
Introduction

In the 1965 paper on the phenomenological characteri-
sation of inelastic thixotropic fluids, Cheng and Evans
(1965) showed that the equilibrium flow curve (EFC) has
a positive slope along the entire length. However, in-
creasing volume of experimental observation, such as
those on metal alloy slurries (Kirkwood 1994; McClel-
land et al. 1997), which are suspensions of particles in a
molten medium, show that steady shear stress can de-
crease with increasing shear rate. The data can be fitted
by the power law model but with a negative n value of
)0.3; alternatively, they may be fitted by the Sisko vis-
cosity model with m=1.3. It can be readily shown that
the Cross model (Cross 1965; Barnes et al. 1989) (which,
although originally developed to describe the flow curve
of polymeric solutions, applies just as well to thixotropy)
gives an S-shaped steady-shear flow curve under certain
conditions when the index m is greater than 1. Other
examples of materials, both actual and models showing
such non-monotonic flow curves, are given below. All
these experimental and theoretical results mean that the

conclusion that the EFC has positive slope only has to
be re-examined and this is done in this paper. It is shown
that the slope can indeed be negative in part.

The significance of this in the description of thixo-
tropic behaviour and in viscometric measurement is
described. It is shown that such thixotropic fluids can
develop shear banding in wide-gap viscometers. This is
in common with many other materials, a brief survey of
which is given, and the significance discussed.

Example of flow curves showing negative slope are
illustrated by the Cross and Sisko models. The Sisko
model (Sisko 1958; Barnes et al. 1989) can be considered
to be the high shear rate asymptote of the Cross model,
but it has been used to describe experimental results at
low shear rates (McLelland et al. 1997; Barnes et al.
1989). The possibility of the Sisko model being a fluid in
its own right and applicable down to zero shear rate is
considered. This requires the re-examination of the
Cross model as a thixotropic fluid, which is not generally
appreciated. This is done in this paper. It is shown that
the Sisko model does have a separate existence because
of a recovery mechanism that is different from the Cross.
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This leads to the creation of a new set of thixotropic
models.

Slope of the equilibrium flow curve

The constitutive equation for a general inelastic thixo-
tropic fluid is composed of an equation of state and a
rate equation (Cheng and Evans 1965):

F ¼ g k;Dð ÞD ð1Þ

dk
dt
¼ g k;Dð Þ ð2Þ

where F is the shear stress, D shear rate, k the structural
parameter and t time; g is viscosity and g is the rate
function when expressed in terms of D. The functional
forms of g and g are subject to certain restrictions. Two
that are needed below are
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The justification of the first inequality has been given
by Cheng and Evans (1965). The second inequality de-
fines thixotropic behaviour. For negative or anti-thixo-
tropy, (¶g/¶D)k>0.

Under steady state shearing, g=ge=0. Equation (2)
then gives the equilibrium structure ke=ke(D). Substi-
tuting this into Eq. (1) gives the equilibrium flow curve
(EFC), Fe=F(ke,D)=Fe(D). The slope of the EFC is
(dF/dD)e. The subscript e denotes equilibrium condi-
tions.

In order to determine the sign of the slope, we need
first to establish certain inequalities. Expanding the rate
equation by the Taylor series about equilibrium and
keeping to constant D:

g ¼ @g
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For a thixotropic fluid, we expect that when a
structure is more built up than the equilibrium, k>ke it
would undergo breakdown at constant D, i.e. g<0, and
vice versa. This requires that
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The rate equation can equally well be expressed in
terms of F by eliminating D between g(k,D) and
Eq. (1):

dk
dt
¼ f k; Fð Þ ¼ g k;Dð Þ ð6Þ

where f=f(k,F) is the rate function expressed in terms of
F. Differentiating f and g at constant k gives
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The inequality follows from Eq. (3). The relationship
applies along the EFC at every point.

The last inequality we need concerns (¶f/¶k)e. In the
previous paper, it was taken that the differential is
negative. However, it is now realised that it can in fact
take either sign and be positive also, as will be made
clear presently.

The slope of the EFC is
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Differentiating g and applying the result at equilib-
rium, we find that
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The inequality follows from Eqs (3) and (5).
Similarly, from differentiating f and applying the

result at equilibrium:
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Now (¶f/¶F)e<0 (Eq. 7). If (¶f/¶k)e is negative, then
(¶F/¶k)e is negative, and taken with Eq. (8), (dF/dD)e
would be positive. If, on the other hand (¶f/¶k)e is pos-
itive, then (dF/dD)e would be negative and the EFC
would have a negative slope. It was supposed by Cheng
and Evans (1965) that (¶f/¶k)e is negative and it was
concluded that the EFC has a positive slope. However,
as outlined in the introduction, this is not the case. This
discussion identifies the misconception which led to the
earlier incomplete conclusion. It is now clear that the
EFC can show a negative slope. The significance of this
is discussed further in the next section.

The Cross model is used to illustrate the general ar-
gument above. The constitutive equations for the model
are

F ¼ g1 þ ckð ÞD ð11AÞ

g ¼ a 1� kð Þ � bkDm ð11BÞ
where c=(go)g¥). The behaviour of the model is
explored with a spreadsheet.

The EFC is

Fe ¼ g1 þ
c

1þ kDm

� �
D ð12Þ

where k=b/a. It is plotted in Fig. 1 for the parameters
go=0.3, 5 and 2000 Pa.s; g¥=0.05 Pa.s, j=ac/
b=100 Pa.s1-m and a range of values of m. The values of
g¥, j and m=1.3 correspond to certain samples of metal
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alloy slurries (McLelland et al. 1997). The slope of the
EFC is positive for very low and very high shear rates,
but it can be negative over a range of medium shear
rates. This is determined by the values of c and m. When
m £ 1, it is shown below that the slope is positive along
the whole length of the flow curve irrespective of c; but
when m>1, it can become negative if c is sufficiently
large. In Fig 1A for small c (go=0.3 Pa.s), the slope is
positive even when m=2. For a medium value of c
(go=5 Pa.s), it remains positive for m up to nearly 1.3
(Fig. 1B). When c is large, negative slope develops for
values of m>1 (Fig. 1C). As c fi ¥, the limiting value
of m for positive slope is 1.

The shape of the EFC depends on the sign of the
differential (dF/dk)e, i.e. the slope of the equilibrium
(Fe,k) curve. This can be easily derived for the Casson
model:

Fe ¼ g1 þ ckð Þ a 1� kð Þ
bk

� � 1=mð Þ
ð13Þ

The spreadsheet is used to plot Fig. 2. Figure 2A
illustrates that, for small c, the slope of (Fe,k) is neg-
ative along the whole length even when m=2, corre-
sponding to the positive slope of the EFC in Fig. 1A.
For medium c, m=1 gives negative slope still, but
when m=1.3 there is a small positive slope round
about k=0.1 (just apparent in Fig. 2B), giving the
corresponding EFC in Fig. 1B. Figure 2C illustrates
the behaviour when c is large. When m>1, namely
m=1.3, there is a distinct section of positive slope to
the (Fe,k) curve. The curve for m=1 shows the limiting
nature of that value of m. These are reflected in the
EFC curves in Fig. 1C.

The slope of the EFC is finally traced to the sign of
the differential (¶f/¶k)e of the rate equation. For the
Cross model
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� �
ð14Þ

The value at equilibrium (¶f/¶k)e is obtained by
substituting corresponding equilibrium values (Fe(k),k)
into the equation. It can be seen at once that for m £ 1,
the differential is negative irrespective of the value of c
and so the EFC has positive slope along the whole
length. The spreadsheet is used to explore the behaviour
when m>1. Figure 3 (calculated for a=1) illustrates
the results for low, medium and high values of c. The
range of k over which the differential is positive
(and giving negative slope for the EFC) is clearly shown.

Fig. 1A–C Equilibrium flow curve for Cross model with: A
go=0.3 Pa.s; B go=5 Pa.s; C go=2000 Pa.s; g¥=0.05 Pa.s,
j=ac/b=100 Pa.s1-m and a range of values of m

b
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The corresponding range of F is seen in Fig. 2, which in
turn is seen in the EFC in Fig. 1.

The negative slope of the EFC can be explained
qualitatively in terms of the rate of structural break-
down. The break-down is fast when m is large, and this
leads to a large decrease of the equilibrium ke as shear
rate is increased. Together with a large value of c, this
makes for a rapid decrease in equilibrium viscosity, and
hence shear stress with shear rate. This is not compen-
sated by the increase in shear stress due to the increase in
shear rate, and so results in a dramatic decrease in F and
the negative slope of the EFC. This continues until the
structure is nearly fully broken down, the asymptotic
high shear viscosity g¥ is approached and the flow curve
resumes the upward going trend due to the increase in
shear stress with shear rate.

Significance of EFC having negative slope

The significance of the EFC having a negative slope in
viscometric testing is shown in Fig. 4. To put it into
context, the behaviour of an EFC with positive slope is
described first (Fig. 5). Thixotropic fluids are tested in
viscometers under either constant shear rate or constant
shear stress, in the so-called controlled rate (CR) or
controlled stress (CS) rheometers respectively. Near a
section of the EFC having positive slope (Fig. 5), the
structure would change in such a way that it tends to-
wards the equilibriumE. For example, A is being tested at
constant D; having k3>ke(D), it is located in the region of
negative g (g)) and would break down andmove towards
E by shear stress decreasing. C, with k1<ke(F), is being
tested under constant F; it is in the region of positive f (in
which g is also positive, g+) and would move towards E
by shear rate decreasing. Similarly for B and G.

Near a section of the EFC with negative slope, the
same occurs with testing under constant shear rate
(Fig. 4). A¢ has k3>ke(D) and g) is negative; the
structure undergoes breakdown and moves towards E¢.
Analogously, B¢ also moves towards E¢. The behaviour
is governed by Eq. (4) and there is nothing unusual
about this.

However, for tests under constant shear stress, a
different behaviour is found. C¢, despite k1<ke(F), is
located in the region of negative g) (same as f ) and
instead of the structure increasing towards the equilib-
rium E¢, ke(F), it suffers further breakdown. In other
words, C¢ actually moves away from E¢. The same is
found with G¢: k3>ke(F), but it is located in the region
of positive g+; there is further build up and it also

Fig. 2A–C Equilibrium shear stress vs k for: A go=0.3 Pa.s;
B go=5 Pa.s;C go=2000 Pa.s; g¥=0.05 Pa.s,j=ac/b=100 Pa.s1-m

and various values of m

b
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moves away from E¢. This behaviour is described by an
equation analogous to Eq. (4):

dk
dt
¼ f ¼ @f

@k

� �
e

k� ke Fð Þf g ð15Þ

If (¶f/¶k)e is negative, the usual behaviour that the
structure would tend towards equilibrium E is obtained;
this is found when the EFC has a positive slope
(Fig. 5). However, if (¶f/¶k)e is positive, a structure
k3>ke(F) would continue to increase, and vice versa,
under constant shear stress. This is associated with the
EFC having a negative slope (Fig. 4). The behaviour is
quite contrary to our usual notion of thixotropic be-
haviour in relation to the equilibrium state, but every-
thing is quite adequately accounted for in mathematical
terms.

Fig. 4 Structural behaviour close to an equilibrium flow curve with
negative slope

Fig. 3A–C Plot of (¶f/¶k)e vs k for: A go=0.3 Pa.s; B go=5 Pa.s;
C go=2000 Pa.s; g¥=0.05 Pa.s, j=ac/b=100 Pa.s1-m and a range
of values of m; a=1

Fig. 5 Structural behaviour close to an equilibrium flow curve with
positive slope
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Behaviour in ideal CR and CS rheometers

The practical significance of the above is that, while the
entirety of the S-shaped EFC is determinable in CR
rheometers operating under constant shear rate (Fig. 6),
the negatively sloped section is not accessible under
constant shear stress testing in CS rheometers. In Fig. 7,
carrying out a cycle of stepped shear stresses and
maintaining each until equilibrium is reached would
trace out (abcef) on the up-sweep and (fedba) for the
down-sweep, giving hysteresis behaviour.

The region marked out by (bcedb) can be probed, for
example, by shearing first at a high shear stress F¢ to
point H and then suddenly reducing the stress to F¢¢. If
the structure along the constant-k curve (HI) is such that
I lies on the left of the EFC, then as F¢¢ is held constant,
the sample would move towards the equilibrium point at
J. If the shearing at F¢ is continued to K before changing
to F¢¢, the point L may well fall to the right of the EFC.
Then the sample would tend towards the equilibrium at
M instead.

In other words, for a shear stress lying between the
maximum and minimum, c and d, of the S-shaped EFC,

there are three equilibrium points J, M and N. All three
are stable equilibrium points under constant shear rate
testing. However, under constant shear stress testing
only two of them J and M are stable. N is an unstable
equilibrium point and cannot be maintained in a CS test
and so cannot be accessed.

In the ideal CS and CR testing just described, the
entire sample is subjected to constant shear stress or
shear rate. This can only be performed in a perfect
parallel plate simple shear instrument. In the usual
rheometers, such as the tube or rotational, the shear
stress and shear rate are not uniform across the sample.
The behaviour of the sample needs more detailed
consideration.

CS testing in a wide-gap coaxial cylinder rheometer

The CS testing is the simpler to analyse. Consider as an
example the use of a wide gap coaxial cylinder rheometer
to determine the EFC. The CS condition can be readily
obtained by applying a constant torque T/h per unit
length of the cylinder, giving a shear stress distribution
F=(T/2ph)/r2. The wall shear stresses are F1 and F2 on
the inner and outer cylinder of radius r1 and r2. As long
as F1 is less than Fc the maximum shear stress on the
EFC (Fc=Fe, Fig. 7), the equilibrium condition is gov-
erned by the ...abc portion of the EFC. The condition is
conventional and there is no problem in interpreting the
experimental speed-torque (W,T) curve to determine
shear rate.

From equilibrium shearing when F1=Fc, consider
that F1 is suddenly increased to Ff and held constant.
Assuming a wide gap rheometer, the outer cylinder shear
stress F2=(r2/r1)

2F1 would be very low, say Fa. The
shear stress distribution would span Fa<{Fc=Fe}<Ff.
The shear stress at each radial position would be con-
stant and the CS testing behaviour described above
would apply. On shearing to equilibrium, the condition
for F<Fc would be given by the EFC portion ...abc,
while the condition for F>Fe would be given by the
portion ef....

The interesting thing to note is that, while the shear
stress distribution is monotonic, the shear rate and
structure distributions show discontinuities at the
radius where F=Fc=Fe. There is no velocity discon-
tinuity, only that the local shear rate is bi-valued
depending on the direction of approach. This discon-
tinuity in structure and shear rate clearly gives rise to
shear banding. The phenomenon is well known with
other materials but has not been observed for thixo-
tropic fluids. This is discussed below under Significance
and shear banding.

The rotational speed in the coaxial cylinder rheome-
ter is given by the standard result in the literature
(Whorlow 1992):

Fig. 6 Approach to equilibrium in tests at constant shear rate

Fig. 7 Approach to equilibrium in tests at constant shear stress
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The shear rate at the cylinder D1 is obtained by dif-
ferentiating the expression with respect to F1. Depend-
ing on the detailed mathematics, different ‘explicit
formulae’ are obtained. (They have been collected to-
gether by Cheng 1980.) As the EFC is sufficiently dif-
ferentiable at both a and f, and Fc=Fe is constant, there
is no problem in the inversion. The conventional ex-
pressions for calculating shear rate, the various explicit
formulae, apply. This is stated without detailed proof. It
is expected that the discontinuity described by ce would
be reflected by a discontinuity in slope in the torque-
speed curve.

In CS testing when the applied torque and shear
stress are reduced, the latter from Ff or higher, it is clear
that equilibrium is governed by the portions ...fed and
ba... of the EFC. There is no need to go over the details
here.

The interpretation of experimental measurements to
determine the constant structure curve and breakdown
rate in a wide gap rheometer, in which the structure is
not uniform, has been studied previously (Cheng and
Evans 1965). How the negatively sloped flow curve affect
the interpretation is not considered in the present paper.

CR testing in a tube rheometer

Consider now CR testing. It is of course impossible in
practice to maintain uniform shear rate in a rheometer.
What one actually does is to impose a constant volu-
metric flow rate in the tube or hold the rotational speed
constant. The shear rate is therefore a floating variable
which is determined by the sample property and the
testing condition. The behaviour of CR testing is
therefore somewhat complicated.

For example, consider again the determination of the
EFC but in a tube rheometer of radius R (Fig. 8).
Suppose that the flow rate Q has been increased until, at
equilibrium, the wall condition is given by point c, and
then it is increased by a step increase DQ. We imagine a
numerical simulation by finite difference calculations.

Before the change

Q ¼ p
ZR

0

r3De rð Þdr ð17Þ

where the equilibrium shear rate De(r) is prescribed by
the EFC portion 0abc. (Equation 17 is derived by ma-
nipulation of standard result in the literature (Whorlow

1992)). The associated shear stress distribution and wall
shear stress are

F e rð Þ ¼ r
2

� � P
L

� �
F e

w ¼
R
2
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P
L

� �

F e rð Þ
F e

w
¼ r

R

ð18Þ

where P/L is the pressure drop per unit length. The
equilibrium structure is distributed accordingly: ke(r).
These values apply at the step change, time t=0, and are
considered to be the initial conditions after the step
change: D(r,0), F(r,0)=(r/2)(P/L), Fw(0)=(R/2)(P/L)
and k(r,0).

On making the step change in flow rate, the shear rate
and stress distributions are also changed by DD(r,0) and
DF(r,0); DFw(0). These quantities are determined by the
sample property given by the constitutive equations
repeated here:

D ¼ D F ; kð Þ
dk
dt
¼ f k; Fð Þ

ð19Þ

The increases in flow rate and shear rate are related
by

DQ ¼ p
ZR

0

r3DD r; 0ð Þdr ð20Þ

while the increase in shear stress is

DF r; 0ð Þ ¼ r
2

� � DP
L

� �
DFw 0ð Þ ¼ R

2

� �
DP
L

� �

DF r; 0ð Þ
DFw 0ð Þ �

r
R

ð21Þ

where DP is the increase in pressure accompanying the
step increase in flow rate. The equilibrium conditions
along 0abc, ke(r), are related to the initial conditions at
t=0, 0a¢b¢c¢, k(r,0), by the constant-k(r,0) curves shown
in Fig. 8. Along each constant-k curve, Dk=0. Thus,
differentiating Eq. (19):

DD r; 0ð Þ ¼ D;F DF r; 0ð Þ ð22Þ
where D,F=(¶D/¶F)k depends on the local conditions
and hence varies with r. At the wall, where
DD(R,0)=DDw(0) and DF(R,0)=DFw(0):

DDw 0ð Þ ¼ D;Fð ÞwDFw 0ð Þ ð23Þ

Thus

DD r; 0ð Þ
DDw 0ð Þ ¼

D;F
D;Fð Þw

DF r; 0ð Þ
DFw 0ð Þ ¼

D;F
D;Fð Þw

r
R

ð24Þ

Substituting into Eq. (20):
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DQ ¼ p
R D;Fð Þw

ZR

0

r4D;F dr

0
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ADDw 0ð Þ ð25Þ

This allows DDw(0) to be calculated and hence
DFw(0), DF(r,0) and DD(r,0) by using Eqs. (21) and (24)
in turn. D,F=(¶D/¶F)k and the wall values (D,F)w are
evaluated at the local F(r,0) and k(r,0).

With the initial conditions along 0a¢b¢c¢ thus fixed,
the changes with time can then be calculated. The next
calculation is to predict the time evolution after the step
change.

Over the first time interval dt, the structure undergoes
a breakdown given by Eq. (19):

dk r; dtð Þ ¼ f k r; 0ð Þ; F r; 0ð Þ½ �dt ð26Þ
Next, there is a change in shear stress. Remembering

that the CR test is carried out under a constant flow rate
of Q+DQ, dDQ/dt=0, then from Eq. (20), for a small
time interval dt after the step change:

0 ¼ p
ZR

0

r3dDD r; 0ð Þdr ð27Þ

From Eq. (19) and using Eq. (21):

dD r; d tð Þ ¼ D;F
r
R

dFw d tð Þ þ D;k f k r; 0ð Þ; F r; 0ð Þð Þd t

ð28Þ

Fig. 8 Approach to equilibrium
in tests at constant flow rate in
tube rheometer
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where D,k=(¶D/¶k)F varies with r. Substituting in
Eq. (27) and rearranging:

d Fw d tð Þ ¼ �

RR
b

r3D;k f k r; 0ð Þ; F r; 0ð Þ½ �dr

1
R

RR
0

r4D;F dr

ð29Þ

With dFw thus calculated, the change in the shear
stress distribution is derived from Eq. (21):

dF r; d tð Þ ¼ r
R

d Fw d tð Þ ð30Þ

and similarly the shear rate from Eqs. (22) and (23):

dD r; d tð Þ ¼ D;F
r
R

dFw d tð Þ

d Dw d tð Þ ¼ D;Fð Þwd Fw d tð Þ
ð31Þ

By repeating the calculation for further intervals of
time, the evolution of structure Eq. (26), shear stress
Eqs. (29) and (30) and shear rate Eq. (31) may be fol-
lowed quantitatively. The exact behaviour depends on
the model constitutive equations Eq. (19) assumed.

The approach to equilibrium and the equilibrium
conditions can be deduced qualitatively. In Fig. 8, the
initial state of the sample at r on step change in speed is,
say, P. After the first time interval, the new position,
given by dk(r,dt) and dF(r,dt), can readily be marked out
as Q. As time goes on, the locus of Q heads towards the
EFC and would reach it at R at equilibrium. The closer
it gets to the tube wall, the higher up would Q be on
0abc. At one particular radius, represented by S on
0a¢b¢c¢, the equilibrium condition would actually be c.

At radius rT>rS, but close to S, the initial shear stress
FT(rT,0) would be slightly greater than FS(rS,0). As time
goes on, U would head towards cd, the portion of the
EFC having negative slope. But, the shear stress F(rT,t)
cannot be less than F(rS,t) and, at equilibrium, F(rT,¥)
cannot be less than F(rS,¥)=Fc. It can easily be seen
that U would head towards ef... and would end up close
to e, at V where F(rT,¥)=FV is just a little greater than
Fe=Fc. The samples represented by S+Tc¢ on 0a¢b¢c¢
therefore end up as eVW on ef....

This condition is the same as that encountered in the
CS test described above (Fig. 7). In contrast with the
constant-shear rate test (Fig. 6), the negatively sloped
portion of the EFC is not measured by the constant-flow
rate test (Fig. 8). There is a discontinuity in the shear
rate distribution at some radius, where a discontinuity in
structure also exists, giving the shear banding phenom-
enon as in the CR test. More on shear banding is given
in the next section.

For the derivation of the EFC from the experimental
measurement, the standard starting equation applies
(Whorlow 1992). For conditions where Fw>Fc=Fe, it
now reads

Q ¼ pR3

F 3
w

ZFc

0

F 2Dc Fð ÞdF þ
ZFw

Fc

F 2Dc Fð ÞdF

0
B@

1
CA ð32Þ

The shear rate at the tube wall Dw is obtained by
differentiating the expression with respect to Fw

(Whorlow 1992). As the EFC is sufficiently differentiable
above e, and Fc=Fe is constant, there is no problem in
the inversion. The conventional expression for calcu-
lating shear rate, the well known Mooney-Rabinowitsch
equation, applies. This is again stated without detailed
proof. It is expected that the discontinuity represented
by ce would be reflected by a discontinuity in slope in the
pressure drop-flow rate curve.

Similar remarks may be made about the interpreta-
tion of CR testing when the flow rate is reduced as has
been made above for the coaxial cylinder case when
shear stress is reduced.

Significance and shear banding

We can expect that there would be some very interesting
and curious behaviour to be found in and around the
region bcedb in Fig. 7, when more complicated testing,
such as repeated cyclic shearing, is carried out even in
the ideal rheometer. The exact behaviour can be pre-
dicted in detail if a theoretical model is assumed. In
practice, thixotropic measurement is not usually carried
out using CS rheometers. The result of the present dis-
cussion suggests that it would be very informative to do
so.

For wide-gap rheometers and the tube, the previous
two sections show that shear banding can occur in thi-
xotropic fluids. The shear banding phenomenon is
widely described in the literature for many materials,
actual and models, that show steady shear flow curve
that is non-monotonic and S-shaped: that is, having low
and high shear rate arms of positive slope but with a
negatively-sloped middle section. Depending on the
method of measurement, the flow curve can show up as
a constant shear stress plateau or the shear stress, on
attaining a maximum value, decreases when the shear
rate is further increased. The materials include the metal
alloy slurries mentioned in the introduction to this pa-
per, and polymeric systems (Goveas and Fredrickson
1999; Kumar and Larson 2000; Lu, Olmstead and Ball
2000; Olmsted et al. 2000; Remmelgas and Leal 2000;
Tanaka 2000), micellar solutions (Bautista et al. 2000;
Britton et al. 1999; Decruppe et al. 2000; Eiser et al.
2000; Kumar and Larson 2000; Lee et al. 2000; Lerouge
et al. 1998; Radulescu et al. 1999, 2000), liquid crystals
(Ferreiro et al. 2000; Radulescu et al. 1999), soils and
granular materials (Anand and Gu 2000; Knight 1997;
Lu, Zhang and Yang 2000; Oda and Kazama 1998),
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other particulate suspensions (Bair and Winer 2000;
Volkova et al. 1999), and thermoviscoplastic material
(Chen and Batra 1999; Kim and Im 2000).

Theoretical model constitutive equations have been
developed for some of these materials. The material
structural state is sensitive to shear and this leads to non-
monotonic steady shear behaviour and gives rise to shear
banding in which the sample in the viscometric gap falls
into two distinct bands having different structures and
flowing with greatly different low and high shear rates.

It is outside the scope of the present paper to widen
the discussion on non-monotonic flow curves and shear
banding. However, clearly the mechanism responsible
varies from material to material. The thixotropic model
discussed here constitutes yet another different struc-
tural ‘mechanism’ for the behaviour. The phenomeno-
logical study of thixotropy has gone out of favour in
rheological research in recent years while rheologists
concentrate more on probing the microrheological
nature of specific materials. This explains why the
non-monotonic flow curve and the associated shear-
banding phenomenon have not hitherto been described
in thixotropy.

Relationship between the Cross and Sisko models

The Sisko model flow curve

F ¼ g1 þ
K

Dm

� �
D ð33Þ

was originally proposed empirically to describe the vis-
cosity of lubricating greases (Sisko 1958). It has been
fitted to certain metal alloys showing negative slope in
the EFC (Kirkwood 1994). The model can be considered
to be the high shear rate asymptote of the Cross flow
curve, Eq. (12). The exact criterion for validity can be
expressed in terms of viscosity (Barnes et al. 1989) or it
can be given in terms of shear rate. In the latter case, it is
only valid above some limiting shear rate given by
kDL

m>>1.
In practical terms, if we take kDL

m=10, and use the
parameters assumed in the earlier section Slope of the
equilibrium flow curve, DL=590, 59 and 0.59 s-1 for
go=0.3, 5 and 2000 Pa.s, respectively. The larger go is
compared with g¥, the lower the limiting shear rate is in
absolute terms. In practice, fitting the Sisko flow curve
as an asymptote provides no information on go and DL

would be unknown. However, a conservative estimate of
go can still be made using the viscosity measured at the
lowest shear rate.

The Sisko flow curve can be considered in its own
right as being valid over the entire shear rate range down
to zero. The interesting question is: How is it then
related to the Cross model? The rate equation (Eq. 11B)

of the Cross model can be generalised by introducing a
constant x:

dk
dt
¼ a 1� xkð Þ � bkDm ð34Þ

The EFC is then given by

ge ¼ g1 þ
c

xþ kDm
ð35Þ

When x=0, the Sisko flow curve is obtained with
j=c/k.

The constitutive equations (Eqs. 11A and 34) define a
new class of thixotropic fluids of which the Cross and
Sisko are special cases. An additional parameter x is
introduced which relates to the mechanism of thixo-
tropic recovery. In the case of the Sisko model, x=0
means that the recovery rate is independent of current
structure and shear rate. A fluid obeying the Sisko flow
curve therefore implies this recovery behaviour.

Conclusion

This paper resolves the discrepancy between the con-
clusion arrived at in a previous paper (Cheng and Evans
1965), that the equilibrium flow curve (EFC) has posi-
tive slope, with experimental data and model predictions
that the slope can sometimes be negative. This is un-
dertaken from a phenomenological viewpoint. It is
shown that the negative slope is related to the possibility
that (¶F/¶k)e along the EFC can be positive as well as
negative, and is ultimately traced to the possibility that
(¶f/¶k)e is positive for the rate equation. The details are
illustrated using the Cross model.

The structural behaviour in the vicinity of an EFC
showing negative slope is described and the implica-
tion for viscometric measurement is discussed. It is
shown that the negatively sloped portion of the EFC
can be accessed in ideal rheometers under constant
shear rate testing, but not under constant shear stress
testing. Thixotropic measurements are not often car-
ried out in controlled-stress rheometers. It would be
interesting to do so. It is further shown that in wide-
gap rheometers and tube, in which the shear stress and
shear rate are not uniform, the negatively sloped
portion of the flow curve is not accessible under both
constant shear stress and constant shear rate testing.
Instead, the shear banding phenomenon is obtained, in
which the sample in the viscometric gap falls into two
distinct bands having different structures and flowing
with greatly differing low and high shear rates. This
phenomenon is well-known in recent literature and is
found in a wide variety of materials, actual as well as
theoretical models, which are referenced. The mecha-
nism for the shear banding varies from material
to material. The phenomenological description of
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thixotropy discussed in this paper constitutes an ad-
ditional ‘mechanism’.

Some literature data of shear stress that decreases
with increasing shear rate have been fitted to the Sisko
flow curve. The Sisko can be considered the high shear
rate asymptote of the Cross flow curve, in which case
it is valid only at high shear rates. The implication of
the Sisko being valid in its own right and being usable
for low shear rates down to zero is investigated. It is
seen that the rate equation in the Cross thixotropic

model has to be modified according to Eq. (34) and
the Sisko flow curve is obtained if the new parameter
x is zero. This implies that for the Sisko model, the
rate of recovery is independent of structure. Allowing
x to be an additional parameter creates a new class of
thixotropic model which generalises the Cross model
further.

Acknowledgement Thanks to Dr C F Chan Man Fong for helpful
comments on this paper.
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