares show the possible
positions of fluid particles. Arrows indicate particles that interact
with the interface (at the positions marked with the solid squares). b
Shows the interactions when a second interface is present. When
the distance between the two interfaces is of the order of one lattice
unit, fluid particles are expelled, leading to direct interations
between the interfaces at the locations aa¢, bb¢ and cc¢
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fs ¼ 2c cos a ð3Þ

fp ¼ 2 Dpr cos a sin a ð4Þ

where Dp is the pressure difference across the boundary
and r is the bubble radius.

At equilibrium, the forces on node A balance,

Dp ¼ c
r

1

sin a
ð5Þ

Inserting a ¼ p
2 � p

N therefore yields

Dp ¼ c
r

sin
p
2
� p

N

� �h i�1
ð6Þ

This is shown in Fig. 5, where we can see that even 20
nodes are sufficient to satisfy Laplace’s law (as given by
the limit N fi ¥) to an accuracy of 2%.

Evolution of a single bubble

A simple test of our model consists of studying the
evolution of a bubble of arbitrary initial shape

surrounded by a lattice gas, as shown in Fig. 6. If the
external pressure due to the lattice gas exceeds the initial
internal gas pressure, the bubble will shrink. The final
state in both cases is a circle, as governed by the equi-
librium between pressure difference and surface tension.
A comparison of radius and pressure difference, as is
shown in Table 1, confirms Laplace’s law and therefore
validates our model.

Simulations of liquid foams

Dry foams

In our simulations, dry foams do not require the pres-
ence of any liquid particles. Therefore, the only forces
acting on the surface nodes are due to surface tension,
pressure differences and disjoining forces for bubbles in
contact. In the simulations shown in Fig. 7a and b, thirty
circular bubbles are located in a space of 250 by 259.8
lattice units (the dotted region in Fig. 7), which is a
multiple of the basic unit required for an unstrained
periodic foam system. Figure 7 shows three duplicates of
this unit to illustrate the periodic boundary conditions
used in this simulation. The 30 bubbles are assigned
initial values for size and internal pressure. In Fig. 7a,
each bubble is represented by 120 surface nodes
(resulting in a radius as given by Eq. 1), while in Fig. 7b

A

A

A’’

sf

pf

’

Fig. 4 Balance of surface tension force �fs and gas pressure forces �fp
acting on surface node A (note that we have set the external
pressure to zero here)
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5

Fig. 5 Laplace’s law for a discretized interface. As the number of
surface nodes is increased, the exact form Dpr/c is recovered

Table 1 Computational data for the evolution of a single bubble
immersed in liquid (see Fig. 6)

Parameters Shrinking bubble

Initial area (lu2, length unit of lattice) 143.33
Initial pressure 0.07 (internal)

0.13 (external, constant)
Final area(lu2) 66.09
Final radius, r (lu) 4.59
Final internal pressure, p 0.152
Surface tension, c 0.1
Laplace’s law: Dpr/c 1.01

Fig. 6 A bubble of arbitrary shape (specified by 100 surface nodes)
shrinks to a circle when its initial pressure is smaller than the
constant external pressure due to interactions with the surrounding
lattice gas. The dotted region is the initial shape; the thin solid
outline is the developing bubble after 50 time steps; and the thick
line is the circular bubble at the final steady state
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a random number between 50 and 200 was picked for
every bubble. Values for initial pressure and surface
tension were set to 0.05 and 0.04 in both simulations.
Note that the initial size (determined by d0 in Eq. 1) is
chosen to be small enough to avoid bubble overlap at
the beginning of computation. Since there are no liquid
particles in these dry foams, the bubbles expand freely
until the distance between the surface nodes of neigh-
bouring bubbles is one lattice unit. Then, in addition the
force due to surface tension forces and pressure forces,
these nodes will also experience a disjoining force. This
leads to relative adjustments of the nodes belonging to
different bubbles until a steady state is reached. The
resulting foam is determined by the initial conditions. In
case Fig. 7a, where all bubbles have the same initial size

and initial pressure, a perfectly ordered honeycomb
structure with straight cell walls is formed. The initial
conditions for case Fig. 7b result in a disordered foam.
Note that, in agreement with Laplace’s law, cell walls in
this case are generally curved, since there is a pressure
difference between neighbouring bubbles of different
sizes.

Wet foams

In our simulation of wet foams we use the same set-up as
for the dry foam simulations of the previous section, but
now liquid particles are added into the lattice spaces
between the bubbles. For a sufficiently small number
density of liquid particles, the bubbles will initially
expand (as in the simulations of dry foams), pushing the
liquid into locations where three bubbles meet and
therefore forming three-sided Plateau borders. Increas-
ing the number density of liquid particles leads to an
increase in the wetness of the foam, accompanied by the
formation of four (or more) sided Plateau borders. For
values of the liquid fraction u<0.05, the bubbles have
polyhedral shapes; for higher values of u they take on
almost circular shapes; see Figs. 1 and 8.

An important structural parameter for the charac-
terisation of liquid foams is the coordination number
Z(u), the average number of neighbours of a bubble as a
function of liquid fraction. In the dry limit (u=0), the
coordination number is given by Euler’s theorem as
Z(0)=6. Increasing the liquid fraction leads to a de-
crease in Z until, at uc�0.16, the foam is essentially a
random packing of disks with a corresponding coordi-
nation number Z(uc)=4 [7].

The exact variation of Z(u) has mainly been dis-
cussed for u close to uc (close to the so-called rigidity
loss transition where both shear modulus and yield
stress vanish). Based on their simulations, which only
cover a range of liquid fractions up to u=0.12,
Bolton and Weaire [7] concluded that Z(u) decreases
linearly. Using his bubble-scale model [8], which is
valid only in the wet regime, Durian [23] found that it
decreased in a non-linear fashion, with a power
between 0.5 and 0.7.

The advantage of our lattice gas-based simulation is
that we are able to compute Z(u) for the entire range
of liquid fractions, as shown in Fig. 9. We find the
following empirical formula, which is correct in both
dry and wet limits, to be a good description of our
data:

Z /ð Þ ¼ 2 1� /2

/2
c

 !

þ 4 ð7Þ

Here the critical liquid fraction is determined from a
least square fit as uc=0.162±0.001. (Fitting to /=/cð Þa

Fig. 7 Both ordered and disordered dry foams (u=0) may be
computed by setting the number density of fluid particles to zero
(four period units are shown)
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in Eq. 7 gives a�2.04±0.07 and uc=0.161±0.001.)
From a Taylor expansion about uc we find that Z varies
in a roughly linear way close to uc, which helps to rec-
oncile the different previous findings. Also note that
Z(u) has a vanishing first derivative at u=0, reflecting
the Decoration Theorem [10].

Equation 7 is remarkable, since the same type of
formula is found for the variation of the shear modulus
G(u) of liquid foams with liquid fraction [12],

G /ð Þ ¼ c0
c

A1/2
1� /2

/2
c

� �

: Here c0 =(31/2/2)1/2 is a geo-

metrical constant, c is the surface tension, and A is the
area per cell in a foam. This allows us to link both

quantities, shear modulus and coordination number, by
writing

G /ð Þ ¼ c0
c

A1/2
Z /ð Þ � 4

2
ð8Þ

Although a linear relationship between G(u ) and Z(u )
has been suggested before [7, 23], Eq. 8 was not explic-
itly stated. No theoretical explanation of this relation-
ship can be given at this stage, but it should be useful
when relating the mechanical properties of disordered
foam to its geometry.

Outlook

In this paper we have introduced a new hybrid lattice gas
method for the computation of both dry and wet foam
structures. While we focused on the structural properties
of foams (the computation of Z(u)), we are now in a
position to study foam rheology, especially the role of
topological changes (T1, or neighbour swapping chan-
ges) in wet foams under shear. These were reported to
occur in the form of avalanches close to the rigidity loss
transition [11]. However, this result was not reproduced
in the simulations of Durian [23].

Note that in the code of Bolton and Weaire [7], used
by Hutzler et al [11], the topological changes involved in
yielding (plastic flow) require explicit programming.
Whenever an edge is shorter than a defined critical
length, a subroutine is called which performs the topo-
logical change. However, such a specific procedure is not
required in our lattice gas model. Figure 10 shows an
example of a T1 change. As the marked cell–cell edge
decreases due to externally-applied shear, it reaches a
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fc = 0.162±0.001

Fig. 9 Variation of the coordination number Z with the liquid
fraction u. Note that our data reproduces and extends previous
data by Bolton and Weaire [7] which did not cover the full range of
liquid fractions. The thick solid line is a least square fit to Eq. 7

Fig. 8 Example of two-dimensional wet foams: a u=0.038,
b u=0.15, computed with our novel lattice gas method. The liquid
fraction is determined by the number density of the fluid particles
used in the simulation
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point where the bubbles rearrange. Future work will
therefore focus on obtaining reliable statistics for the
occurrence of T1 changes in the wet regime.

Finally our model also lends itself to the study of
liquid flow through a foam (foam drainage) and should
give an insight into the resulting deformation of its
structure, together with the effect of dilatancy (increase
of local liquid fraction) due to shear [12].
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Fig. 10 Dry foam under shear (simulations use boundary condi-
tions). This results in several topological changes, as shown for
example in the change of neighbours for bubbles 1, 2, 3 and 4
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