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Abstract Recent extensions of the
Doi kinetic theory for monodisperse
nematic liquids describe rigid, axi-
symmetric, ellipsoidal macromole-
cules with finite aspect ratio.
Averaging and presumed linear flow
fields provide tensor dynamical sys-
tems for mesoscopic, bulk orienta-
tion response, parameterized by
molecular aspect ratio. In this paper
we explore phenomena associated
with finite vs infinite aspect ratios,
which alter the most basic features of
monodomain attractors: steady vs
unsteady, in-plane vs out-of-plane,
multiplicity of attracting states, and
shear-induced transitions. For ex-
ample, the Doi moment-closure
model predicts a period-doubling
cascade in simple shear to a chaotic
monodomain attractor for aspect
ratios around 3:1 or 1:3, similar to
full kinetic simulations by Grosso
et al. [Grosso M, Keunings R,
Crescitelli S, Maffettone PL (2001),
Prediction of chaotic dynamics in
sheared liquid crystalline polymers.
Preprint (2001) and lecture, Society
of Rheology Annual Meeting, Hilton
Head, SC, February 2001] for infinite
aspect ratios. We develop symme-
tries of mesoscopic tensor models
robust to closure approximations but
specific to linear flow fields, and
analytical methods to determine:

• The entire monodomain phase
diagram of a finite-aspect-ratio
nematic fluid in a linear flow field

is equivalent to the phase diagram
of an infinite-aspect-ratio fluid
(thin rods or discs) in a related
linear velocity field.

• Rod-like and discotic macromol-
ecules with reciprocal aspect ratios
have equivalent bulk shear re-
sponse, related by a simple direc-
tor transformation.

• Out-of-plane, shear-induced mon-
odomains (steady and transient)
either are symmetric about the
shearing plane (e.g., logrolling and
kayaking modes), or occur in pairs
mirror-symmetric about the
shearing plane (out-of-plane stea-
dy and periodic ‘‘tilted kayaking’’
modes), revealing a symmetry
mechanism for bi-stability.

• A tensor analog of the Leslie
alignment vs tumbling criterion,
which is developed and applied to
predict the multiplicity, stability,
and steady or transient property
of shear-induced monodomains.

Simulations highlight the degree to
which scaling properties of Leslie-
Ericksen theory are violated. By
varying molecular aspect ratio, any
shear-induced monodomain is
reproducible among the well-known
closure approximations, yet no
single closure rule suffices to capture
all known attractors and transition
scenarios.

Keywords Monodomain Æ Nematic
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Introduction

Theoretical and numerical studies of homogeneous re-
sponses of nematic polymers and liquid crystals to
simple shear (Fig. 1) have spanned four decades; a rep-
resentative yet inexhaustive list is [4, 5, 14, 21, 22, 24, 26,
27, 30, 33, 40, 41, 43, 44, 45, 63, 65, 66, 67, 68, 69, 70, 80,
82, 83, 85, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101, 118,
119, 120, 124, 125, 126, 127, 128, 132, 133, 136, 137, 138,
146], contributing to a fundamental understanding of
macromolecular fluids. These studies aspire to repro-
duce, explain, and predict experimental discoveries of
monodomain behavior, e.g., [1, 6, 7, 12, 13, 16, 17, 19,
20, 35, 36, 37, 59, 61, 64, 78, 79, 98, 106, 107, 108, 109,
110, 112, 114, 115, 116, 117, 121, 122, 129, 130, 142, 143,
144]. Experimental imaging that allows comparison with
theory has been enabled by advances in shear devices
and rheo-optics, e.g., [12, 58, 73].

By a combination of theory and experiment, many
steady and transient shear-induced, monodomain modes
have been catalogued and named primarily on the basis of
director response: steady alignment with primary direc-
tor either in the shear plane (flow aligning) or along the
vorticity axis (logrolling); in-plane transient oscillatory
(wagging) or rotating (tumbling) director modes; and
out-of-plane transient director modes (kayaking). Com-
plicated dynamics is also possible. Recent full kinetic
simulations of the Doi theory for monodomains [63] of
rigid rods indicate a shear window of highly erratic di-
rector motions, i.e., homogeneous director ‘‘temporal
chaos’’, in contrast with the ‘‘spatial chaos’’ referred to
as director turbulence at least two decades ago (e.g.,
[99]). (The thesis of Edwards [39] contains numerical
evidence of chaotic behavior in the tensor models of
Beris and Edwards [10]; refer also to graphical evidence
in [3]).

We show below that these temporal chaotic attractors
are resolved with simple Doi closure models. The kinetic
simulations of [63] establish a period-doubling route to
chaos, with the underlying orbit an out-of-plane periodic
state; the Doi model with finite aspect ratio reproduces

this scenario! Often it is possible to understand chaotic
attractors in terms of a symbol sequence. We give
graphical evidence that the erratic dynamics is related to
a random switching between metastable attractors,
consistent with kinetic simulations [55, 63].

We pay particular attention to dynamics of the de-
grees of orientation that accompany director motions.
This feature of mesoscopic tensor theories [10, 33, 34, 68,
97, 124] addresses behavior that is not captured from
traditional L-E models. The a priori consequences of a
restricted, single-director theory will be consistently
highlighted.

The characterization of monodomain shear response
and all shear-rate-dependent transitions is routinely
utilized, for example:

• For fundamental rheological classification of given
nematic polymers [30] (e.g., ‘‘flow-aligning 5CB’’ [107]
vs ‘‘tumbling 8CB’’ [108])

• Transitions between monodomain attractors (e.g., the
tumbling to flow-aligning transition) correlate with
measurable sign changes in first and second normal
stress differences [78, 79, 82, 83, 85, 92, 100, 101, 102,
126]

• As a precursor and indicator of subsequent formation
of spatial structures and textures [12, 20, 130]

We refer to two important review papers by Marrucci
and Greco [105] and Burghardt [18] for discussions of
the rheological responses of sheared nematic polymers,
and in particular the correlations between texture for-
mation and monodomain modes for several different
(flow-aligning vs tumbling) nematic fluids.

Below we will focus on transition phenomena in
several tensor models; the effect of finite molecular as-
pect ratio will appear prominently. In a subsequent
study [56] we follow many investigations into structure
formation in processing-type flows which are well-
approximated by linear flow fields. One of our motiva-
tions here is to have tensor models with sufficient flexi-
bility to be able to characterize bulk monodomain
response for a laboratory nematic liquid. The role of
finite aspect ratio is shown in this paper to enrich the
flow-phase diagrams of infinite-aspect-ratio tensor
models, thereby being capable of reproducing far more
features of full kinetic simulations.

It is standard protocol to infer tumbling vs non-
tumbling nematics from the laboratory by the structure
of normal stress differences and apparent viscosity ver-
sus shear rate, clarified and developed in various labo-
ratories ([11, 16, 18, 20, 61, 62, 72, 73, 84, 87, 88, 89, 98,
113, 114, 117, 130, 131, 142, 144, 145]). Many experi-
mental studies now routinely include model simulations,
still dominated by Leslie-Ericksen theory. Likewise, it is
required protocol for theorists to identify shear-driven
phase transitions, and to classify the precise nature of
those transitions so they may be confirmed or not by

Fig. 1 The shear flow geometry, where t0 is the velocity of the
moving plate: t0 ¼ _cc�(width-between-the-plates)
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experiment. The explicit characterization of phase
transitions in terms of bifurcation type has its roots in
the work of Hess [68], Semenov [126], Kuzuu and Doi
[82, 83], Edwards and coworkers [38, 39], Marrucci and
Maffettone [100], and Larson [85], and now has become
a routine tool for identifying and classifying bifurcations
(e.g., [2, 3, 14, 25, 43, 44, 48, 50, 65, 66, 93, 96, 123, 128,
139]).

Bifurcation analysis illuminates qualitative features
of monodomains at shear rates just below or above
phase transitions. We are interested in which orientation
features (in-plane vs out-of-plane components, directors
vs degrees of orientation) inherit the dynamics associ-
ated with bifurcations. The graphics presented illustrate
that one cannot a priori anticipate whether monodo-
main attractors are director-dominated or order-pa-
rameter-dominated; refer to the dynamics of tumbling vs
wagging attractors, for example. We further refer the
reader to mathematical treatments [25, 60, 135] which
apply equivariant bifurcation theory as well as normal
form analysis to explain symmetric patterns and certain
monodomain transition phenomena. The heterogeneous
patterns are related to our own constructions [49, 51],
but they exploit symmetries of tensor equations in a
systematic way. These powerful tools have only started
to be applied toward nematic structure properties, where
a host of space-time bifurcation phenomena await dis-
covery. For example, the uniaxial planar analysis of
the tumbling-wagging transition by Farhoudi and Rey
[44] is extended to biaxial in-plane tensors [25, 135],
which identifies this transition with a Takens-Bogdanov
bifurcation phenomenon.

The question of bifurcation type, and what bifurca-
tions are possible, amplifies the issue of two-dimensional
(director) vs five-dimensional (tensor) models for mon-
odomains. Two-dimensional autonomous dynamical sys-
tems cannot produce the complex dynamics revealed here.
Some critical a priori differences are:

• L-E theory guarantees a scaling property that allows
superposition of data for any constant shear rate into
a master curve in units of strain [18, 90, 91, 105, 144].
Small molecule liquid crystals appear to obey accu-
rately this scaling law (e.g., [134]), as well as recent
data [144] for in-plane shear alignment of certain
main-chain thermotropes.

• The Doi [34], Hess [68], Landau-deGennes [30], or
Beris-Edwards [10] mesoscopic tensor theories do not
share this scaling property, as detailed below, essen-
tially because of order parameter variation induced by
the short-range, excluded-volume potential.

• There are no shear-rate-dependent monodomain
transitions in L-E models, only viscosity-dependent
transitions! Yet the tumbling-to-alignment transition
is observed in tumbling nematics at a critical shear
rate. The only way one can model such behavior with

L-E theory is to posit shear-rate-dependent viscosities.
By contrast, the full tensor theory admits a diversity of
bifurcations vs shear rate for a fixed nematic liquid;
moreover, these transitions dominate the weak flow
regime for finite aspect ratios, and the predictions are
highly sensitive to the tensor model one chooses.

• Chaotic dynamics is not possible in planar autono-
mous systems, yet overwhelming evidence exists from
Doi molecular theory [55, 63] and even from experi-
ments [8, 13, 111] that chaotic bulk motions exist.

The current paper tests predictions of the recent ex-
tended Doi kinetic model of Wang [140], applied to
shear-induced bulk behavior of finite-aspect-ratio,
monodisperse, nematic liquids. Recent work of Singh
and Rey [128], Rienacker and Hess [124], and Maffet-
tone et al. [97] also explicitly models finite-aspect-ratio,
axisymmetric ellipsoidal molecules in Doi, Hess, and
Landau-deGennes tensor models. To our knowledge,
ours is the first systematic study of the role of finite
aspect ratio in mesoscopic tensor models of monodo-
main responses to shear. The methods we develop are
not specific to the class of tensor models.

We first summarize the modern Doi kinetic theory
and the mesoscopic orientation tensor model that fol-
lows, prior to closure approximation. Four popular
closure rules are then recalled. Our new results begin with
symmetry properties of the mesoscopic theory that are
independent of closure approximation, together with
experimental implications of these symmetry properties.
We then develop a tensor version of a Leslie alignment-
vs-tumbling criterion, and study the selection mechanism
of steady and periodic monodomains in the weak shear
limit. Our weak-shear analysis is equivalent to that of
Maffettone et al. [97] who studied a particular Landau-
deGennes tensor model, and identify their model with a
specific parameter regime and closure approximation of
Doi kinetic theory. A similar in-plane tensor analysis is
also given by Rienacker and Hess [124] from a second-
moment closure approximation of Hess kinetic theory.

Our analysis explains the multiplicity, stability, and
steady vs unsteady nature of monodomain solutions in
simple shear. The methods also reveal the remarkable
sensitivity of these monodomain selection criteria vs
shear rate, both to closure rule (equivalently, which
tensor model one chooses) and to molecular aspect ratio.
We then, following seminal studies of Maffettone and
his collaborators, use continuation software packages
to track solution branches in the multi-parameter space
of shear rate, molecular aspect ratio, and closure rule.
For this paper we restrict to a high nematic concentration
N=6, well into the stable nematic regime, which removes
further complexity associated with the I-N transition.

After recalling infinite aspect ratio results, we focus
on behavior associated with a finite molecular aspect
ratio in the range 3:1 to 20:1 for rod-like (prolate) or

22



disc-like (oblate) axisymmetric ellipsoidal molecules.
We then proceed to the primary quantitative results of
each closure model, i.e., detailed flow-phase bifurcation
diagrams. The dramatic role of aspect ratio is illustrated
in various ways. We shall show that previously deter-
mined ‘‘failures’’ of the Doi closure are repaired with the
added role of a finite aspect ratio. Thus the problems
noted in the literature (e.g., failure to capture important
steady-unsteady transitions, tumbling, wagging, or
kayaking behavior) are not the consequence of the Doi
closure approximation. Given these observations, it
seems prudent to revisit previous conclusions drawn
from closure rules with infinite aspect ratio; we do so for
four different closures, with and without orientation-
dependent rotary diffusivity. Some features and models
are robust to the form of rotational diffusivity, others
are not.

Kinetic theory and mesoscopic models
for finite-aspect-ratio nematic fluids

We briefly review the homogeneous form of the Doi-
type kinetic model of Wang [140] only to the extent
necessary to reproduce results of this paper. We assume
nematic polymer liquids consisting of monodisperse,
rigid, axisymmetric ellipsoidal molecules immersed in a
viscous solvent. Such molecules are uniquely character-
ized by an axis of symmetry, m, and an aspect ratio r of
the length along the symmetry axis divided by the radius
of the transverse circular cross-section. Infinitely thin
rods, spheres, and infinitely thin discs correspond to
r ¼ 1; 1; 0, respectively. This kinetic model shares
features with several other models (e.g., [46, 81, 82, 83,
133]), including molecular geometry, orientation-de-
pendent rotary diffusivity, excluded-volume effects, and
distortional elasticity potentials of Marrucci and Greco
[103, 104, 105]. The latter effects do not come into play
for monodomain dynamics addressed here, but are es-
sential for subsequent morphology formation; e.g., the
highly disparate elasticity constants for rod-like vs dis-
cotic nematics do not enter here. Once the kinetic model
is summarized, we discuss four closure approximations
that yield simplified approximate models.

Let f (m,x,t) be the distribution function corre-
sponding to the probability that the axis of revolution of
the molecule is parallel to direction m jjmjj ¼ 1ð Þ at lo-
cation x and time t. The fluid velocity is denoted v. The
Smoluchowski (kinetic) equation for f(m,x,t), neglecting
translational diffusion as is customary, is given by (e.g.,
[15, 30, 34]):

Df
Dt
¼ R � ½Drðm; aÞðRf þ 1

kT
fRVMSÞ� �R � ½m� _mmf �;

ð1Þ

where D
Dtð�Þ denotes the material derivative @

@tð�Þ þ v�
rð�Þ, @

@x ¼ r and R ¼ m� @
@m are the spatial and the

rotational gradient operator, respectively;

_mm ¼ X �mþ a½D �m�D : mmm� ð2Þ

is the Jeffery orbit of ellipsoids [74], D and W are the rate
of strain and vorticity tensors, defined by (with the
convention ðrvÞij ¼ @vi

@xj
)

D ¼ 1

2
ðrvþrvT Þ; X ¼ 1

2
ðrv�rvT Þ; ð3Þ

where –1 £ a £ 1 is the molecular shape parameter
related to the molecular aspect ratio r by

a ¼ r2 � 1

r2 þ 1
: ð4Þ

Note that a�1corresponds to the thin rod limit; a=0
corresponds to spherical molecules; and a�–1 corre-
sponds to the thin disc limit. The rotary diffusion coef-
ficient in Eq. (1) is defined by

Drðm; aÞ ¼ D̂DrðaÞ
Z

m0k k¼1
m�m0k kf ðm0; x; tÞdm0

 !�2
;

ð5Þ

where the pre-factor D̂DrðaÞ is a (possibly aspect-ratio-
dependent) rotary diffusion constant, k is the Boltzmann
constant, T is the absolute temperature, and VMS is the
Maier-Saupe intermolecular potential with strength
proportional to the dimensionless polymer concentration
N:

VMS ¼ �
3NkT
2

mmh i : mm: ð6Þ

Averaged mesoscopic orientation of the nematic mole-
cules m is captured by

M ¼ mmh i ¼
Z

mk k¼1
mmf ðm; x; tÞdm; ð7Þ

the second moment of m with respect to the probability
density function (pdf). Traditionally, one normalizes M
to have zero trace, and

Q ¼ mmh i � I

3
ð8Þ

is called the orientation tensor. M and Q share an
orthonormal frame of eigenvectors, called the directors
or optical axes, with corresponding eigenvalues di,i=1,
2, 3 of M, of Q, called the order parameters where

di ¼ ðm � niÞ2
D E

;

d1 þ d2 þ d3 ¼ 1;

Q ¼
P3
i¼1
ðdi � 1

3Þnini:

ð9Þ
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Each 0 £ di £ 1 conveys the degree to which the meso-
scale ensemble of molecules m is aligned with respect to
the primary director ni. Geometrically M or Q uniquely
defines an orientation ellipsoid whose semi-axes are pre-
scribed by the directors ni and whose axis lengths are the
respective degrees of orientation di. Furthermore, spatial
homogeneity grants that we can completely specify all
monodomain solutions by steady or time-lapse visual-
ization of the ellipsoids relative to the shear flow and
flow gradient directions. This imaging of monodomains
has been utilized by many authors; we refer to the review
by Marrucci and Greco [105] for a compelling discus-
sion. The reader may refer forward to Figs. 3, 4, and 5
for the mesoscale ellipsoids associated with Q(t). We
further extract from the ellipsoid the director motion on
the sphere (the major director alone would be akin to an
L-E simulation) [128], and the order parameter motion
(which measures departure from L-E theory). Similar to
the L-E continuum theory, the second-moment tensor
mimics the molecular geometry at the mesoscopic scale:
the axisymmetric ellipsoidal molecule becomes (upon
averaging) a full ellipsoid with three distinct semi-axes
lengths di.

The maximum normalized birefringence is the maxi-
mum of jdi � djj, occurring in the plane of ni, nj. The
nematic is: biaxial if the di are distinct; uniaxial if
di=dj „ dk, in which case the director nk of the simple
eigenvalue dk is ‘‘the’’ director; and isotropic if all di ¼ 1

3,
i.e.,Q=0. Themajor director is defined as nk for which dk
is the unique maximum. By comparison, the Leslie-
Ericksen continuum theory corresponds to two restric-
tions on the tensorQ: uniaxiality (i.e., a unique director),
and the molecule axis is identical with the director. These
translate to fixing the di at values 1, 0, 0 which removes
two degrees of freedom, and losing one director degree of
freedom in the isotropic plane transverse to the director.

A dynamical equation for the orientation tensor Q is
derived by taking the second moment of m with respect
to the pdf f, then using the kinetic equation (Eq. 1) and
Jeffery molecule dynamics (Eq. 2):

D
Dt Q� X �QþQ � X� a½D �QþQ �D�
¼ 2a

3 D� 2aD : mmmmh i
�6D0

r ½Q� NðQþ I
3Þ �Qþ NQ : mmmmh i�;

8><
>: ð10Þ

where ~DD0
r is a constant averaged rotary diffusivity that

results from the averaging process [34].
For future purposes of monitoring the first and sec-

ond normal stress differences, we record the homoge-
neous stress tensor (apart from an isotropic pressure):

s ¼ð2gþ 3ckT f3ðaÞÞDþ 3amkT ½Q� NðQþ I

3
ÞQ

þ NQ : mmmmh i�
þ 3mkT ½f1ðaÞðDMþMDÞ þ f2ðaÞD : mmmmh i�;

ð12Þ

where g is the solvent viscosity, f1,2,3 (a) are three shape-
dependent friction coefficients given in the Appendix,
and v is the number density of LCP molecules per unit
volume. The quantities 3vkTfi, i=1,2,3 are Doi analogs
of Leslie viscosities.

These equations, coupled with momentum, mass, and
energy balance equations, constitute the modified Doi
equations for nematic polymer fluids. For isothermal,
linear flow fields, these conservation laws are satisfied
identically, and the full system ‘‘simplifies’’ to the ho-
mogeneous orientation tensor dynamics governed by
Eq. (10). However, the presence of fourth-order tensors
in Eq. (10) and the extra stress (Eq. 12) couples the
second-moment evolution equation to fourth-moments,
requiring one either to continue to generate higher mo-
ment equations and truncate at some finite order, or to
solve the Smoluchowski equation (Eq. 1) directly, as in
[43, 53, 54, 55, 63, 86, 93, 96]. To avoid this computa-
tional and analytical complexity, many authors have
introduced closure approximations, a tack which we
follow in this paper. Alternatively, one can posit
Landau-deGennes [29, 68] or Beris-Edwards-Grmela
[10] mesoscopic tensor models, all of which can be
identified as a particular choice of closure rule from the
Hess or Doi kinetic theory together with a particular
form of the intermolecular potential and molecular as-
pect ratio. One example (the Rey-Tsuji model) is illus-
trated below, two others in [97, 124]. As emphasized by
de Gennes [29] and Hess [68], and further discussed by
Marrucci and Greco [105], whatever mesoscopic tensor
model one posits, the system should retain the funda-
mental orientational degeneracy property of nematic
polymers; i.e., without any applied field, the directions
of orientation should be invariant under the full or-
thogonal group of rotations. We now recall four well-
known closure approximations that have been effective
in specific applications:

• Quadratic (Doi) closure:

ð�Þ : mmmmh i � ð�Þ : MM; ð13Þ

where ð�Þ is any second order tensor.

D0
r ¼

~DD0
r

ð1�32Q:QÞ2
; with orientation� dependent rotary diffusivity;

~DD0
r ; without orientation � dependent rotary diffusivity;

8<
: ð11Þ
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• Rey-Tsuji (RT) closure (Rey and Tsuji [133] employed
the rule):

ð�Þ : mmmmh i� 1
4 ½ð�Þ :QQþð�ÞQ2þQð�ÞQþQ2ð�Þ

�ðð�ÞQÞ :QI�þ 1
3ðð�Þ :Qþ 1

3ÞI: ð14Þ
Hinch and Leal developed two closure approxima-
tions in their studies of suspension rheology [71].

• Hinch-Leal 1 (HL1) closure:

ð�Þ : mmmmh i � 1
5 ½6Mð�ÞM�MM : ð�Þ

�2ðMMÞ : ð�ÞIþ 2M : ð�ÞI�: ð15Þ

• Hinch-Leal 2 (HL2) closure:

ð�Þ : mmmmh i �MðM : ð�ÞÞ þ 2½Mð�Þ
M� ðMÞ2ðM2 : ð�ÞÞ=ðI : ðM2ÞÞ�
þaðMÞ½ 52315 ð�Þ � 8

21 ½ð�ÞMþMð�Þ � 2
3 ðM : ð�ÞÞI��;

ð16Þ

where

aðMÞ ¼ exp½2ðI� 3M2 : IÞ=ðI�M2 : IÞ�: ð17Þ
These closure approximations have been used in the
Doi theory with infinite aspect-ratio (jaj ¼ 1) in both
simple shear [24, 86, 133, 138] and extensional flows
[48, 50, 123, 139] and even more complex geometries
[45]. A general conclusion would be that there is no
clear best closure for all flows and flow rates. For ex-
ample, the quadratic closure gives reasonable predic-
tions in strong (elongational) flows [48, 51, 123, 139]
and flows with a slight stretching [24]; the HL-2 closure
is superior with respect to the tumbling parameter vs
equilibrium order parameter comparisons with the full
kinetic theory [71, 85]. To our knowledge, no system-
atic evaluation of closure rules has been performed for
shear-driven flows of finite-aspect-ratio macromole-
cules. Such a study seems especially warranted due to
the significant qualitative changes in each closure
model induced by finite versus infinite molecular ge-
ometry. Singh and Rey [128] compared closures at the
finite discotic ratio r ¼ 1

3.
These closure rules may each be applied with con-

stant rotary diffusivity (Eq. 21b) and with orientation-
dependent rotary diffusivity (Eq. 21a). The following
prescriptions have been used in the references above,
providing the model systems we now analyze:

• Modified Doi Model: the quadratic closure is applied
everywhere for ð�Þ : mmmmh ii.

• Doi-Rey-Tsuji Model: the quadratic closure is applied
to M: Æmmmmæ in the orientation tensor equation, and
the Rey-Tsuji closure is used for all other terms. (Note

that this identification shows that the Rey-Tsuji model
is equivalent to the Doi theory with a specific closure,
which has not been observed previously in the
literature. This point is important, as noted in the
Conclusion, regarding choices of second-order tensor
models with distortional elasticity for the purposes of
simulating and modeling structure formation. Clo-
sures strongly affect monodomain selection criteria,
and therefore can be expected to strongly affect
structure evolution [56].)

• Modified Doi-Hinch-Leal Models: the quadratic clo-
sure is applied to M: Æmmmmæ in the orientation ten-
sor equation, and the H-L1 or H-L2 closure is applied
for all other fourth-order moment terms.

Monodomain responses to linear flows
with a shear component

We begin by noting two important correspondences that
follow from the Doi mesoscopic theory: one between
finite and infinite aspect-ratio nematic fluids in related
linear flow fields, and the other between rod-like and
discotic molecules in the same linear flow field. These
properties are independent of closure approximation, and
therefore follow for all of the models we analyze in the
next two sections.

We are primarily concerned with simple steady shear
flow in Cartesian coordinates (x, y, z) with constant
shear rate _cc:

vshear ¼ _ccð y; 0; 0Þ: ð18Þ

The shear timescale ts= _cc–1 competes with the average
nematic relaxation timescale, tn ¼ 1

6~DD0
r
, which we presume

to be fixed for a given nematic fluid. We nondimen-
sionalize Eq. (10) in nematic relaxation time units:

@

@~tt
Q�Pe½~XX �Q�Q � ~XXþað~DD �QþQ � ~DDÞ�

¼ aPe½2
3

~DD�2~DD : mmmmh i�

� 1

K
½Q�NðQþ1

3
IÞ �QþNQ : mmmmh i�; ð19Þ

where ~tt¼ t
tn
and the Peclet number

Pe¼ tn _cc ð20Þ

is the shear rate normalized by the average rate of ro-
tational diffusivity. (Note: this ratio also defines a
Deborah number, e.g., [18, 88].) The dimensionless
rotary diffusion is then

K ¼ 1� 3
2Q : Q

� �2
; with orientation� dependent rotary diffusivity;

1; otherwise:

�
ð21Þ
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The dimensionless rate-of-strain and vorticity tensors
for simple shear flow (Eq. 18) are

~DDshear ¼
1

2

0 1 0
1 0 0
0 0 0

0
@

1
A; ~XXshear ¼

1

2

0 1 0
�1 0 0
0 0 0

0
@

1
A: ð22Þ

A molecular geometry: straining flow scaling property

Equation (19) defines a ‘‘triple’’: (a, ~vv,Q), consisting of a
nematic fluid of geometry parameter a and aspect ratio
r; any linear flow ~vv; and the corresponding monodomain
orientation tensor Q. An arbitrary linear flow in
dimensionless form is given by

~vv ¼ ~XXþ ~DD
� �

~xx; ð23Þ

where ~DD and ~XX are constant, and trace (~DD)=0.
We observe from Eq. (19) that the rate-of-strain

tensor ~DD and geometry parameter a enter linearly, and
only through their product. This fact underlies two
symmetries of the system Eq. (19) which we describe in
terms of the triple defined above:

a; ~vv; Qð Þ ! 1; ~vv� 1� að Þ~DD~xx; Q
� �

;

a; ~vv; Qð Þ ! �1; ~vv� 1þ að Þ~DD~xx; Q
� �

:
ð24Þ

These symmetries imply an identical monodomain re-
sponse Q of a finite aspect ratio fluid with geometry pa-
rameter a in any linear flow field, and, extremely thin
rodlike or discotic fluids, respectively, in a linear super-
position of the identical linear flow field with a pure
strain component of magnitude 1–|a| or 1+|a|. This
correspondence implies intriguing experimental advan-
tages; we note two obvious examples here. Shear-induced
(more generally, any linear flow-induced) monodomain
behavior of an entire spectrum of monodisperse nematic
liquids can be inferred from flow experiments on a single
large-aspect-ratio nematic liquid by controlling the am-
plitude of the straining component while holding the
vorticity component fixed. Alternatively, one can use a
simple shear device with a finite-aspect-ratio, monodis-
perse nematic liquid, to mimic more general linear flows
of large aspect ratio macromolecular fluids.

This correspondence indicates why a simple change in
aspect ratio could lead, especially in the weak flow limit,
to dramatic changes in monodomain response. Experi-
ments would be valuable to test the validity of the gen-
eral mesoscopic model (Eq. 19). We emphasize that these
properties are restricted to linear flows and homogeneous
orientation behavior.

A rodlike-discotic correspondence in simple shear

The mesoscale model (Eq. 19), again independent of any
approximations used for the fourth-order moment in

this paper, admits a special symmetry specific to a fixed
shear flow (18, 22):

a; ~vvshear; Qð Þ ! �a; ~vvshear; V
t
1QV1

� �
; ð25Þ

where

V1 ¼
0 1 0
�1 0 0
0 0 1

0
@

1
A; ð26Þ

and the superscript t denotes the transpose of a 2nd
order tensor.V1 is an orthogonal matrix corresponding
to a 90� rotation in the x–y (shearing) plane, while
holding the vorticity axis fixed. Recall a and –a corre-
spond to reciprocal aspect ratios, r and r–1. Also recall
that similarity transform by an orthogonal matrix leaves
the order parameters (eigenvalues) invariant, while ro-
tating the orthonormal frame of directors (eigenvectors)
in the shear plane. This symmetry implies: for any pure
shear flow, the monodomain response of discotic polymers
with monodisperse aspect ratio r<1 is identical to that of
rod-like polymers with aspect ratio r–1, where the meso-
scopic directors are related by a simple 90� rotation in
the shearing plane.

We note that the symmetry (Eq. 26) maps either of
the two symmetries (Eq. 24) to the other in simple shear
flows. This correspondence in its simplest form (flow-
aligning steady states) is obvious: if the major director of
rod-like molecules aligns in the flow direction, then
discotic molecules of the reciprocal aspect ratio will, on
average, align in the flow gradient direction. However, it
generalizes to arbitrary monodomain response, e.g.,
phase transitions and all stable and unstable monodo-
mains occur simultaneously for rods and discs of re-
ciprocal aspect ratios. (An analogous correspondence
exists for purely extensional flows [50], which was used
to infer extensional orientation steady states of discotic
LCs from the results in [48] for rod-like LCs.) We cau-
tion that the constitutive stress equation does not have this
symmetry, so that the correspondence will break down
with spatial structure.

Analysis of the Doi monodomain model
with simple shear

We now focus on the Doi mesoscopic model (Eq. 19)
with imposed pure shear flows (Eqs. 18, 22). Following
the historical literature, one is interested in all stable or
attracting states Q(t), steady or transient, at each fixed
shear rate. Two theoretical results are presented here
which directly impact multiplicity and alignment criteria
for attracting states, independent of closure approxi-
mation and for any aspect ratio fluid.
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Out-of-plane monodomain modes come in pairs

The Doi mesoscopic orientation equation (Eq. 19), for
all the closure approximations employed in this paper
and with a presumed pure shear flow and molecular
aspect ratio r, admits a reflection symmetry:

a; ~vvshear; Qð Þ ! a; ~vvshear; V
t
2QV2

� �
; ð27Þ

where

V2 ¼
1 0 0
0 1 0
0 0 �1

0
@

1
A: ð28Þ

Similarity transform of Q by V2 corresponds to:

• An identity transformation for in-plane modes, i.e.,
solutions satisfying (Qxz, Qyz) = (0, 0)

• A discrete reflection symmetry among out-of-plane
monodomain states: any solution Q with non-zero
out-of-plane components (Qxz, Qyz) generates another
solution with identical in-plane components but out-
of-plane components (–Qxz, –Qyz)

This symmetry is natural: nothing in the experiment
as modeled, or the equations, selects the direction of tilt
out-of-plane. Yet there are intriguing consequences of
this symmetry for so long as the orientation response is
homogeneous. We mention some:

• In-plane data remains in-plane unless given an out-of-
plane perturbation. In all models and parameter re-
gimes, in-plane solutions exist which require careful
stability analysis to out-of-plane perturbations.

• Out-of-plane orientation data cannot become in-
plane in finite time, and no monodomain motion can
pass through the shearing plane. E.g., out-of-plane
oscillatory attractors whose major director has es-
caped the shearing plane at some critical shear rate
stay tilted to one side of the shearing plane! Experi-
mentally, this means one will see major director
motion either on one side of the shearing plane or
the other in a given realization. Indeed, if the
shearing plane is crossed, it must be associated with
heterogeneity or some other violation of assumptions
inherent in the Doi theory.

• Out-of-plane monodomain solutions generate a mir-
ror-symmetric monodomain, tilted strictly to the other
side of the shearing plane:

• If the major director either aligns with the vor-
ticity axis (the logrolling state) or rotates around
the vorticity axis (the kayaking orbit of Larson
and Ottinger which we label K1 below), then this
symmetry is an identity transformation.

• If the major director lies between the vorticity axis and
shearing plane (the solutions labeled K2, or out-of-
plane steady solutions), the monodomains occur in
distinct pairs, each tilted exclusively to one side of the
shearing plane. (See [43, 54, 55, 63] for kinetic theory
simulations that illustrate these bi-stable steady out-
of-plane and tilted kayaking orbits as well as their
important role in dynamical bifurcations to chaos.)

(We defer further mathematical details to another
treatment, such as infinite-time orbits, domains of at-
traction when there are multiple attractors, and line-
arized decay rates for periodic attractors. These issues
are relevant to experimental studies, cf. van Horn and
Winter [134] on the transient approach to stable mon-
odomains. We also note that Chillingworth and colla-
borators [25] have results about out-of-plane steady
equilibria and reflection symmetry with respect to the
shearing plane in their study of a Landau-de Gennes
tensor model for nematic liquid crystals in uniform
shear. The authors [53] have extended this shear-reflec-
tion and general linear-flow symmetries to the Smolu-
chowski equation of Doi molecular theory.)

Q tensor representations

We now introduce representations of Q that allow us to
amplify director and order parameter properties of
monodomains to visualize both steady and transient
monodomain solutions, and to identify easily in-plane
from out-of-plane monodomain states.

The representation (Eq. 9) of Q has an equivalent
form (using the identity of directors Snini = I):

Q ¼ s n1n1 �
I

3

� �
þ b n2n2 �

I

3

� �
ð29Þ

where s and b arise from a simple linear transform of di
to detect birefringence in each plane of the directors ni:

s ¼ m � n1ð Þ2
D E

� m � n3ð Þ2
D E

¼ d1 � d3;

b ¼ m � n2ð Þ2
D E

� m � n3ð Þ2
D E

¼ d2 � d3:
ð30Þ

The eigenvalue inequalities dij j � 1 confine the pair (s,b)
to the closed triangular domain depicted in Fig. 2. Note
that isotropy in the plane of n1,3, n2,3, n1,2, i.e., uniaxi-
ality along the plane normal, is given by the respective
conditions s=0, b=0, s=b, corresponding to the ver-
tical, horizontal, and diagonal axes of Fig. 2. Thus from
column 3 of Figs. 3, 4, and 5 one can easily monitor the
degree of biaxiality during all monodomain motions by
noting distance from these uniaxial axes. (We note that
an invariant degree of biaxiality is available [76], and
employed recently in [97, 124] to highlight this feature.)
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From Eq. (29), in-plane orientation is characterized
by confinement of the directors n1, n2 to the shearing
plane (x, y), with n3 along the vorticity (z) axis. Recall
Qxz=Qyz=0 if the orientation tensor is in-plane, giving
easy recognition of in-plane vs out-of-plane solutions
either by monitoring these entries or by visualizing the
directors relative to the shearing plane. Logrolling states
are recognized from the in-plane representation by the
conditions d3>d1, d2, for which the major director aligns
with the vorticity axis.

Tensorial analog of the Leslie director
alignment criterion

Classical studies of Jeffery [74], Ericksen [40, 41], Leslie
[90], Jenkins [75], Hinch and Leal [71], Larson and
Ottinger [85], and many others in the past decade have
aimed toward criteria for steady vs unsteady motion of
liquid crystals and nematic polymers. We refer to two
recent articles [134, 144] where L-E theory is applied to
model dynamic and steady alignment data [16]. As em-
phasized in the review article of Marrucci and Greco
[105], a critical consequence of L-E theory is the existence
of a scaling law: monodomain response to simple shear
depends on shear rate only through the product _cct, and
therefore all experimental data may be superposed in
units of strain [144].

From a dynamical systems perspective, the scaling law
follows from two properties of the L-E director equations:

• The equations are autonomous for simple shear with
constant shear rate.

• The shear rate enters only as a constant factor mul-
tiplying the director equation.

The Doi mesoscopic model preserves the first but
patently violates the second property! It is precisely the
intermolecular potential terms in Eq. (19), proportional
to L–1, that do not allow a re-scaling of time to absorb
the normalized shear rate (Pe). The bottom line is that
solutions of the Doi tensor equation (Eq. 19) cannot be
scaled in terms of strain units. Nontrivial order para-
meter dynamics accompany the director motion, which
is dominated by the shear-rate-dependent terms in
Eq. (19), but since the full Q-tensor dynamics is coupled
there is no a priori general statement one can make
about the amplitudes of variation of directors vs order
parameters. In special asymptotic limits of Eq. (19) we
can ensure that either the order parameters or the di-
rectors dominate the dynamics, simply by imposing
Pe� K�1 to promote intermolecular potential effects
where the directors are passive, or by imposing
K�1 � Pe which suppresses the intermolecular potential
and promotes a L-E-type, director-dominated shear flow
response. As we will show with graphics and data from
specific solutions, in general parameter regimes any
scenario is possible, including strong dynamics in both
directors and order parameters. Part of the message here
is that the full story is quite complex yet for any given
model it is computable, requiring a careful systematic

Fig. 2 Steady vs unsteady se-
lection criteria at the start-up of
shear. The triangle defined by
solid lines and its interior are the
admissible values of the order
parameters (s, b), a property of
the orientation tensor Q. For
each of four closure rules, solid
and dash-dotted curves are the
transition boundaries separat-
ing steady and unsteady re-
gions, and their dependence on
aspect ratio. aj j ¼ 1 corre-
sponds to aspect ratio r=0 or
¥; aj j=0.8 corresponds to r=3,
1
3
; aj j ¼ 24

26
corresponds to r=5,

1
5
. Seven asterisks mark the
quiescent equilibria specified by
the fixed concentration N=6.
The horizontal and vertical axes
correspond to in-plane director
alignment, which persists in
weak shear if the asterisk lies
inside the steady region. The
asterisks along the diagonal axis,
(–s*, –s*), correspond to a vor-
ticity-aligned director, and
determine whether steady
logrolling states survive in weak
shear
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approach; we will clarify behavior across the parameter
space of the Doi mesoscopic theory. We note that the in-
plane analysis given below extends that of Wang [138,
139] from infinite to finite aspect ratios.

Our approach is systematic and applies to any meso-
scopic tensor theory. We aim to delineate features that
are robust to all models, and highlight features which are
highly sensitive to model assumptions such as closure
approximation (if derived explicitly from Hess or Doi
molecular theory), or the posited form of a Landau-
deGennes or Beris-Edwards tensor model.

Our first goal is to derive Q-tensor analogs of two
hallmarks of Leslie-Ericksen theory which are indis-
pensable to establish agreement between theory and
experiment of nematic polymers beyond small-molecule
liquid crystals: (i) a criterion for existence of flow-
aligning and logrolling steady states, and the corre-
sponding Leslie in-plane alignment angle; and (ii) the
steady-unsteady transition boundary, given in terms of a
criterion based on the nematic concentration N and
molecular aspect ratio a that replaces the L-E inequality
on the ratio of Leslie viscosities ‘‘a3a2’’. For tensor theory
these characteristics have to be generalized, since there
are three directors and two order parameters.

To achieve this goal, we develop a systematic algo-
rithm that provides the complete set of monodomain

Fig. 3 Graphical representations of three prototypical monodo-
main attractors. Top row: the Eskimo kayaking solution (K1) whose
major director rotates around the vorticity axis. Middle row: a
different kayaking solution (K2) whose major director rotates about
an axis tilted between the vorticity axis and shearing plane; by
symmetry arguments this motion is always accompanied by
another kayaking solution tilted to the other side of the shearing
plane. Last row: the in-plane tumbling solution (T) whose major
director is in the shearing plane and tumbles with fixed period.
Column 1 is a time lapse of the full orientation ellipsoid. Column 2 is
a projection of each director on the unit sphere; the black trace is
the major director, which is essentially the information contained in
Leslie-Ericksen theory. Column 3 gives the order parameter (s, b)
projection, characterizing shape changes of Q. The two kayaking
solutions are from the modified Doi model with discotic aspect
ratio r=1

3
(a=–0.8),nematic concentration N=6, and normalized

shear rates Pe=2, 3.27, respectively. The tumbling solution is from
the modified Doi model with orientation-dependent rotary diffu-
sivity, the same aspect ratio and concentration, but dimensionless
shear rate Pe=14
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stable and unstable states for all N, Pe, r and any meso-
scopic tensor model. We caution the algorithm is not
‘‘formulaic’’ across parameter space as with the L-E
model: the sign of Leslie viscosity ratio alone gives
steady-unsteady classification, or the Leslie flow-align-
ment angle formula in terms of the same ratio. Such

expressions are simply not possible for general N, Pe, r
since one cannot solve the corresponding system of
(possibly transcendental depending on closure) equa-
tions in closed form even for steady states. For certain
‘‘algebraic’’ closures (e.g., Doi, Rey-Tsuji), or for Lan-
dau-deGennes models with polynomial nonlinearities

Fig. 4 Graphical illustrations
of additional stable monodo-
mains: another K2 kayaking
orbit, and a chaotic attractor.
These solutions are from the
modified Doi model with N=6,
r=1

3
, and dimensionless shear

rates Pe=2.5, 3.2, respectively.
This kayaking orbit is distin-
guished from the other so-called
K2 solution of the previous
figure. Here there is a single
fundamental period of oscilla-
tion, vs the double loop which
arises from a period-halving
bifurcation. More complex,
multiple-looped motions on the
sphere occur in the period-
halving cascade that occurs be-
tween the two attractors shown
here

Fig. 5 Illustration of the rod-
discotic correspondence. The
symmetry between rodlike
(a=0.8) and discotic (a=–0.8)
aspect ratios is shown from the
modified Doi model with the
stable wagging solution at
N=6, Pe=2.17. Note the order
parameters are invariant in this
symmetry whereas the directors
are related by a 90� rotation in
the shearing plane. This partic-
ular attracting motion occurs
right after the tumbling-to-
wagging transition, and is
clearly associated with signifi-
cant order parameter variation.
This behavior is suppressed in
Leslie-Ericksen theory, yet it
occurs even for in-plane, wag-
ging motion
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(e.g., [124]), closed-form expressions can be achieved;
since the results require numerical graphing which re-
produces the general numerical algorithm, we omit
them.

We can analyze the steady state and unsteady cases
explicitly for all tensor models in either of two asymp-
totic limits, one of which is the L-E limit of negligible
excluded-volume effects (K�1 � Pe) coupled with a
uniaxial tensor assumption, another the limit where the
intermolecular potential dominates over shear
(Pe� K�1 	 O 1ð Þ). The L-E limit is omitted since it
collapses to the analysis of Farhoudi and Rey [44]. The
weak shear limit for finite excluded-volume effects,
however, provides valuable new information: the num-
ber of solutions that survive orientational degeneracy of
the quiescent nematic liquid, their stability, and their
steady-unsteady character as functions of nematic con-
centration N and molecular aspect ratio r.

The weak-shear limit can be viewed as the ‘‘starter
step’’ in our algorithm. Our analysis is identical to the
study of in-plane configurations in [97, 124] who were
not concerned with the issues of focus in our paper. For
example, we exploit freedom of aspect ratio r, nematic
concentration N, and closure rule (which are frozen in
[97, 124]) to yield a ‘‘tame’’ region of parameter space,
where a precise number (seven) of states survive orien-
tational degeneracy in weak shear, and all are steady.
From this tame scenario, we then show the remarkable

sensitivity in selection mechanisms as we vary model
parameters and the number of degrees of freedom (in-
plane vs full tensor). The sensitivity to variations in the
closure model will be apparent.

The nature of continuation algorithms for solutions
of ordinary differential equations is such that given
precise control over all solution branches and stability at

any fixed set of parameters, the continuation in para-
meter space is relatively straightforward. In this manner,
we will definitively determine all bifurcations (changes
in number or stability of solution branches) vs r, N, Pe.
Also, we show the selection criteria (steady vs

unsteady) are independent of orientation-dependent
rotary diffusivity (an important feature of nematic
polymers) for any closure model; the exact formula [28]
for the period of unsteady tumbling states at the onset
of shear (Pe�0) is modified by an N-dependent con-
stant factor. Rienacker and Hess [124] and Maffettone
et al. [97], for in-plane tensor configurations, draw
special attention to the issue of non-trivial biaxiality in
shear-induced monodomains. As noted above, we also
highlight biaxiality of representative monodomain at-
tractors, both in-plane and out-of-plane, steady and
unsteady, as well as their stability to out-of-plane
perturbations. The relationship between our tensor al-
gorithm for shear-selection mechanisms, that of [97,
124], and exact kinetic theory criteria will be discussed
in detail elsewhere [57].

We give details for the Modified Doi Model as de-
fined earlier, derived from Eq. (19) with the Doi closure;
the other models are more tedious but the same analysis
applies.

Consider ‘‘in-plane’’ motions with n1 and n2 confined
to the shear plane ((x, y)), admitting a single in-plane
director angle n:

n1 ¼ cos n; sin n; 0ð Þ; n2 ¼ � sin n; cos n; 0ð Þ: ð31Þ

TheModifiedDoiModel reduces from five coupled scalar
equations to a system of three equations for (s, b, n):

where �U(s) ds is the uniaxial bulk free energy density
function with

U sð Þ ¼ s 1� N
3

1� sð Þ 2sþ 1ð Þ
� �

; ð33Þ

and

The right-hand-side of the third expression at
Eq. (32) is recognized as a shear-imposed torque on the
in-plane directors n1,2 completely analogous to the tor-
que balance derived from a Leslie-Ericksen theory [41,
75, 85, 90]. The term independent of the geometry

@s
@T ¼ � 1

K s;bð Þ U sð Þ � 2Nbs
3 s� b� 1ð Þ

h i
þ aPe

3 1� bþ 2sþ 3bs� 3s2
� �

sin 2n;

@b
@t ¼ � 1

K s;bð Þ U bð Þ � 2Nbs
3 b� s� 1ð Þ

h i
� aPe

3 1þ 2b� sþ 3bs� 3b2
� �

sin 2n;

@n
@t ¼ Pe

6 s�bð Þ �3 s� bð Þ þ a 2þ bþ sð Þ cos 2n½ �;

ð32Þ

K s; bð Þ0 ¼
1

1� s2 þ sbþ b2
� � ; with orientation� dependent rotary diffusivity;

1; otherwise.

8><
>: ð34Þ
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parameter a is a constant torque from the vorticity
tensor, and the term proportional to a is the strain-in-
duced torque which must be sufficiently strong to arrest
tumbling. Steady flow-alignment requires this torque
balance to vanish, which yields for the Doi closure
model, with constant or orientation-dependent rotary
diffusivity, an orientation tensor version of the Leslie in-
plane director alignment criterion:

cos 2n ¼ 1

a
� 3 s� bð Þ
2þ sþ b

¼ 1

a
� d1 � d2
d1 þ d2

: ð35Þ

When aj j ¼ 1, the right-hand-side (RHS) of Eq. (35) is
always confined between –1 and 1 for all (s, b) in the
allowable triangular domain shown in Fig. 2a. One then
uses Eq. (35) to replace sin2n in the first two expressions
at Eq. (32), giving two polynomial equations that are
then solved for all roots (s*, b*). The equations in closed
form are given in [138].

Note that ‘‘algebraic closures’’ or typical Landau-
deGennes models will always yield polynomial equa-
tions, whereas Hinch-Leal and other closures based on
posited distribution function forms may lead to a pair of
transcendental equations. In any case, they are solvable
numerically. Each equilibrium pair that resides within the
order parameter domain yields a flow-aligned, in-plane
steady state: (s*, b*) fixes the degrees di of biaxial nematic
order along respective optical axes ni:

di¼
1

3
2s
�b
þ1ð Þ; d2¼

1

3
2b
�s
þ1ð Þ; d3¼

1

3
1�s
�b
ð Þ;

ð36Þ

and each pair (s*, b*) inserted into Eq. (35) prescribes
two in-plane director alignment angles n (mod p). If it
happens that d3 is the largest eigenvalue, then the steady
state is logrolling. Indeed, existence of flow-aligned and
logrolling equilibrium solution branches are robust fea-
tures in certain parameter regimes of all tensor models;
their stability, however, is quite non-robust.

The limiting cases d1=0, d2=0 correspond to de-
generate situations in which the three directors align
with the Cartesian axes (i.e., n=0 and n ¼ p

2), and from
Fig. 2a the order parameters reside on two edges of the
triangle. The orientation ellipsoid defined by Q collapses
to an ellipse in the y–z or x–z planes, respectively. The
other degenerate limit where the ellipsoid collapses onto
the shear plane, d3=0, with (s, b) on the remaining face
of the triangle, is non-degenerate in the above repre-
sentation and gives two orientation angles except at the
vertices.

These detailed conclusions are specific to the Doi clo-
sure with infinite aspect ratio. A different representation
is required to capture ‘‘out-of-plane steady states’’ which
arise in reflection-symmetric pairs, aligned between the
shear plane and vorticity axis. These states occur in
diagrams below but we do not emphasize them; we refer

to [25, 43, 54, 55] for further discussions in tensor and
kinetic theory.

When aj j < 1, however, the RHS of Eq. (35) exceeds
1 in absolute value over a subset of the allowable tri-
angular domain of (s, b); this steady-unsteady transition

boundary is shown in Fig. 2a for different values of a for
the Doi closure. It now becomes evident from the Doi
closure construction above: any solution (s*, b*) inside
the triangle at fixed N, Pe gives two flow-aligned states
for infinite aspect ratio; by lowering aj j < 1 toward zero,
the steady-unsteady boundary will intersect (s*, b*), and
for all lower aj j < 1 these candidates for flow-aligned
states fail to flow-align! (Alternatively, we could fix a
and vary N for any given closure, and characterize the
steady-unsteady transition boundary.)

In Fig. 2b–d we give the corresponding steady-
unsteady transition boundaries specific to the other three
closure rules studied in this paper. For any mesoscopic
model, this construction provides the analog of the Leslie
steady-unsteady criterion for flow-aligned and logrolling
states. Note this construction also gives the Leslie flow-
alignment angle (Eq. 35) for each closure rule, whose
precise form gives the boundaries in Fig. 2b–d. In every
closure model arising from Doi theory, where we have
control over molecular aspect ratio, the steady flow-
alignment order-parameter region diminishes as aj j < 1
decreases, i.e., as the aspect ratio r approaches 1. In the
spherical molecule limit a=0, the straining torque van-
ishes and no molecular alignment is possible, consistent
with isotropic molecules. We label the subset of the
triangle where RHSj j > 1 as U (for unsteady), and the
triangle subset where RHS £ 1 as S (for steady). Note
the regions S, U are independent of the rotary diffusivity
form in Eq. (21). The zeros of the first two expressions
at Eq. (32) for aj j ¼ 1 (and the analogous calculation
for the other seven models) are then monitored as aj j
decreases, with the following possible scenarios:

• Equilibria reside within set S, providing a steady
alignment angle n for each discrete solution of
Eq. (35).

• Equilibria move into set U, the in-plane (or out-of-
plane) directors cannot flow-align, yielding transition
to unsteady motion.

From Fig. 2a, the unsteady regions of the triangle
grow from an empty set for the Modified Doi Model
with aj j=1 to consume the entire triangle in the limit of
spherical molecules. Figure 2b–d shows the analogous
unsteady regions for the other closure models, which
have unsteady regions even for aj j=1 corresponding to
time-periodic solutions noted previously in the literature
[24, 86, 138]. The analogous in-plane equations corre-
sponding to Eq. (32) for the other closures are easily
deduced by applying the same Q representation to the
respective tensor equations; the equations are omitted
but results summarized next for all models.
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It is thus clear, no matter what closure is used, that
finite-aspect-ratio monodisperse solutions may experi-
ence unsteady responses where an infinitely thin rod or
platelet is predicted to have shear-aligned steady mon-
odomains. Further details of the selection mechanism
are detailed next for each closure.

Multiplicity of monodomains: the weak shear
limit Pe � 0

The development of rigorous criteria and theory for the
selection of monodomain solutions in shear flow is no-
toriously difficult; we refer to Marrucci and Greco [105]
for an eloquent exposition of this topic and the associ-
ated difficulties in both theory and experiment. The
difficulty arises from the orientational degeneracy of
nematic liquids at rest [29, 68]: whereas the degree of
nematic orientation is uniquely specified by polymer
concentration, the distinguished uniaxial director (pri-
mary axis of orientation) lies arbitrarily on the unit
sphere (two continuous degrees of freedom), and the
remaining two directors lie arbitrarily in the plane or-
thogonal to the primary director (one more degree of
freedom). Equivalently, there are three zero eigenvalues
of the linearized equations about nematic equilibria,
corresponding to a three-dimensional center manifold
which must be tracked as the degeneracy is broken by an
applied perturbation, here a shear flow. Seminal kinetic
theory results in weak flow are attained by Semenov,
Kuzuu, and Doi [82, 83, 126, 127]. We note during the
referee process for this paper, the authors together with
Zhou [54] have recently used the results derived below as
a ‘‘predictor step’’ for the weak shear limit of the Doi
kinetic theory, then employed kinetic simulations to
‘‘correct’’ the mesoscopic predictions; those features
robust to closure approximation are confirmed, and the
closure-sensitive features are resolved at the kinetic level.
This mesoscopic-kinetic predictor-corrector conceptual
framework has been advocated and pursued by
Kevrekides (e.g., [77]).

We now explain our results on the shear-selection
process for the mesoscopic tensor theory. The methods
are valid for arbitrary shear rates and tensor model,
while in the weak shear limit they explain via simple
expressions how selection criteria (steady-unsteady
transitions) are highly sensitive to closure rule, aspect
ratio, and nematic concentration. Equivalent analyses
are developed in [97, 124] for complementary purposes.

Recall that nematic equilibria at rest exist for N � 3
8;

they are uniaxial with director, say n1, that lies arbi-
trarily on the unit sphere. From Eq. (9), uniaxiality
implies d2=d3, or b=0. The degrees of orientation are
uniquely specified by either d1 or s ¼ 1

2 3d1 � 1ð Þ, which
are determined by the critical points of Eq. (33). (The
isotropic state s=0 exists for all concentrations N, and is

unstable for N>3.) The lower nematic state

s ¼ s ¼ 1
4 1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3N

qh i
exists for N > 8

3, but is always

an unstable saddle in the order parameter space (s, b)

[48]. The upper nematic state sþ ¼ 1
4 1þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3N

qh i
is

always stable in the order parameter subspace (s, b).
(The I-N transition surrounds N ¼ 8

3 ; 3.)
For this paper we fix a high concentration, N=6,

where s–�–0.309 and s+�0.809, which takes further
complexity associated with the I-N phase transition
completely out of the picture. We are now in a position
to explain for the modified Doi closure with N=6,
aj j < 1=1, precisely seven steady states are selected as
the flow is turned on, Pe�0: three states emerge from
each of s+, s–, and a single state emerges from the iso-
tropic state. These results are schematically indicated in
Fig. 6, which we now explain. The first issue is state
selection, then stability rests upon the fate of the three
zero linearized eigenvalues.

Consider s+ first: by continuous dependence of lin-
earized eigenvalues in the weak flow limit, Pe�0, we
know that equilibria shear-selected from s+ are the only
candidates for stable solutions! (Caution: for finite shear
rates, initially unstable branches can and do emerge as
stable states; this is why even unstable branches require
identification.)

The uniaxial director associated with s+ lies any-
where on the sphere for Pe=0. For the modified Doi
model, Fig. 2a shows (denoted by asterisks) the nematic
equilibria at rest associated with s+=.809 on three in-
dependent uniaxial axes: (0, s+), (s+, 0), (–s+, –s+).
Note all three lie within the steady region S for aj j=1,
while for aj j=.8 two reside in the unsteady region U.
Thus for aj j=1 the weak shear limit selects three dis-
crete, steady, major directors, denoted n(1), n(2), n(3)

(Fig. 6): two are in-plane, given by Eq. (35); further
stability analysis reveals one stable flow-aligned state and
one unstable flow-aligned state. The third director aligns
with the vorticity (z) axis called a logrolling state, which
is unstable with a director instability of growth rate
proportional to Pe. (Note that different closures
preferentially stabilize logrolling states and destabilize
in-plane aligned states; again, since one is breaking a
three-dimensional set of zero linearized eigenvalues, the
way that shear perturbs the three zero eigenvalues is
automatically sensitive to closure approximation, or
equivalently to whatever Landau-deGennes model is
posited.)

Next, the equilibria associated with s–, depicted in
Fig. 2a along the three uniaxial axes, all reside in the
steady region. For Pe�0 the same arguments above give:
three unstable steady states emerge from s–. Lastly, the
isotropic state clearly lies within the steady region, it is
non-degenerate, so a unique unstable state emerges from
the isotropic phase. (Note that these statements about the
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unstable nematic state s– are robust to closure rule, since
it possesses an unstable linearized eigenvalue (bounded
away from zero) in the absence of flow, and therefore
cannot be perturbed to create a stable state. For strong
flows (order one Pe) however, such distortions are
clearly possible and indeed occur.)

The vertical axis of Fig. 6, Qk k, is a special choice of
‘‘norm of Q’’ chosen to highlight in-plane from out-of-
plane states: in-plane states with identical order para-
meters have the same norm, but out-of-plane directors
yield a lower norm. We caution this is not the usual
Qk k22¼ Q : Q definition, which is invariant under arbi-
trary director rotations and so would not provide the
desired distinction. Our modified norm is used in all
flow-phase diagrams in order to distinguish in-plane and
out-of-plane mode selection. In Fig. 6, the two in-plane
directors associated with s+ in the limit of Pe=0 yield
the same norm; the vorticity-aligned director yields
a smaller norm. The same holds true for the three

directors associated with s–. When we plot solution
branches vs shear rate (Pe) in the figures to follow, for
each of s+,–, two branches of in-plane solutions emerge
at the same Qk k height, another out-of-plane branch at
slightly lower norm.

Summarizing: for Pe�0, Ne=6, and sufficiently large
aspect ratios aj j�1, this analysis explains how seven so-
lution branches emerge for this closure scheme, yet with a
unique stable, in-plane, flow-aligned monodomain. (The
Rey-Tsuji closure will duplicate seven branches, the
other Doi-HL closures will have slight differences as
described below.) Solution branches in Fig. 6 and all
future figures are color coded: green and black indicate
stable states, blue and red indicate unstable states; we also
distinguish stable solution branches with thicker fonts
relative to unstable, thinner branches. From Fig. 6, the
unique stable state in the weak shear limit is flow-
aligning.

Regarding variations in state selection and stability
due to closure scheme in the weak shear limit:

• The Doi and Rey-Tsuji closures, for sufficiently ex-
treme molecule aspect ratios r < 1

4 or r>4 and fixed
concentration N=6, select only steady states: one
stable in-plane flow-aligned state, three unstable in-
plane states, two unstable logrolling states, and a
nearly isotropic unstable state. Unsteady transitions
begin at slightly less extreme aspect ratios, as Fig. 2a,b
conveys.

• For the Rey-Tsuji closure and nematic concentrations
N>6.5, no steady states associated with s+ survive,
in-plane nor logrolling, for infinite or finite aspect
ratio. By contrast, the Doi (Fig. 2a) and HL1,2
(Fig. 2c,d) closures always preserve the vorticity-

Fig. 6 A schematic of the seven solutions (one stable shown in
black, six unstable shown in blue) selected in the weak flow limit for
the modified Doi model with constant rotary diffusivity, nematic
concentration N=6, for infinite aspect ratios ( aj j=1). Refer to
Fig. 2, top left: for aj j=1 all seven quiescent equilibria lie within the
steady region. The isotropic state continues as a nearly isotropic,
unstable steady state. Each nematic equilibrium, s+ and s–, survives
with three steady states emerging from each: two in-plane, flow-
aligned FA states and one vorticity-aligned, logrolling LR state.
The in-plane major directors n1,2 are schematic; we do not indicate
the different alignment angles for s+ and s–. Note s– is negative, but
we depict s�j j on the schematic. The seven states selected in the
weak shear limit are assigned values on a vertical axis labeled by
Qk k. We use a special norm which distinguishes FA vs LR
alignment for the same order parameter values, namely, we define
Qk k ¼ Q2

xx þ Q2
xy þ Q2

xz þ Q2
yy þ Q2

yz
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aligned s+ state in the weak shear limit. The logrolling
state is never stable in the Doi or Rey-Tsuji model, but
always stable in both HL closures.

• For both HL closures, the two potential in-plane so-
lutions associated with s+ for Pe�0 are always un-
steady for any aspect ratio, infinite or finite; the
number and type of time-dependent states differ for
the HL1 and HL2 closures:

• The HL1 closure generates in-plane tumbling
motions for both in-plane s+ states, and the two
orbits reproduce one another! This explains why
the total multiplicity of solution branches for
Pe�0 drops from seven to six. The tumbling so-
lution is unstable until large Pe, and the logrolling
state is the unique attractor for small Pe.

• The HL2 closure produces one tumbling in-plane
solution (stable for low Pe), but another s+ state
tilts out-of-plane to create an unstable kayaking
solution of type K2, which by the symmetry
(Eq. 28) is a pair of unstable kayaking modes. The
total multiplicity therefore jumps to eight, with
four states emerging from s+, three from s–. We
deduce bistability for small Pe of a logrolling
steady state and a tumbling in-plane mono-
domain.

All solution branches associated with s– for aj j>.8
are always inside the steady region for all four closures,
thus always emerge for Pe�0 as unstable equilibrium
branches, two in-plane and one logrolling. The isotropic
state always yields a unique unstable branch, for any
closure and value of a.

In summary, the orientational degeneracy for large
aspect ratio nematic liquids is broken in the limit of
weak shear to yield seven or six solution branches,
corresponding to between six and eight distinct mon-
odomain solutions with either a unique or bi-stable at-
tractor, whose continuation for finite shear rates and
finite aspect ratios is developed next.

Flow-phase diagrams and transition phenomena
for the eight mesoscopic models

We now present results for the eight closure models,
which complement prior results of [128] for finite aspect
ratio (r ¼ 1

3) discotics at high nematic concentration
(N=6). Flow-phase diagrams typically address stable
solutions; many stable solutions emerge at critical shear
rates or aspect ratios from unstable states, so we will
give all stable and unstable solutions in the bifurcation
diagrams, followed by tables that list only the attractors
vs shear rate. Solutions are characterized according to
two criteria: in-plane or out-of-plane, and mode type.
The in-plane states are denoted: FA for flow-aligning, W

for wagging, T for tumbling; out-of-plane states include
the steady logrolling LR state, two types of kayaking K

modes defined next, and chaotic orbits. (We also deter-
mine steady out-of-plane states whose major director lies
between the vorticity axis and shear plane, but they are
not highlighted in subsequent discussions because they
occur over extremely small concentration intervals; see
[25, 43, 54, 55].)

Larson and Ottinger introduced the term ‘‘kaya-
king’’ for out-of-plane solutions in which the major
director rotates around the vorticity axis, akin to an
Eskimo kayaker’s paddle. We distinguish two basic
kayaking modes which have distinct physical features.
K1 is the Larson-Ottinger Eskimo paddle motion
(Fig. 3a); it is a periodic extension of the logrolling
state. K2 characterizes major director rotations about
an axis strictly between the vorticity axis and the shear
plane (Figs. 3b and 4a). From column 2 of Figs 3 and
4 we draw analogy from Lissajous figures. For the K1

mode, the major director rotates once per period
around the vorticity axis; the reflection symmetry
(Eq. 28) of the entire K1 orbit reproduces itself. The K2

modes, by Eq. (28), occur in pairs. There is a ‘‘funda-
mental’’ mode in which every director rotates once per
period (Fig. 4a); there are ‘‘higher harmonic’’ K2 mode
pairs in which each director executes an even number
of loops per period (Fig. 3b), shown below to result
from period-doubling (halving) bifurcations of K2 at-
tractors. To our knowledge, period-doubled modes
were first discovered by Singh and Rey [128]; their pair
symmetry and source of frequent bi-stability have been
independently reported from kinetic theory simulations
by [43]. Their role in a period-doubling bifurcation
sequence to chaos is reported here for the first time in
mesoscopic theory simulations. A strikingly similar
route to chaos from full kinetic theory simulations with
infinitely thin rods [63] confirms rather important fea-
tures of the often criticized Doi closure, where the
simple addition of finite molecular aspect ratio repairs
many of the problems previously ascribed to the Doi
closure with infinite aspect ratio.

We emphasize again that the monodomain nomen-
clature is based on director motion, whereas the ampli-
tude of order parameter motion varies considerably
across the different monodomain attractors; it is this
latter feature that impacts whether the aforementioned
scaling property of L-E theory is approximately satis-
fied. (Refer also to [97, 124].) In Figs. 3, 4, and 5:
column 1 is a time lapse of the full orientation ellip-
soid, with the projection onto the shearing plane for
out-of-plane modes; column 2 is the time lapse trace on
the unit sphere of the major director in blue, and the
minor directors in green and red for out-of-plane
modes; column 3 is the motion of the order parameter
pair (s, b). All solutions in this study are calculated
using the software XPPAUT [42] written by G. B.
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Ermentrout, in which AUTO95 [31] was incorporated
and then confirmed and visualized with AUTO97 [32]
and the commercial software packages Matlab and
Maple.

Stable monodomains for extreme aspect ratios,
aj j�1 [138]

At high concentrations (N=6), in weak shear (Pe�0),
for extremely large aspect ratios ( aj j � 1), Figs. 2, 6 and
the arguments in the text surrounding them explain the
multiplicity and stability of all monodomain solutions
for each of the closure models. Bifurcation software
confirms our analysis and tracks all solution branches
and their stability for all Pe. We first summarize the
robust stable monodomain features for large aspect
ratios [138]:

• The Doi closure, for either rotational diffusivity form
(Eq. 21), and all normalized shear rates Pe>0, yields
a unique, in-plane, flow-aligned attractor FA. This
prediction is consistent with L-E theory in the flow-
aligning Leslie viscosity regime.

• The Rey-Tsuji closure with aj j=1 yields qualitatively
similar results to the Doi closure.

• The HL1 closure has a richer flow-phase diagram
for aj j=1 because of the weak-flow selection prop-
erties noted earlier: from s+, one stable LR state is
selected but the other states are unsteady and un-
stable. The results with either rotary diffusivity
(Eq. 21) are robust, so we give approximate Pe
transition values for the orientation-dependent case:
a unique stable steady LR state for 0<Pe<20;
bistable (unsteady and steady) states (T,LR)
for 20<Pe<45; bi-stable unsteady states (T, K1) for
20<Pe<70; then for Pe>70, a unique stable,
in-plane, unsteady tumbling T state and followed
at much larger shear rates by a W transition. The
bifurcations consist of:

• At Pe�20, an unstable-to-stable transition of the
T state through a period-halving bifurcation (the
tumbling period halves); see [25, 135] for a dis-
cussion of the T–W transition.

• At Pe�45, the LR mode destabilizes through a
Hopf bifurcation into a stable K1 branch.

• At Pe�70, the kayaking K1 branch destabilizes,
leaving a unique in-plane unsteady attractor for
all sufficiently large shear rates.

• The HL2 closure is robust for either rotary diffusivity
form, selecting a stable LR steady state for all Pe. In
contrast with HL1, the unsteady T mode is stable for
HL2 at low and high Pe, losing stability for a range of
Pe through period-doubling bifurcations at Pe�7 and
Pe�15. There is a very narrow window of stable

kayaking K1 solutions with orientation-dependent
rotary diffusivity near the first period-doubling bifur-
cation. The result is bi-stable, tri-stable, or unique
stable attractors for the HL2 model.

We move now to finite aspect ratio predictions.

The modified Doi Model: constant rotary diffusivity
and finite aspect ratios

Figure 7 shows the flow-continuation branches for each
of the seven equilibria of Fig. 6, for the finite discotic
aspect ratio r ¼ 1

4 a ¼ � 15
17

� �
, with N=6 held fixed. (By

the symmetry of Eq. 26, this also yields the behavior of
rodlike molecules of aspect ratio 4:1.) We find persis-
tence of the Doi closure prediction for infinite aspect
ratio rods and discs: the FA steady state is the unique
stable attractor for all Pe>0.

Next we lower the aspect ratio to 3:1 ( aj j ¼ 8
10), with

results given in Fig. 8 and Table 1, showing the flow
response and transition phenomena are dramatically dif-
ferent in the weak shear regime. We describe this, and
only this, flow diagram in detail, for two reasons: first, it
is the most complex and captures a diversity of stable
monodomain motions; and second, many generic bi-
furcations occur in this model which offer concrete ex-
amples of possible physical transition behavior. The
attractors vs shear rate are listed in Table 1; represen-
tative monodomain attractors are imaged in Figs. 3, 4,
and 5.

First we clarify the solution branches in Fig. 8 and
subsequent bifurcation diagrams. The vertical axis con-
sists of some ‘‘amplitude’’, which for unsteady solutions
requires a choice. In Fig. 8a we use the time-average of
Qk k defined in Fig. 6, over one period for periodic
solutions or over a sufficiently long time for aperiodic
motion. In Fig. 8b, we give the maximum and minimum
values for one out-of-plane component, Qyz, associated
with each branch inFig. 8a; in-plane solution branches all
have Qyz=0, whereas non-zero values flag out-of-plane
states. We give both min and max values of Qyz to illus-
trate out-of-plane orbits never cross the shearing plane:

• At low shear rates, 0<Pe<3.72, no stable steady
states exist, as explained earlier in the text surround-
ing Fig. 2a for this lower aspect ratio. The weak shear
limit with aspect ratio r=3 is therefore qualitatively
different than with aspect ratios larger than r=4.

• For sufficiently high shear rates, Pe>3.72, the stable
FA branch is recovered as the globally attracting
monodomain, indicating only quantitative changes due
to aspect ratio for sufficiently strong shear in this
model.

We now highlight the distinctive weak-shear features
from Fig. 8 and Table 1:
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• For 0<Pe<2.162, the unique attractor is a classical
kayaking mode K1, shown as the green dotted branch
in Fig. 8a,b; one of these stable monodomains is
visualized in Fig. 3a for Pe=2. The ellipsoid shape
distortions (governed by the order parameter projec-
tion in column 3) are small amplitude, suggesting
reasonable approximation by a L-E director theory.

• In Fig. 8, the top three solution branches (red dashed
T, green dotted K1, blue solid LR) are the states se-
lected for r ¼ 3; 13 when the orientational degeneracy
of the nematic equilibrium s+ is broken for Pe�0. A
comparison of aspect ratios r ¼ 3; 4 or 13 ;

1
4

� �
is deduced

from Figs. 2a, 7, and 8: the LR state is common for
both aspect ratios, and unstable; the two in-plane
flow-aligned states emerging from s+ for r=4 have
transitioned into unsteady solutions, a stable K1 mode
and an unstable, in-plane T mode.

• These steady-to-unsteady transitions due to aspect
ratio changes between r=4 and r=3 are only un-
derstood by treating the aspect ratio as a bifurcation
parameter. To do so for the entire flow-phase dia-
grams linking Figs. 7 and 8 is numerically prohibi-
tive and would consist of seven sheeted surfaces that

fold and intersect several times! We therefore settle
for a slice of this picture at fixed Pe, illustrated in
Fig. 9 for Pe=3.2 and a range of discotic aspect
ratios. The main feature of Fig. 9 to notice is that
the FA stable branch is the only solution branch at
Pe=3.2, but by freezing Pe and N and varying the
aspect ratio only, a complex sequence of bifurcations
unfolds before the phase diagram settles into the
stable K1 branch observed in Fig. 8 at a=–0.8 or
r=3.

• The structure of the four lower, unstable branches of
Figs. 7 and 8 is robust, corresponding to unstable,
steady solutions arising in the weak shear limit from s–
and the isotropic state.

These remarks address the weak shear limit and the
states that break nematic orientational degeneracy. Next
we address the finite Pe-dependent continuation of these
solution branches:

• The branch of stable K1 solutions persists until
Pe�2.923, clearly visible from the Qyz projection in
Fig. 8b. Pe�2.923 is a saddle-node bifurcation, with
the kayaking branch reversing back for lower Pe as an
unstable K1 branch. This unstable periodic branch, as
Pe is lowered, approaches in-plane motion, undergo-
ing a period-halving bifurcation at Pe�2.162, just as it
connects to the previously unstable, in-plane T

branch. This structure yields the second stable T/W
state listed in Table 1 for 2.162<Pe<2.405, which is
tumbling at the low end and wagging at the high end
of these shear rates. Thus this interval has bi-stable

attractors. Their respective domains of attraction are
not addressed here.

• A stable W mode is depicted in Fig. 5, which we also
use to illustrate the rod-discotic correspondence
(Eq. 26). Note the significant order parameter oscil-
lations (column 3), reflected in the shape distortions of
the orientation ellipsoids (column 1). Such behavior is
suppressed in an L-E description.

• At Pe�2.405, the stable W mode bifurcates out-of-
plane, creating a pair of stable, periodic K2 modes, one
on either side of the shearing plane by virtue of the
reflection symmetry (Eq. 28). One orbit is visualized in
Fig. 4a for Pe=2.5. Note the significant order pa-
rameter oscillations, not captured by an L-E approx-
imation. The energy of this attractor is equally shared
between director and order parameter oscillations.
From Table 1 we find tri-stability for a short band of
shear rates, 2.405<Pe<2.536.

Fig. 7 The flow-phase bifurcation diagram of the modified Doi
model with constant diffusivity, nematic concentration N=6, and
discotic aspect ratio r2 ¼ 1

8
; or a ¼ � 15

17
, for normalized shear rates

0 £ Pe £ 4. The top dotted (black) curve is the unique stable state,
an in-plane, flow-aligning attractor. Six additional solid (blue)
curves emerge from the weak shear axis, Pe�0, all corresponding to
unstable steady states. Referring to Fig. 2, top left, the steady
region for this aspect ratio consumes all seven asterisks

Table 1 Stable and chaotic
solutions of the Modified Doi
model for aspect ratios 3 and
1
3
with constant rotary diffusivity

Range of Pe (0, 2.162) (2.162, 2.405) (2.405, 2.536) (2.536, 2.923)
Solution type K1 K1,T/W K

þ;�
2 , K1 K1,Chaos

Range of Pe (2.923, 3.245) (3.245, 3.717) (3.717, 6)
Solution type Chaos K

þ;�
2 FA
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• At Pe�2.536, a cascade of period doubling bifurca-
tions of the double-K2 branch takes place over a very
short range of Pe. The period-doubling sequence leads
rapidly into a chaotic attractor.

• One also enters this chaotic range of Pe from higher
shear rates by following the bifurcations of the unique
FA branch as Pe drops below 4. At Pe�3.717, a Hopf
bifurcation of the steady FA branch leads to a stable,
out-of-plane, periodic double-K2 branch. Figure 8a
shows this as a single branch, while Fig. 8b shows
both the max and min of Qyz over a period. The
symmetric mode tilted oppositely from the shearing
plane has values –Qyz, not shown here.

• The K2 branch persists for Pe<3.717 until approxi-
mately 3.29 when the first period doubling bifurcation
occurs, giving way to a new branch of stable K2

solutions. As shown in Fig. 3b for Pe=3.27, each

Fig. 8 The flow-phase bifurcation diagram for the modified Doi
model with constant rotary diffusivity, nematic concentration
N=6, and discotic ratio r=1

3, or a=–0.8. All phase transitions
occur within the normalized shear rates 0 £ Pe £ 6, beyond which
the unique attractor is an in-plane flow-aligned state. Black and
green branches are stable; blue and red branches are unstable. The
bottom graph is the out-of-plane component Qyz, whose non-zero
values distinguish out-of-plane solutions. Between the two pitch-
fork bifurcations BP that mark in-plane to out-of-plane transitions
at Pe�2.4 and 3.7, we give both the maximum and minimum values
of Qyz; these data confirm out-of-plane solutions never cross the
shearing plane. The bifurcation labels from XPPAUT are: PD for
period-doubling, HB for Hopf, BP for a pitchfork, and LP for a
saddle-node bifurcation of out-of-plane periodic states. A cascade
of PD bifurcations leading into and out of a window of chaotic
attractors for 2.92<Pe<3.25 is not resolved

Fig. 9 ‘‘Virtual bifurcations’’ of the modified Doi model due to
changes in the molecular aspect ratio parameter a, for fixed nematic
concentration N=6 and fixed shear rate Pe=3.2. At large enough
Pe and extreme aspect ratios aj j�1, the only solution is the stable
flow-aligning state; Fig. 7 illustrates this fact. Here we see a
complex bifurcation from a single steady, flow-aligned state at large
aspect ratios, to multiple steady/unsteady and in-plane/out-of-
plane solution branches (OS denotes the out-of-plane steady state),
all due to changes in molecular aspect ratio! Critical monodomain
phase transitions at specific aspect ratios are predicted: flow-
alignment-to-kayaking, kayaking-to-wagging, wagging-to-tum-
bling, tumbling-to-kayaking, and a period-doubling route to
chaotic attractors in the discotic aspect ratio parameter range
–0.8195<a<–0.7972
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director executes a double loop in each period; the
successive period-doublings yield four loops, then
eight, etc.

• The period-doubled K2 monodomains tightly oscillate
about the average director alignment, with visible shift
of energy into the order parameters marked by shape
distortions of the orientation ellipsoids. This behavior
is not possible within L-E models.

• This bifurcation marks the onset of a period-doubling
cascade to a chaotic attractor by Pe�3.245. Figure 10
is a blow-up of four such period-doubling bifurca-
tions. Just below Pe=3.245, all out-of-plane data
converge to the chaotic attracting state. In-plane data
cannot escape the shearing plane without an infini-
tesimal perturbation out-of-plane.

• Figure 4b visualizes the chaotic attractor for
Pe=3.2 with significant director and order param-
eter variations. The motion consists of random
jumping between the two fundamental kayaking
modes, Kþ2 and K�2 , which are weakly unstable. An
explanation of this chaotic attractor in terms of a
symbol sequence, where the symbols are defined
by these two types of kayaking modes, seems
plausible. An analytical description of this chaotic
attractor presents a challenging dynamical systems
problem.

• Table 1 summarizes the Modified Doi Model predic-
tions of stable monodomains vs Pe: a unique attractor
at low and sufficiently large shear rates, bi-stable and
tri-stable periodic motions in a range of low shear
rates, and a narrow window of weak shear rates with
chaotic response.

The regime we call ‘‘chaotic’’ has to be substantiated
by detailed statistics. We have confirmed irregular
Poincare maps and positive Lyapunov exponents; e.g.,
an exponent of .005 is calculated for the Fig. 4b at-
tractor. These diagnostics and bifurcation scenario are
consistent with the rigorous statistical study of Grosso et
al. [63], who computed the bifurcation diagram of the
Smoluchowski partial differential equation of the Doi
kinetic theory with infinite aspect ratio using AUTO97.
It is remarkable that the finite-aspect-ratio quadratic
closure model captures a similar chaotic bifurcation
structure to the infinite-aspect-ratio kinetic theory,
which compels further investigation.

Modified Doi Model with orientation-dependent
rotary diffusivity and molecular aspect ratio 3 or 1

3

With orientation-dependent diffusivity, the flow-phase
diagram (Fig. 11) of the modified Doi model simplifies
considerably, altering some fundamental predictions
regarding stable attractors (Table 2). Recall that our
generalized Leslie criterion for steady vs unsteady se-
lection in the weak flow limit was independent of rotary
diffusivity (Eq. 21); note the number, mode type, and
stability of monodomains for Pe�0 are identical for
both Modified Doi Models. In particular, the features
robust to the choice at Eq. (21) are:

• The K1 monodomain is the unique attractor for low
shear, disappearing through a saddle-node bifurcation
at moderate shear rate.

Fig. 10 A blow-up of the se-
quence of period-doubling (PD)
bifurcations indicated in Fig. 8
for the modified Doi model
with constant diffusivity, N=6,
aspect ratio r=1

3, in the nor-
malized shear rate range
3.2 £ Pe £ 3.3. The in-plane
component Qyy is used to illus-
trate the bifurcation structure,
entering into the chaotic shear
rate range from above. Here we
show four PD bifurcations at
Pe�3.29, 3.253, 3.247, and
3.245. A PD cascade to chaotic
motion occurs rapidly, prior to
the value Pe=3.24, which re-
quires a sequence of blowing-up
operations to resolve
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• The unstable T branch at low Pe period-halves to
create a stable T/W branch, overlapping for some
range of Pe with the K1 attractor (a bi-stable
region).

However, several important changes due to orienta-
tion-dependent rotary diffusivity are predicted:

• The stable T/W branch persists for very high Pe,
leading to a unique, unsteady, in-plane wagging
monodomain at sufficiently high shear rates, vs a
unique, steady flow-aligned state with constant
diffusivity.

• Since the emergence of K2 bi-stable pairs and the pe-
riod-doubling cascade to chaos for constant diffusivity
arise from bifurcations of the T/W branch, that entire
transition scenario is destroyed with Q-dependent
diffusivity. Neither the K2 nor chaotic attractors are
predicted.

Doi-Rey-Tsuji Model

Figure 12 depicts the bifurcation diagram of the Doi-
Rey-Tsuji Model with constant rotary diffusivity and
discotic aspect ratio 1

3; Table 3 describes the stable
monodomains vs Pe. In the text surrounding Fig. 2 we
explained how the weak flow limit, Pe�0, yields the
same selection criteria of steady and unsteady states
from the nematic equilibria s+,s–,0 for the Doi and Rey-
Tsuji closures. Comparison of Figs. 8 and 12 shows even
stronger agreement, indeed almost identical transition
phenomena except for the small chaotic band which this
closure does not capture:

• All seven solution branches that emerge for Pe�0
match, in type and stability!

• The unique stable attractor in the start-up of shear is a
K1 orbit.

• The low shear, unstable T branch undergoes a period-
halving bifurcation into a stable T/W branch, yielding
bi-stability with the K1 monodomain.

• The stable T/W branch bifurcates out-of-plane, cre-
ating a pair of stable K2 modes, and a shear-rate in-
terval of tri-stability.

• The stable K1 branch loses stability in a saddle-node
bifurcation at intermediate shear rates, never to
emerge again.

Fig. 11 The flow-phase bifurcation diagram of the modified Doi
model with orientation-dependent rotary diffusivity and discotic
aspect ratio r=1

3
(or rod-like ratio 3). The nematic concentration is

N=6; all transitions occur within the normalized shear range
Pe�(0, 20). The weak-flow limit analysis, cf. Fig. 2, top left, is
independent of diffusivity form, and the flow-selection criteria are
identical to Fig. 8. The finite-flow bifurcations, however, are clearly
modified. The fundamental feature is that the T/W branch avoids
the sequence of bifurcations of Fig. 8, so that the out-of-plane
transition to the K2 mode, and the subsequent cascade of PD
bifurcations with a chaotic attractor, do not occur with orientation-
dependent diffusivity in the Doi closure. A wagging to flow-
alignment transition occurs for high Pe>20

Table 2 Stable solutions of the Modified Doi Model with orien-
tational rotary diffusivity

Range of Pe (0, 7.115) (7.115, 9.923) (9.923, 20)
Solution type K1 K1, T/W T/W
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• The high shear-rate attractor is the steady, in-plane
FA state.

The noteworthy qualitative difference between the
Modified Doi and Doi-Rey-Tsuji Models centers upon
how the K2 symmetric pairs bifurcate and lose stability,
which is an extremely subtle phenomenon, yet predicted
in both models to occur over approximately one dimen-
sionless shear-rate unit.

Doi-Rey-Tsuji Model with orientational diffusivity,
discotic aspect ratio 1

3

The flow-phase diagram (Fig. 13) and stable attractors
(Table 4) are qualitatively similar to the Modified Doi

Model (Fig. 11, Table 2) with orientational diffusivity
and the same aspect ratio. The only meaningful differ-
ences are quantitative, and the transition scenarios are
remarkably consistent: a unique K1 attractor in start-up,
bi-stable with a T/W mode for some intermediate shear
rates, then a unique stable T/W attractor in the high
shear range.

The above four models were analyzed in two ex-
cellent papers by Singh and Rey [128], who worked at
the same fixed aspect ratio (a=–0.8) and fixed polymer
concentration (N=6) to study sheared discotic nematic
liquids. Our simulations generalize theirs by illustrating
transitions due to variable aspect ratio, and by a more
detailed resolution of the bifurcation diagrams cap-
tured by the software package XPPAUT of Erment-
rout [42]. One consequence of our studies on the Doi
and Rey-Tsuji closures, with or without orientational
rotary diffusivity, is that the logrolling steady states
exist but are always unstable. Even so, Larson and
Ottinger found stable logrolling states in simulations of
the Doi kinetic theory for infinite aspect ratio rods
[86], which have been subsequently confirmed in de-
tailed kinetic simulations by [43, 54, 55, 93, 96]. As
shown in Fig. 2 and the tensor selection criteria, the

Fig. 12 The flow-phase bifurcation diagram for the Rey-Tsuji
model with constant diffusivity, nematic concentration N=6, and
discotic aspect ratio r=1

3
, or a=–0.8. The flow-induced transitions

occur within the normalized shear range Pe�(0, 10). As noted from
Fig. 2, top right together with our analysis of the unsteady selection
criteria, the same seven states emerge for the Rey-Tsuji and Doi
closures at this aspect ratio. For finite shear rates, the difference
between closures lies in the bifurcations of the double branch of K2

kayaking modes, each tilted to one side of the shearing plane. In the
Rey-Tsuji model, these branches are born in the same way through
an out-of-plane instability of a stable wagging mode, but do not
undergo a PD cascade to chaos; rather they simply persist until a
so-called torus bifurcation (denoted TR by the software XPPAUT)
and transition to the stable flow-aligning, in-plane state at
Pe�3.375. The tumbling to wagging transition takes place roughly
at Pe=1.796, so the stable interval of this branch always consists of
wagging motion

Table 3 Stable solutions of the Doi-Rey-Tsuji Model with con-
stant rotary diffusivity and discotic aspect ratio r=1

3

Range of Pe (0, 1.813) (1.813, 2.207) (2.207, 3.356)
Solution type K1 K1, T/W K1, K

þ;�
2

Range of Pe (3.356, 3.375) (3.375, 8.856) (8.856, 10)
Solution type K1 K1, FA FA

Fig. 13 The flow-phase bifurcation diagram for the Doi-Rey-Tsuji
model with orientation-dependent rotary diffusivity, N=6, a=
–0.8. The bifurcations are similar to those of previous diagrams.
Two primary stable branches emerge over this range of Pe,
overlapping for an interval of Pe leading to bi-stable attractors.
The tumbling-wagging transition takes place at Pe=5.834

Table 4 Stable monodomains of the Doi-Rey-Tsuji Model with
orientational rotary diffusivity and discotic aspect ratio 1

3

Range of Pe (0, 4.955) (4.955, 30.94) (30.94, 40)
Solution type K1 K1, T/W T/W
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Hinch-Leal closures [69, 70, 71] preferentially select
stable LR states in the weak shear limit, for all aspect
ratios. We turn to their predictions for finite aspect
ratio fluids.

Modified Doi-HL1 Model

Figure 14 and Table 5 depict the bifurcation diagram
and stable monodomains for shape parameter value
aj j ¼ 24

26, corresponding to molecular aspect ratio r=5 or
1
5. The key features are:

• The LR state is the unique attractor at start-up of
shear.

• The unstable T state stabilizes in a period-halving
bifurcation, leading to bi-stable regimes for a range of
Pe, first with LR then K1 monodomains.

• The LR state bifurcates to a K1 attractor in the most
intuitively natural, steady-unsteady transition (Hopf
bifurcation): the major director first aligns then oscil-
lates about the vorticity axis as the shear rate increases.

• The K1 state is lost through a saddle-node bifurcation
at an intermediate shear rate, and the unstable branch
doubles back at lower shear to connect with the T

branch precisely at the period-halving, stability tran-
sition.

• The observable attractors from Table 5 are, in terms
of increasing shear rate, a unique LR state, then bi-
stable LR and T states, then bi-stable T and K1 states,
then a unique T/W branch of monodomains for high
Pe.

• The monodomain response is predicted to be steady at
low shear, bi-stable steady and in-plane tumbling for a
very narrow window of shear rates, then bi-stable
transient states (one in-plane, another out-of-plane),
and finally in-plane unsteady attractors at sufficiently
high shear rates.

Modified Doi-HL1 Model with orientational
rotary diffusivity

As detailed in Table 6, the incorporation of orientation-
dependent rotary diffusivity for the HL1 closure scheme
has no qualitative effect on the results for aspect ratios 5
and 1

5. The quantitative effect is to shift all bifurcations
to higher shear rates, so that the LR attractor is pre-
dicted to be the unique response until Pe�22, and the bi-
stable region lasts for a span of 48 in Pe. The basic
bifurcation structure, however, is remarkably robust at
this aspect ratio.

Modified Doi-HL2 Models for either
rotary diffusivity

The Modified Doi-HL2 Model is also robust to constant
or orientation-dependent rotary diffusivity. The flow-
phase diagram for constant diffusivity is given in
Fig. 15; Tables 7 and 8 indicate all stable monodomains
vs Pe. We choose aspect ratio 5 to compare the HL2 and
HL1 closures.

The key features of the HL2 models are:

• The LR state is stable for all Pe!

Fig. 14 The bifurcation dia-
gram for the Doi-HL1 model
with constant rotary diffusivity,
N=6, and shape parameter
a ¼ � 24

26 corresponding to dis-
cotic aspect ratio r=1

5
. As ex-

plained in Fig. 2, lower left and
surrounding text, this closure
selects a unique, stableLR steady
state in weak shear. This stable
branch persists until a Hopf
bifurcation at Pe�8.638 creates
a stable K1 kayaking branch, in
which the major director now
rotates around the vorticity axis.
The stable kayaking branch
persists until a saddle-node
bifurcation at Pe�15.85. (A
physically inconsequential
bifurcation occurs for Pe be-
tween 5 and 6, leading to unsta-
ble kayaking solutions.) The
unstable T solution arising from
s+ in weak shear stabilizes at
Pe�7.509 through a PD bifur-
cation, remaining stable beyond
Pe=20. The stable attractors
are summarized in Table 5
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• The in-plane T mode is stable at the start-up of shear,
loses stability in an intermediate window of shear
rates, then regains stability for all sufficiently high
shear rates. The T-to-W transition, as always, occurs
at some intermediate shear rate.

• At low and sufficiently high shear rates, bi-stable LR

and T/W states prevail; the internal window has only
the LR attractor.

• The HL2 closure is seen to suppress stable kayaking
monodomains, and indeed no unsteady out-of-plane
motion is stable.

Conclusion

The role of finite-aspect-ratio effects in monodomain
response to simple shear, and to more general linear
flows, has been studied from various tensor orientation

models. Several symmetry properties were developed for
mesoscopic Doi-type models, independent of closure
approximation. These properties were used to develop
intuition about finite-aspect-ratio nematic liquids in
shear and related linear flows, and to extrapolate theo-
retical and experimental results from rods to discotics,
and from finite aspect ratio fluids to extremely large
aspect ratio fluids. Symmetries of a fixed aspect ratio
fluid in simple shear were further used to explain nec-
essary constraints on monodomain motion. E.g., a
monodomain that tilts out-of-plane cannot return to in-
plane orientation in finite time; all such motion has a
mirror-reflection in the opposite direction out of the
shearing plane, which leads to bi-stable kayaking modes
whose major director oscillates between the vorticity
axis and shearing plane. It will be interesting to explore
whether such bi-stable attractors exist in laboratory ex-
periments with model monodisperse nematic liquids;
indeed, some closure schemes predict these attractors
and others do not. All solutions and monodomain
transitions vs shear rate and aspect ratio have been
compared with Leslie-Ericksen model behavior; clearly,
the tensor theories capture new properties and new
phenomena which require validation both from kinetic
theory and experiment. This will necessitate computa-
tion of the rheological predictions associated with the
tables given here of all stable monodomains and their
shear-rate and aspect-ratio transitions, which we report
elsewhere [52].

Table 5 Stable solutions of the Modified Doi-HL1 model with
constant rotary diffusivity

Range of Pe (0, 7.509) (7.509, 8.638) (8.638, 15.85) (15.85, 20)
Solution type LR LR, T/W K1, T/W T/W

Table 6 Stable monodomains: Doi-HL1 Model with orientational
rotary diffusivity

Range of Pe (0, 21.96) (21.96, 47.82) (47.82, 71.7) (71.7, 80)
Solution type LR T/W , LR T/W, , K1 T/W

Fig. 15 The bifurcation dia-
gram for the Doi-HL2 model.
The parameter values are N=6,
a ¼ � 24

26. The logrolling steady
state exists for all values of Pe
and is stable. Tumbling/wag-
ging stable solutions exist at low
and high shear rates, first losing
stability in a PD bifurcation at
Pe=2.034, then regaining sta-
bility in another PD bifurcation
at Pe=8.179
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By exploring four different closure schemes, with and
without orientational rotary diffusivity, we have shown
that with finite-aspect-ratio effects, the Doi mesoscopic
theory captures a diversity of monodomain features at
fixed, high (nematic) concentrations:

• Weak-shear, monodomain selection mechanisms in-
clude features that are robust to closure rule and
molecular aspect ratio: the multiplicity and ‘‘taxono-
my’’ of possible monodomain modes (steady and un-
steady) varies only slightly and in a computable
fashion; reflection-symmetry with respect to the
shearing plane insures out-of-plane steady and so-
called K2 kayaking periodic modes always occur in
pairs.

• Other selection criteria are highly sensitive to closure
scheme and molecular aspect ratio: which of the
multiple states are stable and unstable, steady and
unsteady, in-plane vs vorticity-aligned or out-of-
plane. One can easily change models and infer unique,
bi-stable, or tri-stable attracting monodomain modes,
with quite different orientational properties, at the
same shear rate and nematic concentration.

• Shear-rate-dependent transition scenarios likewise are
strongly sensitive to closure scheme and molecular
aspect ratio.

Many, but each intuitively plausible, scenarios are
detailed. This diversity of mesoscopic behavior is con-
sistent with an interpretation that a ‘‘monodisperse fi-
nite-aspect-ratio fluid’’ and second-moment closure
scheme play the role of broad-brush fitting parameters
for laboratory nematic fluids. Macromolecular fluids

always violate assumptions of current theory; real fluids
are polydisperse with statistical aspect-ratio distribu-
tions, and all but the most pristine laboratory samples
consist of many monodomains separated by transitional
regions associated with defects. The Maier-Saupe po-
tential employed here assumes a single parameter (N),
short-range potential, which we have fixed in this study
and suppressed its dependence on aspect ratio. Even
given these shortcomings, the diversity of model behavior
predicted in this paper reflects much of the diversity of
bulk experimental behavior of nematic polymers vs shear
rate. We suppose that in restricted flow regimes one can
accurately accomplish model fitting to monodomain
states and nontrivial transition phenomena within this
class of models. From a reasonable fit between experi-
mental monodomain response and model predictions,
one can then confidently proceed to model the onset of
mesoscopic structure formation. Various transient
monodomain states documented here are corroborated
by full kinetic simulations [43, 54, 55, 63], including re-
gions of nematic concentration and shear rate with
highly erratic bulk motion. If these monodomain at-
tractors are confirmed in the laboratory, as many have
already, then their diversity implies very different routes
to subsequent mesostructure formation and flow insta-
bilities, a topic which we are currently exploring [56]
with the current study as a guide.
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Appendix. Viscosity coefficients

The results of Jeffery [74], Batchelor [9] as well as Hinch
and Leal [69, 70] on ellipsoidal suspensions in a viscous
solvent are utilized in the derivation of the viscous stress
[140]:

Table 8 Stable monodomains: Doi-HL2 Model with orientational
diffusivity

Range of Pe (0, 6.528) (6.528, 16.48) (16.48, 40)
Solution type LR, T/W LR LR, T/W

Table 7 Stable solutions of the Modified Doi-HL2 model with
constant diffusivity

Range of Pe (0, 2.034) (2.034, 8.179) (8.179, 20)
Solution type LR, T/W LR LR, T/W

gs ¼ gþ 3=2mkT f3;

f3 ¼ f 0ð Þ

I1
; f1 ¼ f 0ð Þ 1

I3
� 1

I1

� �
; f2 ¼ f 0ð Þ JI

I1J3
þ 1

I1
� 2

I3

h i
;

I1 ¼ 2r
R/
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þxð Þ 1þxð Þ3

p ; I3 ¼ r r2 þ 1
� � R1

0
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þxð Þ 1þxð Þ2 r2þxð Þ
p ;

J1 ¼ r
R1
0

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þxð Þ 1þxð Þ3

p ; J3 ¼ r
R1
0

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þxð Þ 1þxð Þ2 r2þxð Þ

p :
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