
Introduction

Magnetorheological fluids (MRF) are magnetic suspen-
sions made of particles with high permeability dispersed
in a viscous or viscoelastic nonmagnetizable medium.
Their flow in an external magnetic field undergoes a
competition between magnetic and hydrodynamic forces.
This competition gives rise to original rheological prop-
erties with creation of an apparent yield stress, therefore
of a rapid and reversible liquid-solid transition, useful in
many applications such as clutches which has been first
described by Rabinow (1948), damping devices, pumps,
antiseismic protection, etc. Despite these potential
applications, there are only few commercially available
devices due to the lack of suitable fluids. GoodMR fluids

should be stable against settling and should have a high
magnetic saturation. However their major drawback is
the particle erosion dues to frictions between particles in
movement. Actually carbonyl iron particles have onion
like structure and thus they can easily be peeled by
shocks or frictions. This erosion makes the suspension to
thicken irreversibly and thus decreases its performance.
Surface treatments are currently investigated by makers
in order to improve the life time of theirs MR fluids.

The flow modification is usually called the MR effect.
It is attributed to the field-induced magnetization of the
disperse phase relative to the continuous phase. At a first
approximation, one particle can be made of one single
magnetic domain and therefore is assimilated as one
magnetic dipole. Klingenberg (1989) made some refine-
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Abstract We have studied the rheo-
logical properties of some magneto-
rheological fluids (MRF). MRF are
known to exhibit original rheological
properties when an external mag-
netic field is applied, useful in many
applications such as clutches, damp-
ing devices, pumps, antiseismic pro-
tections, etc. While exploiting
parameters such as magnetic field
intensity, particle concentration and
the viscosity of the suspending fluid,
we highlighted the importance of
each one of these parameters on
rheology in the presence of a mag-
netic field. We made this study by
conducting rheological experiments
in dynamic mode at very low strain
which facilitates the comprehension
of the influence of the structure on

MRF rheology. Our results con-
firmed the link between the magnetic
forces which ensure the cohesion of
the particles in aggregates, and the
elastic modulus. Moreover, we found
that the loss modulus varies with the
frequency in a similar manner than
the elastic modulus. The system, even
with the smallest deformations, was
thus not purely elastic but dissipates
also much energy. Moreover, we
demonstrated that this dissipation of
energy was not due to the matrix
viscosity. Actually, we attributed
viscous losses to particle movements
within aggregates.
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ments to the calculus of the electrostatic force. Trans-
lated into magnetostatic, his expression for the magnetic
force F may be written as shown in Eq. (1):

F ¼ 3lf a2b2H2f

with

f ¼ a4
r4 2f== cos

2 h� f? sin
2 h

� �
er þ fC sin 2heh

� �
ð1Þ

with lpthe particle permeability, lf the fluid permeabil-
ity, b ¼ lp�lf

lpþ2lf
¼ a�1

aþ2, r distance between sphere center to
center and a particle diameter. fk, f’, and fG are numeric
terms which are function of ratios a and r/a.

In both limit cases when a fi 1 and a/r fi 0,
parameters fk, f’, fG fi 1 which correspond to the
dipolar approximation. These parameters have been
calculated for various a values (Klingenberg 1989;
Clercx and Bossis 1993). Electrostatic forces increase
tremendously while particles are coming closer up
because of the divergence of the electrostatic field in the
gap between sphere surfaces. In a same way, magnetic
force between two magnetic spheres can also become
very high up to the magnetization saturation.

Because this force has two components along the
radial and the orthoradial axis, a force momentum
aligns particles into and head to tail configuration in the
direction of the applied magnetic field (Fig. 1). This
creates the experimentally observed fibrous structure.

It has been reported by numerous publications that
this structure must be broken in order to make the
suspension flow. The force required to break these col-
umns defines the yield stress sy. In steady state rheology,
this type of flow is commonly modeled as a Bingham
fluid (Eq. 2) (Bingham 1922) with a magnetic-field
dependent yield stress sy(H):

s _c;Hð Þ ¼ sy Hð Þ þ g _c for s>sy

_c ¼ 0 for s\sy
ð2Þ

where s is the shear stress and g is the viscosity at high
shear rate. More models using a non-Newtonian shear
can also be proposed as Eq. (3) (Casson 1959) or Eq. (4)
(Hershel-Buckley 1926) which take into account the
curve shape of the shear stress versus shear rate func-
tion:

s
1
2 _c;Hð Þ ¼ s

1
2
y Hð Þ þ g _cð Þ

1
2 ð3Þ

s _c;Hð Þ ¼ sy Hð Þ þ K _cð Þp ð4Þ

where parameter p is strictly positive and K called
consistency is a viscosity-like parameter. However
physical information drawn from such models is rather
poor compared to what can be get from spectrome-
chanical analysis. Indeed spectromechanical analysis has
proven to be a very rich experimental method in polymer
science because it makes it possible to separate the
elastic and the viscous contribution of the material. Thus
it can reveal all the different relaxation phenomena re-
lated to the microstructure.

That is why the main feature of this review will be
about spectromechanical analysis and the influence of
physical parameters like the magnetic field intensity H,
the matrix viscosity g0, the particle volume fraction F,
and the shear strain c.

Literature review

MR fluids are strongly structured fluids. In order to
study its structure, spectromechanical analysis is the
perfect tool. However until recently, it was rarely used in
the case of MR suspensions. This is due to the failure of
theoretical works to predict experimental behaviors.
Two main contributors to the ER theoretical formalism
held our attention: Klingenberg (1992) and McLeish
et al. (1991). They have the merit to investigate the
relaxation mechanism in ER fluids. However equations
can be transposed to MR fluids by changing E into H
and � into l. McLeish et al. (1991) modeled the sus-
pension structure as single particle width chains (Fig. 2).
They distinguished two kinds of chains: chains attached
to both electrodes and ‘‘free’’ strings, chains attached to

Fig. 1 Relative positions of two spheres in regard to H
Fig. 2 Chain model for low concentrated MRF. n-th particle
moves by translation of Xn
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at most one electrode free. Under small amplitude
oscillatory shear, attached chains deform affinely at all
oscillation frequencies, producing no relaxation. As the
storage modulus, G¢, is a function of the magnetic ten-
sion within a string, it scales up with the squared field
strength but is independent of the oscillation frequency
(Eq. 5). For very small deformation and for the linear
regime McLeish proposed the following expressions:

G0 ffi Tq
N2a 1� fð Þ

G ffi 2Tq
N2a f

P

qodd

2 1�cos q0ð Þix�
4 1�cos q0ð Þ2þx�2

: sin q0=2ð Þ
2 1�cos q0ð Þ

8
<

:
ð5Þ

where T(H2) is the tension in a chain, N particle number
per chain and q volume fraction of particles in suspen-
sion, f free chain fraction, non-dimensional pulsation
x*=xs with s=t(T/(6pg0a

2)), a= particle diameter,
q�=pq/N where q is the number of modes.

The loss modulus, G¢¢, arises essentially from the
motion of the ‘‘free’’ chains, which may deform non-
affinely depending of the frequency.

This model is interesting as it predicts at intermediate
frequencies a plateau for G¢¢ in increasing the number of
modes. Moreover both moduli scale up with the squared
magnetic intensity. However, it predicts a Newtonian
behavior at low oscillatory frequency and leads to a
variation of G¢¢ inversely proportional with the pulsa-
tion at high frequency which seems to be in contradic-
tion with our observations. Their theory seems to match
their experimental data but to our knowledge, it has not
been successfully applied by others since then.

Klingenberg (1992) employed a similar model.
However, the suspension structure was determined by
computational simulation. At moderate to large parti-
cles concentration, the structure mainly consists of
thick clusters as opposed to single particle chains. The
relaxation process is associated to a frequency depen-
dent dynamic structure within the cluster. As for
McLeish, G¢ scales up with the squared field intensity,
but it varies between a low plateau for small value of
the dimensionless frequency and a higher plateau at
larger ones. G¢¢ passes through a maximum near the
transition between the small and large frequency re-
gimes. This transition is defined by a characteristic time
s which allowed Klingenberg to define a property
called time-field strength superposition, similar to the
time-temperature superposition in polymer rheology.
Thus, when scaled with the magnetic field strength
squared, the complex shear modulus (G*) is only
function of the frequency scaled by the magnetic field
strength squared for a particular suspension at a given
concentration:

G
3
16 pl0lcb

2H2
0

¼ f
16gCx

3
16 pl0lcb

2H2
0

 !

¼ f xsð Þ: ð6Þ

Both models are based on linear viscoelastic rules.
However, experimentally, linear viscoelastic behavior is
often limited to very small strain amplitudes (Otsubo
1991; Ginder and Davis 1993; Parthasarathy et al. 1994;
Yen and Achorn 1991). Several authors report for
electrorheological fluids a very narrow linear domain
and above that a strong decrease in the modulus values
(Jordan et al. 1992; Otsubo et al. 1992) due to the break
of the chain structure. Jordan et al. (1992) examined the
viscoelastic behavior of a commercial ER fluid. They
observed linear behavior for strain amplitudes below
about 3%. Then, G¢ and G¢¢ decreased with further
increases in strain amplitude. Otsubo et al. (1992)
investigated the dynamic ER properties of silica particles
in silicone oil. Linear viscoelastic behavior was observed
for strain amplitudes below 1% for all field strengths
investigated. G¢ was found to decrease with further in-
creases in strain amplitude, while G¢¢ plotted against
frequency passed through a maximum which shifted to
smaller frequencies with increasing strain amplitude.
Gamota and Filisko (1991) and Gamota et al. (1993)
studied the dynamic properties of aluminosilicate parti-
cles in paraffin oil, focusing attention on the Fourier
transform of the oscillatory shear flow response. Linear
viscoelastic behavior was observed for sufficiently small
strain amplitudes and field strengths, where at constant
frequency, G¢ and G¢¢ increased with field strength.
Experiments were performed by varying the electric field
strength at constant strain amplitude (0.1 and 0.5) and
frequency (1 Hz). The response was linear at small field
strengths as determined by observing only a funda-
mental harmonic in the Fourier transform of the stress
response. However, at large field strengths, higher order
harmonies appeared, demonstrating that nonlinearity
may be induced by other parameters other than the
strain amplitude. Recently, Chin et al. (2001) have
studied magnetic particles and carbonyl iron suspended
in silicon oil. They could not reach small enough
amplitude to reach the linear zone which was under a
strain of 0.03% as both G¢ and G¢¢ were found to
decrease with further increases in strain amplitude.
Rankin et al. (1999) investigated the rheological prop-
erties of suspensions of iron particles in viscoplastic
media. They concluded that carbonyl iron suspensions
have a nonlinear MR response and that the field-
dependence of the storage modulus reflects changes in
the suspension structure. The mechanisms responsible
for the onset of nonlinearity at very small strain ampli-
tudes are not very well understood. Yen and Achorn
(1991) associate the onset of nonlinearity with yielding
at strains of 1%. Jordan et al. (1992) expect the transi-
tion to correspond to the breaking of chain linkages
beyond their elastic limit which they view as the yield
point of the material. However, Parthasarathy and
Klingenberg (1995a, 1995b), while investigating by
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simulations the transition from linear to non linear at a
particle-level, found that the slight rearrangements
within structures as opposed to the column ruptures
control the transition from linear to nonlinear rheolog-
ical behavior at small deformation rates. For larger
strains, the nonlinear behavior is attributed to break-
downs of percolating structures. Their conclusions are
that any slight instability of the local magnetic field or
any infinitesimal change of particle localization can
induce a nonlinear rheological response.

Thus, it is not sure that true linearity can be reached
in real experiment whatever the rheometer sensibility is,
as local magnetic field is metastable.

This may explain why there are only few papers
about ER fluids (McLeish et al. 1991; Jordan et al. 1992;
Otsubo et al. 1992; Yen and Achorn 1991; Kim et al.
2001) and about MR fluids (Chin et al. 2001; Gans et al.
2000; Larrondo and van de Ven 1992) which show the
frequency dependence of both storage and loss modulus.
Results of spectromechanical analysis may look some-
times quite confusing. However, it is a consequence of
the complex structure in such fluids. Even so, a tendency
seems to appear in recent papers as people possess more
precise tools. Actually, Kim et al. (2001) analyzing the
electrorheological characteristics of a phosphate cellu-
lose-based suspension at different electric field strengths
and at a strain of 0.002 found that G¢ and G¢¢ are either
constant or increase slightly above 10 Hz. G¢ was found
to be more affected by the electric field strength than G¢¢
whereas G¢¢ was more sensitive to the frequency. They
concluded to a rubber-like behavior in the linear region.
Studying an inverse ferrofluid, Gans et al. (2000)
observed also such behavior for the G¢ but their G¢¢
showed an increase at low frequencies. They found that
G¢ scales up with the particle concentration and the
square of the magnetic saturation (Ms). Thus, they
proposed a normalization of G¢ by (u.Ms) in order to
build a master curve. Recently, Chin et al. (2001) mea-
sured a G¢ which also increases slightly with the fre-
quency and a G¢¢ which presents a plateau. Both moduli
were found to be proportional to the applied magnetic
field intensity (H0) and the G¢¢ was much more superior
to the viscous contribution of the matrix. From all of
these, it seems that each ER or MR material has its own
viscoelastic behavior. Thus we find some interest to
deeply study the viscoelastic properties of the most used
and simple MR fluid, a carbonyl iron suspension.

Experimental

Preparation of MR fluids Usually magnetorheological fluids are
suspensions of thin colloidal ferromagnetic or ferromagnetic par-
ticles dispersed in a very fluid medium: magnetic latex made of
polystyrene particles with inclusions of magnetite (Lemaire et al.
1992); suspensions of polymer-coated nano-sized ferrite particles in
polar solvent (Kormann et al. 1996) and meso-scale carbonyl iron

and nickel-zinc ferrites (Phulle and Ginder 1999), carbonyl iron
stabilized by small aerosol particles (Volkova et al. 2000; Tang and
Conrad 1996), by small magnetic particles (Chin et al. 2001), or by
viscoplastic media (Rankin et al. 1999). From all of these systems,
only carbonyl iron based suspensions have already enough per-
formance to be used in magnetic devices such as dampers. As this
kind of suspension is widely used, it seemed interesting to study
them. We needed good magnetic properties which can only be
provided by large particles. Carbonyl iron was chosen because of
its high magnetic permeability and its low coercivity. It is suitable
for reversible systems. These are characteristics of magnetic soft
materials. Thus, we used 99% pure carbonyl iron particles from
GoodFellow with a size of 7±1 lm and a density of 7.8 g/cm3. The
shape of the particle is nearly spherical as seen by optical micros-
copy. Silicon oils from Rhodia (47V10000 and 47V500000 grades)
with a density of 0.93 g/cm3 were used as received for the contin-
uous phase of suspensions. Their Newtonian viscosities have been
measured respectively equal to 13 Pa (47V10000) and 606 Pa
(47V500000). They were high enough to slow down any settling
during measurement time. Thus, we did not try to stabilize more by
any means the dispersion.

Suspensions were prepared by first weighting a quantity of
powder in a beaker. Then, the right mass of silicon oil was added
on top of it. The suspensions were homogenized by the agitation of
a mechanical stirrer at 200 rpm for several hours depending of the
concentration until MR fluids got a homogeneous aspect. The
obtained MR fluids were immediately frozen into liquid nitrogen to
insure conservation without settling until use. In the case of the
most viscous oil, we had to dissolve it with cyclohexane for a
proper mixing. The solvent was then removed by cryo-distillation
under vacuum. We used the following normalization for suspension
names shown in Table 1.

Magnetic properties Magnetic properties were measured by a
hysterisimeter. The magnetic field was produced by a large custom-
built single coil powered by a stabilized d.c. supply. This coil allows
a maximum magnetic intensity of 3.104 A/m far from the satura-
tion magnetization. Indeed, it is important to note that the mag-
netic field remains in the linear magnetic domain of carbonyl iron
particles where Rayleigh�s law can be applied. From this one can
deduce the relative permeability of the suspensions (Fig. 3) by
formulae:

J ¼ l0

l
l0

� 1

� �
H ð7Þ

Thus, in our experiments relative permeabilities could be con-
sidered as constants. But these are average suspension permeabil-
ities ls. In order to use theoretical models, we need to know the real
particle permeabilities lp which is different from the average sus-
pension permeability. One method to link the average permeability
to the particle permeability is the Maxwell-Garnett (1906) theory
based on the conservation of the magnetization in an effective
medium. Thus, the total magnetization is the summation of each
species weighted by their volume fraction. As a consequence, each

Table 1 Table of samples

Sample Content of magnetic
material [vol.%]

Grade of silicon oil

05V5e5 5 47V500000
10V5e5 10 47V500000
15V5e5 15 47V500000
10V1e4 10 47V10000
15V1e4 15 47V10000
30V1e4 30 47V10000
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particle is isolated in a magnetic field H from any interaction of
other particles and the mutual magnetization between particles is
negligible. This model is then limited to low volume fractions. The
Maxwell-Garnett model gives the following equation:

ls � lf

ls þ 2lf
¼ /

lp � lf

lp þ 2lf
ð8Þ

Then lp can be calculated knowing ls and lf. If lf@l0, Maxwell-
Garnett formulae gives a straight line for the function,
ls�l0

lsþ2l0
¼ f /ð Þ. Its slope gives the value of lp. With our experimental

values, we obtain a slope of 2.3, greater than 1 which gives an
impossible negative value for the particle permeability. Volkova
(1998) tried to solve this problem bymaking the assumption that the
particles are not independent but aggregated in ellipsoidal clusters.
She used the following modified Maxwell-Garnett equation:

ls

l0

¼
1þ /b==

1� /n==b==
with b== ¼

lp

�
l0 � 1

1þ n== lp

�
l0 � 1

� � ð9Þ

Using Eq. (9), we found that the best fit is obtained with lp/
l0=200 and n//=0.1 for all magnetic intensity values.

In the literature, for 98% pure carbonyl iron we find li/l0=132
and Ms=1,990,000A/m (Jiles 1995) and for 100% pure iron, li/
l0=320 and Ms=270,000kA/m (Durand 1968). Our particles are
made of 99% pure iron. Thus our measures are accurately between
the values of 100% pure and 98% pure iron. The b value would be
considered near the unity.

Experimental rheological set-up A wide variety of methods can be
found in the literature for studying MR systems: concentric cyl-
inder rotational viscometer (Laun et al. 1992), parallel plate
geometry inserted into a coil (Volkova 1998), conventional stress
and strain controlled rheometers with cone-plate (Larrondo and
van de Ven 1992), parallel plate (Chin et al. 2001). All rheological
experiments were done at room temperature. Dynamic rheological
measurements were obtained on a strain controlled rheometer
(ARES from Rheometrics) using a cone plate geometry. Steady
rheological data were collected on a stress controlled rheometer
(DSR from Rheometrics) using the same geometry. This geometry
is particularly adapted to the study of our substances whose flow at
a certain moment t depends on former mechanical history, i.e., the
whole stress applied before this moment. Indeed because of con-
stant stress, the mechanical history is constant all over the sample.
We thus preferred this geometry for the study of our model MR
fluids.

Figure 4 shows the schematic diagram of the apparatus for
magnetorheological measurements. The sample was centered at
best in the middle of the coil to insure the most homogeneous
magnetic field inside and the measurement devices were made of
non-magnetic aluminum. Thus, the magnetic induction, measured
by a teslameter, presents a maximum deviation from the center of
±0.5% along the coil axis and ±6% in the radial direction. In a
first approximation, the magnetic field would be considered as
homogeneous. Its direction is then perpendicular to shear. Al-
though gravitational settling of MRF samples was not observed
during tests when the magnetic field is applied, all samples were
well mixed before rheological experiments and changed with new
ones at each measurement.

We also built a shearing cell on an optical microscope in order
to see the evolution of the structure with the shear rate (Fig. 5). The
cell is designed to reproduce the parallel plate geometry of rhe-
ometers. The bottom of the cell rotates thanks to the mobile axis of
a viscosimeter while the independent top of the cell is maintained
immobile. This creates a shear rate within the sample. The top of
the cell is made of glass to let the light pass through. The micro-
scope objective looks from above in reflective light mode. The
whole cell can be moved in two horizontal directions with a pre-
cision of 0.01 mm. Unfortunately due to technical issues, we were
not able to measure reliable viscosity data with this set-up. How-
ever, we could get pictures at given shear rate that we will later
compare with the DSR data.

Steady state measurements were done using the stress
controlled rheometer, DSR from Rheometrics. All experiments
were carried out following a precise protocol. First the sample is
sheared at low shear rate of 0.1 s-1 over 1 min. This puts the
sample in a so called zero state and removes any previous
structural memory effect. The sample stays at rest for another
minute. Then the magnetic field is applied for 1 h before starting
the measure. Rheograms were obtained by programming a
sequence of tests with a first test which increases the stress in a
linear sweep from 1 to 1700 Pa immediately followed by a second

Fig. 3 Relative suspension permeability vs exterior magnetic
intensity (filled diamonds 5%, open squares 10%, filled triangles
15%)

Fig. 4 Scheme of the magneto-
rheological setup attached on
ARES rheometer
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test starting at 1700 Pa and decreasing down to 1 Pa. The
entire sequence was done with a fixed sweep rate ranging from
2 Pa/min to 200 Pa/min. We choose 1 Pa as the starting point
as previous experiments had shown that below this value the
displacement cannot be measured by the optical sensor of this
rheometer.

Dynamic tests were prepared by the following protocol.
First, the suspension is sheared by a time sweep experiment at a
strain of 0.05% and a frequency of 10 rad/s. Then at an instant
t0, the current of the induction coil is switched on at the
desired intensity. We observe an exponential increase of both
modulus G¢ and G¢¢ which reach a plateau value after a char-
acteristic time s as defined in Eq. (10). We choose to work on the
storage modulus as it should be more sensitive to the structuring
process:

DG0 tð Þ ¼ DG0max 1� e�
t=s

� �
ð10Þ

with DG¢(t)=G¢(t))G¢(t0) and DG¢max=G�(t¥))G¢(t0).
Figure 6 illustrates such an increase. The time origin represents

the starting point when the current is abruptly applied. From these
fits, we are able to build a master curve in logarithmic scale with the
characteristic time vs the product of the magnetic intensity with the
volume concentration (Fig. 7).

As moduli increase with the magnetic intensity over the time, we
attributed this characteristic time to a structuring time. Then it is
not surprising to find that this time is as low as the magnetic
intensity and the concentration are high. Particles move faster with
stronger magnetic attractive forces and the structure is also formed
earlier with more particles by volume unit. Although we did not
pursue further this kind of experiment, it could be interesting to
deeper study this structuring regime.

Results and discussion

Static structure

Checked by optical microscopy, the application of a
magnetic field causes the aggregation of the particles
into chains in the magnetic field direction (Fig. 8). Thus,
the formed structure should considerably modify the
flow until transforming the fluid into gel. However we
see here that even at relatively low concentration 5%,

the structure is made with interlaced columns. This is far
from the widely used chain model.

Steady state measurements

The steady-shear MR responses exhibits strong thixot-
ropy effect in cone-plate geometry (Fig. 9) as already

Fig. 5 Schematic diagram of
the shearing cell

Fig. 6 Fit on elastic modulus for 15V5e5 (21350A/m, 10 rad/s)

Fig. 7 Time vs magnetic intensity and concentration for samples:
filled diamonds 5V5e5, open squares 10V5e5, filled triangles 15V5e5
at 10 rad/s and 0.05% of strain
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describe by Lemaire (1992). She attributed this fact to
some structural changes inside the sample. We were able
to follow the destruction effect in a rotational shear
thanks to our custom-built shearing cell on an optical
microscope (Fig. 10).

Depending on how the material is solicited, we see a
hysteresis formed by the loading and unloading curves.
The loading curve has an original shape with two
inflexions separating three zones. Zone A, is the first one
defined by a sharp increase of the stress. According to
our microscopic observation, the structure mainly
remains intact. The material exhibits its strongest elas-
ticity. Then if we further increase the stress (or the shear
rate), we reach zone B which presents a shear thinning
behavior due to the progressive disassemble of the

columns. At high shear rate (zone C), the suspension is
homogenized and has a Newtonian flow.

For an unknown reason, this thixotropy is less if not
at all observed in a plate-plate geometry. Maybe it is
caused by the non homogeneous chain deformation.
Moreover, unlike the load curve the unload one does not
depend on time. That is why we use unload curves for
our analysis, as the unload data were very well repro-
ducible.

Yield fluid models: Bingham (Eq. 2), Casson (Eq. 3),
Hershell-Buckley (Eq. 4), will not be valid at low shear
rates for this kind of rheograms as we did not observe
any real yield stress due to the limitation of the angular
resolution of the stress-controlled rheometer.

Looking for a more suitable model, we used a Cross
model defined by the following equation:

s ¼ g1 þ
g0 � g1
1þ k _c

� 	
_c ð11Þ

Then when c_ fi 0, s=g0c_, the system has a Newtonian
flow. Whereas when _c!1;s ¼ g0�g1

k þ g1 _c, the system
behaves like a Bingham fluid with a deduced apparent
yield stress ss ¼ g0�g1

k and a plastic viscosity g¥.
Cross model gives a good fit (Fig. 10) above all at low

shear rates where our MR fluids behave as pseudoplastic
materials. From Cross model, one can extract many
interesting physical parameters (Table 2). First, the vis-
cosity at high shear rates, g¥, is slightly larger than the
matrix viscosity. That means that the viscosity is the

Fig. 8 Particles aggregation into a fibrous structure. Columns are
about 17 lm in width

Fig. 9 Rheograms of 05V5e5
with 28460A/m (filled diamonds
load curve, open diamonds
unload curve) compared to the
response with H=0 (continuous
line) and microscopy under
shear and magnetic field for the
different zones
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same as in the case of homogeneous suspension hindered
by some hydrodynamic perturbation caused by
remaining aggregates. As expected, we observed that this
viscosity does not depend on the magnetic intensity and
only a little with the concentration. Second, the initial
viscosity at very low shear rates, g0, represents the vis-
cosity of the structured fluid and has a value tremen-
dously superior to the matrix viscosity. In spite of the
high shear rate viscosity, the initial viscosity is very
sensitive to the magnetic intensity as it varies in H2.9 but
also to the concentration in F0.45. Third, the parameter k
has the dimension of a time. It is related to the transition
from the ‘‘solid state’’ where aggregates are mainly in-
tact to the ‘‘liquid state’’ where they are broken. As the
initial viscosity, it scales up a lot in H2.8 and in F0.4.
Therefore both former parameters should be physically
linked.

Thanks to the apparent yield stress, ss ¼ g0�g1
k , we

were able to build a master curve from our data repre-
senting the yield stress vs the applied magnetic intensity
and the concentration in a double logarithmic scale
(Fig. 11). Thus, we deduced the following power law:

ss / /0:5H1:5
0 ð12Þ

Oddly, we did not find the squared variation in
magnetic field, neither the linear dependency with the
concentration as some other author did (Otsubo et al.
1992). We can easily imagine that this is due to the use of
the external magnetic intensity instead of the local one

applying in the particle neighborhood. Indeed a mag-
netic saturation may occur at the contact point between
particles. However our exponent values (1.6±0.1) are in
accordance with other authors like Chin et al. (2001).

Dynamic measurements

Unlike steady state experiments, oscillatory tests at
sufficiently low deformations do not destroy the struc-
ture. We thus completed our study by rheological
experiments in dynamic mode at very low strain which
facilitate the understanding of the structure on MRF
rheology. In spite of these advantages, this kind of
mechanical spectrometry is rarely used in the literature
concerning MR fluids. This is why we made a complete
study of the complex shear modulus versus deformation
and frequency. First of all, the deformation limit, which
is also the limit of the linear viscoelastic range over
which irreversible destruction of the structure begins,
must be determined in an amplitude sweep test.
Figure 12 shows strain sweeps of MRF sample (15V1e4)
with H=21350A/m and without magnetic field.

As we can see in Fig. 12, the magnetic intensity in-
creases both moduli. At small shear strain, the storage
modulus increases one hundred times in this example
whereas the loss modulus also increases by a factor of
ten. At high shear strain, both curves show an analog
behavior and the viscous component prevails over the
elastic one.

We defined the critical strain as the strain value where
loss modulus and elastic modulus are equal. This critical
strain, cc, represents the transition between the visco-
elastic solid at low strain and the viscoelastic liquid at
high strain. Thus, this physical parameter is directly
linked to the state of the structure. It is the witness of the
competition between magnetic forces and hydrodynamic
forces. That is why we investigate the values of the
critical strain at various frequencies and magnetic field
intensities. In general, we found a critical strain, cc, to be
relatively small, between 0.05% and 1.8%, depending on
the rotational frequency and the magnetic field intensity
(Fig. 13). Data plotted in Fig. 13 show a linear variation
of cc with Hx)1/2.

We find that cc could be related to the non dimen-
sional Mason number (Mn) which is here defined as the
ratio between hydrodynamic and magnetic stresses:

Fig. 10 Shear stress vs shear rate (15V5e5, H=28kA/m), Bingham
(dashed line) and Cross (line)

Table 2 Parameters from
Cross model (matrix
viscosity=606 Pa.s)

H0(A/m) 05V5e5 10V5e5 15V5e5

g0 (Pa.s) g¥ (Pa.s) k (s) g0 (Pa.s) g¥ (Pa.s) k (s) g0 (Pa.s) g¥ (Pa.s) k (s)

7234 667 612 2.50 1598 986 11.80 1023 801 6.00
14404 1072 635 7.00 8599 856 54.54 5472 798 53.33
21486 5168 674 43.10 55769 608 270.09 15738 783 81.00
28250 14377 676 92.15 139456 656 497.19 97913 819 380.60
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Mn ¼ 6go _c

lolf ðbHÞ2
ð13Þ

For oscillatory motions, the shear rate c_ is propor-
tional to the frequency x therefore Mn/xH)2. Then, we

found that the critical strain changes with Mn following
the power law:cc/Mn)1/2.

Depending on the strain domain, the frequency sweep
experiments show a gel-like response below the critical
strain (Fig. 14) and a liquid-like behavior above cc
(Fig. 15).

As we can see in Fig. 14, at low strains the magnetic
effect is muchmore pronounced as the frequency is lower.
We defined G¢0 and G¢¢0 as the plateau values respectively
of the elastic modulus and the loss modulus at low fre-
quency (Fig. 14). Even at high frequency, the complex
shear modulus of the structured suspension is much
higher than the one of the matrix. Whereas, at high
strains the flow is far from being Newtonian except at
high frequency (Fig. 15). The Newtonian viscosity at
high frequency is 26 Pa.s which is consistent with the
viscosity of a suspension of free particles which should be
calculated by a simple Einstein law which gives a value of
20 Pa. Indeed even at very low frequency and high
deformation, the flow is not purely Newtonian. As we
reduce the frequency, the apparent viscosity increases and
the storage modulus levels off. This reveals relaxation

Fig. 11 Yield stress vs magnetic field intensity and concentration
5%, 10%, 15%, 30% in 47V500000

Fig. 12 Amplitude sweep for 15V1e4 at 10 rad/s (H=21350A/m:
open triangles G¢, filled triangles G¢¢) and (H=0: filled diamonds G¢,
open diamonds G¢¢)

Fig. 13 Variation of cC vs the frequency and magnetic intensity

Fig. 14 Complex shear moduli (filled squares G¢, open squares G¢¢)
vs frequency (c=10)4, g=13 Pa.s, u=15%, H=21350A/m).
Matrix moduli (G¢¢ dashed line, G¢ plain line)

Fig. 15 Complex shear moduli (G¢ open squares, G¢¢ filled
diamonds) vs frequency (c=1, g=13 Pa.s, u=15%, H=21350A/
m). Matrix moduli (G¢¢ dashed line, G¢ plain line)
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mechanisms due to movements of different sized struc-
tures like aggregates. We calculated the relaxation time of
Klingenberg s equation (Eq. 6) in the example of Fig. 15
which seems to match rather well. At low frequency, the
partially broken aggregates have time to reorganize
themselves in the direction of the magnetic field.

Moreover, we looked at the influence of the particle
concentration, the intensity of the magnetic field, and
the viscosity of the matrix on the MRF rheology for
c<<cc.

The magnetic field intensity scaling

Our results confirmed the link between the magnetic
forces which ensure the cohesion of the particles in
aggregates, and the elastic module as Klingenberg (1992)
and McLeish et al. (1991) had proposed. Thus, under the
application of a magnetic field, the elastic modulus can
increase several orders of magnitude higher and become
frequency independent for medium frequencies and
lower (Fig. 16). To our knowledge only elastic modulus
has been extensively studied as both Klingenberg�s and
McLeish�s theory attached high frequency elastic mod-
ulus to a magnetic attraction within clusters. Whereas
they do not propose a complete interpretation for the
loss modulus as McLeish predicts a final Newtonian
behavior that is still unseen by us (Fig. 17). That is why
our interest has been essentially focused on the modulus
plateau value on both G¢ and G¢¢, named respectively
G¢0 and G¢¢0. We thus proposed some scaling laws on
these values with characteristic parameters. Figure 18
shows that we could find a power law in
G�0 � H :/ð Þ1:65�0:5 for three concentrations.

Such an exponent on the concentration is unexpected
by the model of the single particle width chain disposed
in a cubic organization. Indeed in this ideal case, it
should be equal to 1. However, as we have seen above,
structure is formed by several chains tightly interlaced.

Thus, one can expect that such complex assembly could
oddly influence the stress tensor within the material.

We looked at the effect of a change of the matrix
viscosity. Stoke�s law teaches us that the hydrodynamic
drag of dispersed objects is proportionally reduced by
the matrix viscosity. We were not surprised to see that
particles move faster for a lower matrix viscosity
decreasing the structuring time. In Fig. 19 we applied a
larger strain of 0.1%; that way we could see an inflexion
of the rheological curves separating a high frequency
regime from a low frequency one. Spectromechanical
analyses show that the matrix viscosity does not change
the plateau values of both moduli (Fig. 19). Thus it
becomes easier to distinguish a difference in the char-
acteristic times. Actually, the plateau values are strictly
equivalent for the storage modulus at both viscosities:
the elastic effect is internal to the columns and inde-
pendent of the suspending fluid. However, the plateau of
the storage modulus is also longer for lower viscosity
which indicates that the matrix viscosity plays a role in a
characteristic time. We observe that the crossover point

Fig. 16 Storage modulus vs frequency for different magnetic
intensities (15V1e4, c=10)4)

Fig. 17 Loss modulus vs frequency for different magnetic intensi-
ties (15V1e4, c=10)4)

Fig. 18 Plateau values (G¢0 open diamonds, G¢0 open squares) vs
H.u for 10V1e4, 15V1e4, 30V1e4 at c=10)4
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is moved by a factor equal to the viscosity ratio. Indeed
if we define a shift factor, ag by

ag ¼ g1=g2; ð14Þ

we obtain a time-viscosity superposition equivalent to
the time-temperature superposition in polymer rheology:

G � xag; g1
� �

¼ G � x; g2ð Þ: ð15Þ

This gives the possibility to build a master curve from
several spectromechanical analysis made at different
viscosities (Fig. 19). This works perfectly for the elastic
modulus. The loss modulus is slightly different at low
frequency. However, its changes have little to do with
the viscosity ratio. The loss modulus is thus not directly
linked to the matrix viscosity. At last, the superposition
overlaps well at high frequency.

Moreover we have observed that for high concen-
tration and high magnetic intensity the shift factor needs
to be increased in order to get the superposition. We
think that under certain conditions which increase the
number or the size of the suspended items, one aggre-
gate�s movement is hindered by other aggregates. Thus
we should use an effective viscosity higher than the
matrix viscosity in the shift factor calculation.

If we summarize all these results, we can build some
rheological master curve with the following equation
(Fig. 20):

G�

/Hð Þ1:7�0:1
¼ f

g0x

/Hð Þ1:7�0:1

 !

¼ f xsð Þ ð16Þ

This works pretty well with the storage and the loss
modulus. For this latter, we see a little discrepancy at the
lowest frequencies. This property had already been
described in Klingenberg�s equation (Eq. 6).

Conclusion

We have presented an exhaustive experimental study of
the viscoelastic behavior of MR fluids, structured under
small deformations. Spectromechanical analyses are
perfect for the simultaneous measurements of the
elastic and viscous behavior over a large range of fre-
quencies. Our results qualitatively agree with theoreti-
cal models for the storage modulus: the elastic effect
comes from attractive magnetic interactions within
aggregates. However, these models fail to interpret the
loss modulus. Indeed fluctuations of the loss modulus
are strictly linked to those of the storage modulus
(master curve for the complex shear modulus), even if
the behavior is not rheologically simple. Thus the ori-
gin of the loss of energy is not entirely due to the
viscosity and to the hydrodynamic effects of the sus-
pending fluid: the loss modulus under a magnetic field
is several orders of magnitude higher than the matrix
viscosity. In our opinion, viscous losses at low fre-
quency should be attributed to internal movements
within the aggregates, exactly to the relative move-
ments of particles which also may be directly in contact
between each other, creating some friction and lubri-
cation effects.

To explore this idea more deeply, one should think of
some local measurements of the friction and the lubri-
cation in the interspace of two particles: direct contact
between solid surface, thin layer of fluid trapped be-
tween the particles. All of this should highly depend on
the surface state of the particles through some local
roughness, chemical interaction, etc. We are thinking
about doing some study of the viscoelastic properties of
a confined polymer layer near a metal surface by nano-
rheological measurements.

Fig. 19 Complex shear modulus vs frequency: H=14230A/m,
10%vol, g2=13 Pa.s (G¢ filled trianglem, G¢¢ open triangles),
g1=606 Pa.s (G¢ filled squares, G¢¢ open squares) at c=10)3

Fig. 20 Complex shear modulus vs frequency (c=10)3, 5 vol.%,
g=606 Pa.s) for three different magnetic intensities (G¢ (filled
symbols), G¢ (open symbols))
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