Rheol Acta (2004) 43: 342-349
DOI 10.1007/s00397-003-0348-1

Wei Yu
Mosto Bousmina
Chixing Zhou

ORIGINAL CONTRIBUTION

Determination of interfacial tension
by the retraction method

of highly deformed drop

Received: 3 June 2003

Accepted: 19 November 2003
Published online: 18 February 2004
© Springer-Verlag 2004

W. Yu - C. Zhou

Department of Polymer Science

and Engineering, Shanghai Jiao Tong
University, 200240 Shanghai,

P. R. China

M. Bousmina (X))

Department of Chemical Engineering
(CRASP Ecole Polytechnique),

Laval University, Quebec, G1K 7P4,
Canada

E-mail: bousmina@gch.ulaval.ca

Abstract The traditional retraction
of the deformed drop method
(DDRM) to determine the interfa-
cial tension is reformulated to relax
the limit the small deformation
assumption. The kernel of the new
formalism is the calculation of the
velocity gradient on the vertex of the
ellipsoidal drop. Two models were
used for such calculations: the
Jackson and Tucker model [J Rheol
47:659—-682] and the Yu and Bous-
mina model [J Rheol 47:1011-1039].
The method can be used either in the
retraction of shear deformed drop,
or in the retraction of elongated

drops produced by the breakup of a
long thread. Comparison with
experimental results of the literature
showed that conversely to the clas-
sical DDRM, good accuracy is ob-
tained when the new modeling for
the determination of interfacial ten-
sion is used both under small and
large deformations.

Keywords Interfacial tension - Drop
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Introduction

The interfacial tension is a crucial property of multi-
phase liquid systems such as classical emulsions and
polymer blends. It directly characterizes the interactions
at the interface between the components of the mixture.
Various techniques are available for the determination
of interfacial tension. Xing et al. (2000) compared five
experimental techniques for the determination of inter-
facial tension in polymer blends and showed that the
retraction of deformed drop method (DDRM) is of high
simplicity and efficiency. Such a method can be used in
the retraction of pre-sheared drops (Luciani et al. 1997;
Guido and Villone 1999) or for elongated drops pro-
duced by the breakup of a long thread (Mo et al. 2000).
DDRM method is based on a fundamental assumption
that the drop is slightly deformed and it adopts an
ellipsoidal shape with the three semiaxes L(¢), B(t), W(r)
and L(0)=W(£)=B(t), where t denotes time.

The DDRM used by Luciani et al. (1997) is based on
the small deformation (SD) theory of Taylor (1934) and
Rallison (1984). The crucial quantity to be measured for
the determination of interfacial tension, T', is the varia-
tion in time of the deformation parameter
D (t)= L(t)-B(t)/L(t) + B(t) during the retraction pro-
cess of the deformed drop. According to the small
deformation theory, the evolution of D(¢) during the
drop retraction can be written as

D (t) = Doexp (—fit/7) (1)
with

2p+3)(1%+16)" "~ T

where p=1,4/1,, is the ratio between the viscosity of the
drop, 4, and the matrix, #,,, R is the radius of an equiv-
alent sphere having the same volume as the deformed drop
(R*= LBW). Dis the initial deformation of the drop. The
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determination of the interfacial tension by Eq. (1) comes
from the slope of the plot In D(t)/Dg vs time, t. To use
Eq. (1), Luciani et al. (1997) assumed that the drop shape
is axisymmetric (B = W). However, such assumption is not
inherent to the small deformation theory (Mo et al. 2000)
and one can in principle measure the three axes of the drop
during the retraction process. Nevertheless for very small
deformation, the difference between B and W and the
axisymmetric assumption remains valid within the range
of experimental errors of the technique. However, when
the droplet shape departs largely from sphericity, the
axisymmetric assumption becomes invalid. This is crucial
because during experiments it is very difficult to apply very
small deformations and at the same time visualize the
shape of the deformed drop. It is also not easy to decide
experimentally whether the deformation is small or not.
Another DDRM method was suggested by Mo et al.
(2000), who used of the model of Maffettone and Minale
(MM) (Maffettone and Minale 1998). In the MM model,
the retraction of the ellipsoidal drop can be written as
(Mo et al. 2000)
Dy(t) = L2()) = BX(1) = (I — B) exp (~fitfx)  (3)
The MM model was proved to be accurate only to the
zeroth order of drop deformation (Yu and Bousmina
2003; Yu et al. 2003), which means that Egs. (1) and (3)
are equivalent in describing the drop retraction. This is
not surprising since the parameters of the MM model
(parameter f; for instance) were determined from the SD
theory. Nevertheless, it was shown that Eq. (3) works
better than Eq. (1) when the deformation of drop in-
creases (Mo et al. 2000). However even the MM model is
not able to describe the drop deformation and retraction
when the drop is subjected to large deformations (Yu and
Bousmina 2003). Under large deformation neither the
plot of In D(¢) nor that of In D,(7) vary linearly with time.
In this paper, we propose a new method that relaxes
the small deformation assumption. The results of the
new technique will be compared both to some experi-
mental results of the literature and to the predictions of
the SD and MM models.

Theory and Method

We describe the ellipsoidal drop by a second rank tensor G (Wetzel
and Tucker 2001; Jackson and Tucker 2003; Yu and Bousmina
2003). In the principal axes of the drop, G can be expressed as

1/I2(t) 0 0
( 0 1/B) 0 ) (4)
0 0 1w

where L, B, and W are the three semi-axes of the ellipsoidal drop.
The time evolution of G is given by (Wetzel and Tucker 2001)

G(t) =

DG;;

o T LGl + Gilyy =0 (5)

where D/Dt is the material derivate and L; is the velocity gradient
tensor taken at the surface of the drop. During the retraction of
the drop, L; possesses only diagonal components and therefore,
Eq. (5) can be reduced to

dInL(¢)
dt

= Lll(t) (6)

Similar expressions can be obtained for B(f) and W(¢). Since the
retraction of the drop is driven by interfacial tension, Eq. (6) can be
used to determine its value during the retraction process. We will
show later that L; can expressed in the following form:

Ly(e) = Fy(0) /= )

where 7 is a characteristic time that is related to the interfacial
tension (t=1,,R/T, R being the radius of the initial spherical
droplet) and F";;(¢) is a given function of time. The expression of
F};(t) depends on the model under consideration and will be given
later for the two models (JT and YB models). Equation (6) can be
integrated to obtain

20 - l/tF/“(t’)dz’ ~ ) (8)
TJo

Ly T

where L, is the initial length of the drop. The interfacial tension can
then be determined from the slope of In L(#)/Ly vs Fy1(¢). B(t) and
W(t) are given by equations similar to Eq. (8) and can also be used
to determine the interfacial tension. It is, however, preferable to use
L(1) instead of B(f) and W(¢) since the variation of L(¢) is larger and
therefore the experimental errors are less important than those
obtained with the other axes.

Let us now derive the analytical expression for L; as a function
Fi(t) and interfacial tension, I' using two approaches. The first
approach is the use of the YB model that gives an analytical
expression of L; at the surface of the drop using the boundary
integral formalism. In the YB model, the velocity gradient due to
the interfacial tension is expressed as

L=L"+1LF ©)
where L* is given by
L*=L"—t(L")P (10)

where P is a constant diagonal matrix and takes the form

0 0 0
Pj=10 % 0| for p>1 and
00 !
11
-1 0 0 (1)
Pi=| 0 3 0| for p<l
0 01

The components of the tensor L* are obtained from the velocity
at the surface of the ellipsoid:
Ly, = u([L,0,0)) /7L, L3, = u5([0,B,0])/1B, (12)
Liy = u([0,0, W) /<

W'?(i =1,2,3) is calculated by the boundary integral equation:

iy R r-n(x) +n(y)]
f(x)*zn(pﬂ),/ »

-

e ELE AL P

u

7
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L’ is related to L* by

diag(L’) = A™" - B diag(L*) (14)
where diag() mean the vector composed by the diagonal elements
of the tensor between parenthesis. The tensors 4 and B are function
of the viscosity ratio and the semiaxes of ellipsoids (Yu and
Bousmina 2003):

1+ (p-1DSh »—-1DSn2 (p—DSi3
A=2 (p—1)Sy 14+ (p—1)S» (p—1)Sx (15)
(p—l)S31 (p—l)ng 1+(P_1)S33
and
1-28, —28513 —2813
B=(p-1)| —251 1-28» —28; (16)
—283 —283 1 —2833

where S; is the Eshelby tensor expressed with contracted notation
(Eshelby 1957). Equation (12) shows that L* is proportional to the
interfacial tension, T, and thus L’ is also proportional to T.
Therefore, L is directly proportional to T, and can be expressed in
the form of Eq. (7). Fy;(¢) can be obtained by multiplying Eq. (9)
with 7. F;;(f) is calculated by numerical integration over time
period 0~ by using Egs. (9), (10), (11), (12), and (13).

Another approach is suggested by Jackson and Tucker (2003)
(the JT model). According to their model, the velocity gradient due
to the interface is a blend of the Eshelby model and the slender-
body model:

L— {fLEshelby + (1 _f)leender P<0.1

17
LEshelby P?O 1 ( )

where f'is a mixing parameter which depends on the dimensionless
length L/R of the ellipsoidal drop (Jackson and Tucker 2003).
Lggheivy 1s calculated by

2 _
Lgshelby:—n—ZB:S:P (18)

with

P=P- %tr(P)&,

R B’\ R WX\ R L’
P=diag|-E|\l1—— ), =E(l —— |,=E|[ 1 — =
B w2 w 12)'L B?

where ¢ is a function of the viscosity ratio (Jackson and Tucker
2003). B and § are fourth-order tensors which are functions of
viscosity ratio and the three semiaxes of ellipsoid (Wetzel and
Tucker 2001).

Lgenger 18 calculated as follows in the absence of flow:

(19)

VIR 1 0 0
L/R

leendcr = - / 3 0 7% 0

2V5(1+08p(L/RY) | o 1

2

0 0 O
4 ro

—(1-—) |0 0 20
+3r(l+p)r0/R< W) 0 0 1 (20)

Since Lgghelby and Lgender are proportional to 1/z, Eq. (17) can
then be written in the form of Eq. (7). F:.j(t’) for the JT model can
be written as

F(0) =~ LB S0 PO + (- )

I 0 0 4
x |0 =1 0|+ (17 "o )
0 o 30+ p)r/R\"~ W(r)

()R
zﬁ(l + 0.8p(L(t’)/R)3>

To sum-up, in both YB and JT models, the velocity gradient
tensor can be expressed in the form of Eq. (7) and therefore the
interfacial tension can be calculated from the slope of the plot In
L(1)/Lgy vs Fy,(¢) (see Eq. 8). Fyy(¢) is related to the function ' (¢')
through (Eq. 8). The expression of F,(7') is given explicitly for the
JT model (Eq. 21). For the YB model, £’ (¢') is given implicitly by
Egs. (9), (10), (11), (12), (13), and (14). In fact both L* and L* (L?
is related to L* by Eq. 14) can be written if the form given by
Eq. (12), where the velocity has to be integrated numerically at the
apex of the ellipsoid. This means that the velocity gradient given by
Eq. (9) can also be expressed in the form given by Eq. (12) and
therefore by Eq. (7) that has to be used to extract the interfacial
tension from the characteristic time t=17,,R/T.

To use the method more simply, an approximate procedure is
suggested in the Appendix. The values of the function F},(?)
appearing in Eq. (8) can be directly calculated from the values
supplied in Table Al.

Results and discussions

It has been shown that the YB and the JT models can
describe the deformation and relaxation of the drop in a
quite satisfied manner (Jackson and Tucker 2003; Yu
and Bousmina 2003), including the case of large defor-
mation. Hence, the determination of interfacial tension
by drop retraction from YB model or JT model relaxes
the restriction about the small deformation assumption.
We thus examined this approach for systems with vari-
ous viscosity ratios and various initial deformations of
the drop. The interfacial tension obtained from the new
approach is compared to that determined experimentally
using the small deformation models.

When the initial deformation of the drop is very
large, neither the deformation parameter D nor the
parameter L>—~B can be described by a single expo-
nential decrease like Eqgs. (1) or (3). This is shown more
explicitly in Fig. 1, where the scatter symbols represent
the experimental data of Almusallam et al. (2000) for
PBd/PDMS system with p=1 and the strain of pre-shear
70=15.0, and the solid lines represent the predictions
obtained from Eqs (1) and (3). Clearly, the small
deformation models are unable to describe the relaxa-
tion of the drop after imposition and cessation of a large
amplitude of deformation. One can argue that the fit can
be carried out at longer times in the linear region. This
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of course gives better results for the determination of
interfacial tension by the SD models, but the linear zone
is not always well identified when the drop is deformed
under large amplitude of deformation. Of course, if the
technique has to be used for viscoelastic components, it
is better to consider a time interval starting beyond the
longer time of elastic relaxation of the pure components,
where the drop shape recovery is only driven by inter-
facial tension. Examination of various systems revealed
in fact that even in this case the variation of the defor-
mation parameter in time (Eqgs. 1 and 3) is not clearly
linear.

The calculations of the interfacial tension based on
YB and JT models are shown in Fig. 2, which illustrates
excellent agreement between the experiments and the
models fit. The interfacial tension determined by YB and
JT models are 1.9 mN/m and 2.4 mN/m respectively.

In Table 1, we compare the calculation results by
different methods for different systems. y° in the table
denotes the correlation coefficient of the linear fit. It is
shown that SD and MM models give acceptable results
only for very small deformation (Nos. 1, 5, 6), i.e., the
maximum stretch ratio is of about 3. MM model seems
to do a better job than SD model due to its good linear
fit with experiments. The new approach gives better
linear fit with the experimental data for the retraction of
slightly deformed drop than the traditional DDRM, and
thus the determined interfacial tension is slightly larger
than the traditional methods. However, the difference
between the interfacial tension measured by the tradi-
tional method and the new approach lies within the
acceptable experimental errors. The advantages of the
new approach become significant when the initial
deformation of drop is large. It is seen from Table 1 that
SD and MM models fail to fit the experimental results
for large drop deformation (Nos. 2—4 and 7-8), while

L] In(DIDC]
In((L*-B*)/(L*-B?),)

(v}

In(D/D,), In((L*-B?)/(L*-B?),)

| i 1 i 1 i | i 1 i 1 i 1 i | i 1 i
0 10 20 30 40 50 60 70 80
time (s)

1

90 100

Fig. 1 Determination of the interfacial tension by the SD model
and the MM model

YB and the JT models can still fit the experimental re-
sults quite well (except No. 8).

It is also noticed that the interfacial tension deter-
mined by YB model starts to decrease when the stretch
ratio Lo/ By of drop is larger than 10. This might be due
to the over-simplified determination of the velocity
gradient tensor by Eq. (11). The interfacial tension
determined by JT model for PIB/PDMS system is larger
than all other models. This is probably because the
viscosity ratio (p=0.0667) is near the transition zone
between the Eshelby result and the slender-body result in
the JT model.

The new approach can be applied to drop retraction
after imposition of both small and large deformations.
One restriction of this method is that the shape of the
drop should remain ellipsoidal. This condition is satis-
fied under most cases except for systems with very small
viscosity ratio and large initial deformation (No. 8).
When p<1 and Ly/By>1, the shape of the drop changes
into rod or dumbbell during the retraction. For systems
with p<1, it is better to measure the interfacial tension
by the drop retraction with limited initial drop defor-
mation (L()/B() < 10)

Another approach for the determination of interfa-
cial tension for largely deformed drop has been sug-
gested by Tjahjadi et al. (1992). The technique is also
available for shapes other than ellipsoid. However, the
Tjahjadi et al. (1992) technique is based on a large
number of previous numerical simulations by using
boundary integral method and the determination of the
interfacial tension was obtained with some curve-fittings
and interpolations from their tabulated results. More-
over, the results of these add-hoc curve fittings provide
values of interfacial tension only for p=0.01~10. If the
technique has to be applied to viscosity ratio other than

0 T T T T T T T
qF i
2+ Y 4
L l!-/...
o //'. ]
L Px
-4 - 0 .
— | o
t‘f— 5 /ii.l . o a
w 6 //-f o° °
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L ° ]
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3 o <
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9 // e YB model | 4
-10 I " 1 " 1 " 1 " 1 . 1 s 1 N 1 N ]
-16 -14 -12 10 -08 -06 -04 -02 0.0
In(L(tyL,)

Fig. 2 Determination of the interfacial tension by JT model and
YB model
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Table 1 Comparisons of different methods in different systems

No. System References Viscosity £ Eq. (1) Eq. (3) Eq. (8)
ratio

SD model MM model YB model JT model

I'(mN/m) 77 T (@mN/m) ;7 T (@mN/m) ;7 T (mN/m)
1 PBd/PDMS Almusallam et al. (2000) 1.0 1.4 20 0.947 2.4 0.980 2.6 0.997 2.8 0.998
2 PBd/PDMS Almusallam et al. (2000) 1.0 74 1.3 0.936 1.9 0.985 2.3 0.999 2.5 0.999
3 PBd/PDMS Almusallam et al. (2000) 1.0 12.4 0.73 0.857 1.2 0.957 1.6 0.992 1.8 0.998
4 PBd/PDMS Almusallam et al. (2000) 1.0 18.8 0.79 0.780 1.4 0.929 1.9 0.988 2.4 0.997
5 PMMA/PS Mo et al. (2000) 2.14 22 049 0.966 0.62 0.995 0.61 0.999 0.65 0.999
6 PIB/PDMS Yamane et al. (1998) 0.0667 29 26 0.990 3.0 0.994 3.2 0.992 3.6 0.989
7 PIB/PDMS Yamane et al. (1998) 0.0667 11.0 1.2 0.850 1.9 0.950 2.4 0.986 3.7 0.998
8 PIB/PDMS Yamane et al. (1998) 0.0667 442 0.4 0.445 0.9 0.811 1.0 0945 2.4 0.972

this range, further numerical simulations and curve fit-
tings have to be performed.

The approach proposed in the present paper does not
require any curve fittings and can be applied to arbitrary
viscosity ratio both under small and large deformations.

Conclusions

The traditional DDRM to determine the interfacial
tension by SD model or MM model is updated with
extension to large drop initial deformation by using YB
model or JT model. This approach requires accurate
measurement of the length of three axes during the drop
retraction. The method shows good description of the
experimental results and thus the error on the determi-
nation of interfacial tension is very small compared to
the classical DDRM method that fails when the drop is
deformed under large amplitude of deformation.
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Appendix

To make easy use of the method proposed is the present
paper we provide here an approximate method for the
function F,(¢) appearing in the YB model for various
viscosity ratios and various aspect ratios. The function
F,(¢) can be fitted using the following polynomials:

n

s

k,-jc"_l (f)dj_l (l)

() = 10

where c(¢)= B(¢)/L(¢) and d(¢) = B(t)/ W(t) are two aspect
ratios. The coefficients k; for a given range of viscosity

1

(A1)

ratio, p, are listed in Table Al. Fy;(¢) can be easily cal-
culated from Eq. (8) together with Eq. (Al). For other
values of p not listed in the table, a linear interpolation
can be made from F;(¢) between the nearest values of p.
The coefficients for p out of the range 0.01~10 are not
listed in Table Al. Direct calculation using the model is
recommended for these viscosity ratios.

The fitting procedure used here is somewhat similar
to the one adopted by Tjahjadi et al. (1992). The esti-
mation of interfacial tension from their method needs
first the knowledge of a theoretical curve L(¢)/R-t,
which is determined by double linear interpolations
from the fitting results of numerical simulations. Then
interfacial tension is determined by taking two shapes
during retraction for the aspect ratios and non-dimen-
sional time from the curve L(¢)/R-t. The advantage of
the method suggested by Tjahjadi et al. is its ability to
describe some complex shapes, such as dumbbell and
other non-ellipsoidal shapes. However, there are two
concerns about such a method. (i) If the viscosity ratio
and the initial aspect ratio is not included in the table of
polynomial coefficients, which are fitted from the
numerical simulations, double linear interpolations are
needed. Additional assumptions had been made in such
a procedure such that the evolution of aspect ratios is a
bilinear function of viscosity ratio and the initial aspect
ratio. In contrast, our approach only (implicitly) as-
sumes that Fj;(¢) is a linear function of viscosity ratio.
(i1) Usually, only two shapes of the drop during the
retraction are needed to determine the interfacial tension
from the method suggested by Tjahjadi et al. (1992).
Therefore, this poses the problem of the choice of the
best images to be selected. The authors did not supply
any information about this issue. If a series of two dif-
ferent images are used, it is then expected that one will
obtain a series of interfacial tensions from the method.
Such a problem is not encountered in our method. The
interfacial tension is obtained only from the fitting of the
straight line Fj1(¢) ~In L(f)/Lo. Therefore, there is no
need to find the two best images or the way of making
averages.
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Table A1 Polynomial coeffi-
cients k; in Eq. (<equationci-
te > Al < /equationcite >) for a
range of viscosity ratio

k,'l' 1 ]
1 2 3 4 5 6
P=0.01 1 —-3.34737 -28.1724 157.7431 -291.89 238.5905 =73.935
2 22.06498 267.2864 —1482.69 2766.35 —2289.83 718.9385
3 —-100.41 -973.284 5685.755 -10727.4 8925.924 —2813.87
4 230.534 1688.293 -10471.4 19947.48 -16645.6 5255.892
5 —251.452 -1354.4 9098.176 -17531 14673.03 —4638.92
6 103.1022 399.8038 —-2989.5 5841.522 -4906.74 1553.385
p=0.02 1 -3.29325 —28.4503 158.2858 -292.38 238.7801 -73.954
2 20.82154 273.9623 —1496.58 2780.364 —2296.61 720.1772
3 -91.5875 -1018.76 5777.781 -10818.2 8969.236 -2821.74
4 206.0459 1811.044 -10713 20178.6 -16751.8 5274.242
5 —222.637 —1495.68 9369.255 -17782.4 14783.61 —4656.77
6 91.10536 457.5474 —-3097.86 5939.09 —4947.84 1559.525
p=0.04 1 —-3.40485 —27.7864 156.6999 -290.47 237.6155 —=73.666
2 23.60419 258.2936 -1461.29 2740.694 —2274.32 715.1606
3 —-109.759 -914.305 5540.574 -10551.1 8819.719 —2788.39
4 253.3935 1537.139 —-10089.4 19475.64 -16358.1 5186.477
5 -274.505 -1195.43 8686.341 -17013.9 14354.13 -4561.2
6 111.1412 341.6672 -2834.9 5644.09 —4783.54 1523.083
p=0.06 1 -3.09774 —-28.7796 158.1226 -291.677 238.1929 =73.7728
2 16.27039 282.4386 —1497.89 2775.381 —2293.69 719.6427
3 —=58.1271 —1081.1 5786.136 -10777.9 8945.518 -2817.74
4 107.9613 1998.168 -10745.2 20059.66 -16675.7 5260.064
5 -98.8607 -1741.27 9433.712 -17651.7 14692.56 —4638.87
6 35.22381 573.0056 -3139.41 5892.044 -4911.5 1552.159
p=0.08 1 -3.10503 —28.6561 157.7095 -291.096 237.8061 =73.6711
2 16.4856 279.967 —-1490.91 2767.304 —2289.61 718.9221
3 -58.2672 —-1068.53 5743.702 -10725.3 8918.068 -2812.86
4 104.9474 1977.637 -10650.3 19929.28 -16602.7 5246.074
5 -91.2483 —-1735.73 9354.558 -17524.3 14615.34 —4623.03
6 30.47119 578.0796 -3119.69 5850.161 —4883.57 1546.05
p=0.1 1 —3.22409 —28.4027 157.6854 —291.333 237.9298 -73.6679
2 19.55258 273.5504 —-1491.76 2777.711 -2297.47 720.5802
3 =79.762 —-1020.26 5739.008 -10785.5 8966.895 —2823.59
4 166.9257 1829.289 -10604.1 20059.46 -16718.3 5271.687
5 -168.481 —1540.83 9260.986 -17638.7 14731.76 —4649.09
6 64.77712 487.8793 -3065.12 5883.788 —4925.41 1555.562
p=0.2 1 -3.10395 -28.7115 157.6542 -290.503 236.9713 —=73.3203
2 17.36909 281.1456 -1502.32 2786.249 -2301.92 721.6972
3 —-62.9605 -1071.55 5799.84 -10829.8 8993.977 —-2832.7
4 118.5221 1967.799 -10745.2 20136.9 -16763.5 5290.042
5 —-109.21 -1706.44 9415.831 -17702.9 14763.81 —4665.04
6 38.83065 560.0076 -3130.17 5905.914 —-4934.04 1560.818
p=0.4 1 -3.21902 -28.2231 156.3776 —288.281 234.9246 =72.5944
2 21.47004 269.9021 —-1493.85 2788.319 -2306.14 722.6327
3 —87.8588 -994.353 5727.639 —-10830.1 9026.09 —2844.61
4 183.4334 1752.177 —-10508.1 20071.83 —16808.3 5313.172
5 —-183.139 —1454.96 9121.348 —17588.7 14785.45 —4683.42
6 69.16324 456.5177 —-3006.62 5852.482 —4936.73 1566.34
p=0.6 1 —3.06443 -29.0166 157.6868 —288.839 234.4612 —72.2454
2 19.07738 289.2663 -1546.29 2854.607 —2346.01 731.8004
3 -69.1201 -1125.01 6073.411 -11275.7 9307.673 -2914.54
4 130.508 2095.164 -11391.8 21201.47 -17524.8 5493.324
5 -122.117 —-1834.85 10080.42 —18802.7 15552.98 —4876.68
6 44.56038 605.6088 —-3377.05 6317.22 —5229.3 1639.932
p=0.8 1 —-3.05308 -28.9198 156.776 —286.617 232.2467 —=71.453
2 20.11896 287.1201 —1544.74 2852.95 —2343 730.1129
3 —74.346 -1109.31 6058.062 -11273.3 9310.11 -2914.67
4 142.066 2048.135 -11321.5 21157.59 -17516.4 5493.773
5 -133.311 -1780.47 9983.39 -18724.7 15526.64 —4874.24
6 48.39807 584.5126 —-3335.51 6280.026 —5214.67 1638.08
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Table A1 (Contd.)

ki i ]
1 2 3 4 5 6
p=1 1 —1.25472 3.41074 —6.65438 6.23705 -2.25199 0
2 6.87437 -30.611 66.45333 -67.2988 25.42357 0
3 —24.0241 122.0643 —268.549 273.9439 -104.22 0
4 48.87458 —239.774 513.4792 -518.378 196.8722 0
5 —49.3869 227.3271 —465.716 460.6496 -173.781 0
6 19.1027 —82.7048 161.2039 —155.322 58.00922 0
p=13 1 -1.20992 3.15701 —6.08928 5.6577 —-2.03046 0
2 6.58602 —27.9623 59.55491 —59.4854 22.23098 0
3 -21.0503 108.949 —242.124 246.63 -93.2232 0
4 38.5418 —-205.477 459.9598 —471.394 179.1774 0
5 —36.0346 187.7904 —413.821 421.7984 -160.292 0
6 13.26633 —66.577 142.6669 —143.409 54.21306 0
p=17 1 —-1.1869 2.97954 —-5.66908 5.23105 —-1.87257 0
2 6.97393 —27.5435 56.48925 —55.3445 20.47911 0
3 —22.4132 108.0543 —-231.181 230.7424 -86.2157 0
4 40.06518 —203.406 440.8747 —443.263 166.4851 0
5 —-36.304 184.2819 —396.566 397.6835 —149.43 0
6 12.96318 —64.5008 136.2077 —-135.235 50.62092 0
p=2.0 1 -1.16186 2.80989 —5.28877 4.85926 -1.73873 0
2 7.0329 —-26.2004 52.4952 —-51.0061 18.83302 0
3 -22.0973 100.6385 =211.179 209.8942 -78.4724 0
4 37.70025 —-183.496 393.7078 —396.87 149.815 0
5 —32.3831 160.0978 —344.844 349.5909 -132.757 0
6 10.99309 —53.9444 115.2006 -116.602 44.37213 0
p=23 1 —-1.14721 2.69192 -5.00214 4.56182 -1.62682 0
2 7.32112 -26.0193 50.66197 —48.4327 17.72479 0
3 —23.6556 101.8642 —206.485 201.147 -74.3292 0
4 40.98761 —-188.753 389.8626 -383.92 142.8881 0
5 —35.5165 166.8693 —345.48 341.2521 —127.483 0
6 12.09423 —-56.7601 116.5509 —114.745 42.8767 0
p=2.7 1 -1.12226 2.5164 —4.59603 4.15142 —1.47487 0
2 7.52753 —-25.145 47.35823 —44.4867 16.13767 0
3 —24.7737 99.5934 -194.489 185.764 -67.926 0
4 43.08784 —185.896 369.6509 —356.505 131.142 0
5 —37.2324 165.0666 —329.473 318.5959 -117.533 0
6 12.58913 -56.2351 111.6552 —-107.652 39.7036 0
p=3.0 1 —-1.11009 2.41577 —4.34536 3.8854 -1.37316 0
2 7.80151 —-25.0662 45.90192 —42.3341 15.18958 0
3 —26.5469 101.8796 —-192.159 179.2876 —64.5984 0
4 47.34047 —194.589 371.9163 —348.767 125.9704 0
5 —41.6752 176.1603 —336.961 315.6129 -113.958 0
6 14.2642 —-60.9032 115.7611 -107.819 38.81903 0
p=33 1 —1.09067 2.28929 —4.05859 3.59656 -1.26599 0
2 7.87698 —-24.253 43.37786 —-39.4674 14.05747 0
3 —-27.0916 99.37091 —-182.652 167.8818 —-59.9659 0
4 48.48688 —-190.908 3554711 —328.103 117.3631 0
5 —42.7162 173.6214 —-323.78 298.3497 —-106.594 0
6 14.60697 —-60.2274 111.7619 —-102.391 36.45332 0
p=4.0 1 —1.04994 2.02606 —3.45854 2.98739 —-1.03855 0
2 8.05383 —22.603 38.19021 —33.5226 11.69724 0
3 —-28.571 94.95871 -163.911 144.7479 —-50.4617 0
4 51.96966 —185.741 323.9985 —286.472 99.72621 0
5 —46.1715 171.1314 -298.91 263.3175 -91.3464 0
6 15.83841 —-59.8827 104.2123 -91.1807 31.46539 0
p=5.0 1 —-0.98145 1.64147 —2.62823 2.17053 —-0.73911 0
2 7.83774 —18.9847 29.41431 —24.533 8.33867 0
3 -27.8142 79.46272 —-125.254 105.3115 —-35.8155 0
4 49.66089 —-152.999 243.6802 —205.868 70.14278 0
5 —42.9494 137.9964 —220.425 186.2927 —63.4952 0
6 14.30144 -47.1979 75.28253 —63.4479 21.59445 0
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Table A1 (Contd.)

k,'l' 1 ]
1 2 3 4 5 6
p=7.0 1 -0.87472 1.07146 —-1.41422 0.96653 -0.29316 0
2 7.55617 —-13.7305 16.93126 -11.5622 3.4139 0
3 -27.9529 59.89721 =74.959 51.76951 —-15.2437 0
4 51.16538 —-118.633 150.2679 -104.452 30.76598 0
5 —45.0195 109.4468 —139.638 97.17768 —28.5717 0
6 15.17737 -38.1267 48.87075 —-33.9497 9.94392 0
p=10.0 1 —0.74487 0.52211 —-0.40879 0.08517 0 0
2 6.82006 -7.83078 5.5869 —1.4093 0 0
3 -25.8312 35.35634 -25.5181 6.86365 0 0
4 47.69375 =71.1609 52.1025 —14.4603 0 0
5 -41.9946 66.12285 -49.0716 13.8846 0 0
6 14.09987 -23.0628 17.32902 -4.97159 0 0
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