
Introduction

In Part I of this work (Charalambides et al. 2002), the
bubble inflation test was used to measure the stress-
strain relationship of dough. This test method, shown
schematically in Fig. 1, is widely used to characterise the
mechanical behaviour of dough in equi-biaxial tension.
The derivations of Bloksma (1957), summarised in the
Appendix, are usually employed to analyse the experi-
mental data of pressure and bubble volume. The analysis
is based on the following assumptions: i) the dough is
incompressible, ii) the bubble is spherical and iii) each
dough particle is shifted normally to itself during infla-
tion. However, in Part I, it was found that this analysis
led to large errors in the predicted stress-strain response
due to the inaccuracy of the underlying assumptions.

Analytical predictions for the strain and bubble wall
thickness were compared to experimentally derived
values and considerable differences were found. At the
top of the bubble, the analytical strain was larger and
the thickness was much smaller than the experimental
values. These discrepancies led to very large errors in
the stress data. In addition, the bubble wall thickness
distribution was more uniform than the analytical pre-
dictions. It was decided that a finite element analysis be
performed such that comparisons can be made between
the analytical and numerical stress-strain data. This will
provide further information regarding the accuracy of
the analytical method. It was thought that such infor-
mation is needed, as the experimental data were prone to
a large scatter due to the complexity of the measure-
ments as well as the variability of the material. A
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Abstract In Part I the bubble infla-
tion test was used to measure the
stress-strain relationship of dough.
A large disagreement was found be-
tween the stress-strain curve based
on experimental data and the curve
derived from Bloksma’s analytical
model. In Part II, a numerical sim-
ulation of the bubble inflation test is
performed using Finite Element
Analysis, in order to obtain further
information regarding the accuracy
of the analytical predictions. A hy-
perelastic model is assumed for the
dough, with a strain energy potential
described by the compressible form
of the Mooney-Rivlin model. Four
cases were investigated, correspond-
ing to various combinations of
material parameters of the Mooney-

Rivlin model. The numerical results
reinforce the conclusions drawn in
Part I of the study, specifically that
Bloksma’s analysis of the bubble
inflation could lead to large errors in
the stress-strain curve. It was further
concluded that the accuracy of the
analysis was dependent on the ma-
terial properties. For a neo-Hooke-
ian material, the analysis leads to
accurate results. This is because, for
this material, all the assumptions
made in the analysis regarding the
bubble shape, the material’s incom-
pressibility and the bubble wall
thickness distribution are accurate.
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detailed finite element analysis study would also aid in
the deeper understanding of the problem as the effect of
variations in material parameters on the test results can
easily be quantified.

Model details

The commercially available Finite Element Analysis
package ABAQUS (1998) was used. The standard im-
plicit code was used. Eight-noded, axisymmetric, hybrid
elements were used with 40 elements in the radial di-
rection and one element through the thickness of the
sample. The edge of the model was restricted to remain
plane and was allowed to rotate around the middle node
that was pinned.

A material model suitable for dough had to be
chosen next. However, the mechanical properties of
dough are of course the very purpose of the experi-
ments and therefore are unknown. If a simple model
were to be used with a small number of material pa-
rameters, it would be possible to perform an inverse
identification numerical analysis, i.e. perform an itera-
tive numerical study such that the material properties
that lead to results agreeing with experimental readings
of Part I are found. However, the tests were performed
at constant inflation rate that led to a large variation in
strain rate throughout the duration of the test (Chara-
lambides et al. 2002; Rasper and Danihelkova 1986). As
dough is a highly viscoelastic material, the variation in
strain rate has a major effect on the stress-strain curve.
In order to take into account this effect, a non-linear
viscoelastic model ought to be used in the numerical
analysis. Unfortunately, such a model involves a large

number of material parameters, rendering the inverse
identification numerical analysis impractical. Therefore,
it was decided to use a simple hyperelastic model. The
latter was developed to describe the behaviour of syn-
thetic rubbery polymers that undergo large reversible
strains and does not take into account the strain rate
dependency of the material. Therefore, the numerical
results cannot be directly compared with the experi-
mental data of Part I. Nevertheless, the magnitudes of
the material parameters will be chosen such that the
numerical stresses are of the same order of magnitude
as the experimental data, enabling a comparison be-
tween general trends. A comparison with the analytical
predictions is of course still possible, which is the aim of
this study.

The Mooney-Rivlin material model that is available
in the ABAQUS software was used. The strain energy
potential, W, is given by

W ¼ C10
�II1 � 3ð Þ þ C01

�II2 � 3ð Þ þ 1

D1
J � 1ð Þ2 ð1Þ

where C10, C01 and D1 are the material properties to be
determined. �II1 and �II2 are the first and second deviatoric
strain invariants:

�II1 ¼ �kk21 þ �kk22 þ �kk23 and �II2 ¼ �kk �2ð Þ
1 þ �kk �2ð Þ

2 þ �kk �2ð Þ
3 ð2Þ

The deviatoric stretches �kki are related to the principal
stretches ki (ratios of deformed to undeformed lengths)
via

�kki ¼ J�1=3ki ð3Þ

and J is the volume ratio:

J ¼ k1k2k3 ð4Þ

Note that for incompressible behaviour, J is equal to 1
and D1 is equal to zero.

For a biaxial tension test

k1 ¼ k2 ¼ k and reng ¼
1

2

@W
@k

ð5Þ

where reng is the equi-biaxial engineering stress. The true
stress r is related to reng by

r ¼ reng
k
J

ð6Þ

The initial shear modulus G and bulk modulus K are
related to the material parameters via

G ¼ 2 C10 þ C01ð Þ K ¼ 2
D1

ð7Þ

In the special case where D1 and C01 are both equal
to zero, the strain energy function corresponds to the

Fig. 1. Geometry of bubble inflation
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neo-Hookeian law. The equi-biaxial stress for this ma-
terial is given by

r ¼ 2C10 k2 � 1

k4

� �
ð8Þ

The constant C10 can be determined from a plot of r
vs (k2–k–4). In this study, such a plot was constructed
with the analytical stress-strain data of Part I (Fig. 2).
The strain � is related to k via

e ¼ ln k ð9Þ

From the slope of the line, C10 is calculated to be
367.4 Pa. Therefore the combination of C10=367.4,
C01=D1=0.0 was used in the first numerical simula-
tion (see Table 1). The effect of a non-zero C01 on the
numerical results was determined through simulation 2
where the parameter was arbitrarily taken as 10 Pa.
The effect of compressibility was evaluated in simula-
tion 3, where C10 and C01 remained unchanged from
simulation 2 and D1 was set to 0.000274 Pa–1. The
latter implies an initial Poisson’s ratio of 0.450. Finally,
in simulation 4 which is also a compressible material,
C01 was set to zero whereas C10 and D1 remained un-
changed from simulation 3. Note that the effect on the
Poisson’s ratio is minimal as it is only changed to
0.451. The four materials and the corresponding values
of initial shear and bulk moduli as well as the Poisson’s

ratios are summarised in Table 1. The equi-biaxial
stress-strain curves corresponding to the four materials
are shown in Fig. 3.

Results

The results from the numerical simulations corre-
sponding to the four materials (see Table 1) will be
presented next. First, for each simulation, the numerical
stress and strain at the top of the bubble were compared
to the material’s actual stress-strain curve under equi-
biaxial loading conditions. The comparison is shown in
Fig. 4 for material 1. Excellent agreement is obtained,
which is evidence that equi-biaxial conditions are pre-
vailing at the top of the bubble. An excellent agreement
was observed for the other three materials as well.
Therefore, all numerical stress-strain data presented
from now on represent the true material data.

The numerical data for pressure vs bubble height are
shown in Fig. 5. The usual peak in pressure is observed,
similar to experimental observations.

The strain at the top of the bubble is plotted vs
bubble height in Figure 6. The analytical strain (Eq. A1)
is also plotted such that a comparison can be made with
the true, numerical values. It is observed that only ma-
terial 1, the neo-Hookeian material, leads to numerical
results that are very close to the analytical data. This
implies that for a neo-Hookeian material, Bloksma’s
analysis would lead to the correct strain. This is not so
for the other three materials where a clear disagreement
is observed between the numerical and analytical values.
It is of interest to note that for materials 2 and 3, the
actual strain is lower than the analytical predictions,
similar to the experimental observations in Part I. For
material 4, however, the strain is larger than the ana-
lytical value.

The thickness, tt, at the top of the bubble is plotted vs
height in Fig. 7. Once again, the neo-Hookeian material
is the only material that leads to data that agree with
Bloksma’s analysis. Materials 2 and 3 lead to a larger
thickness, similar to the experimental observations.
Material 4 leads to values that are lower than the ana-
lytical values when the height exceeds approximately
60 mm.

The shape of the bubble corresponding to the four
materials was also investigated. The ratio of the major toFig. 2. Neo-Hookeian model approximation

Table 1. Materials used in numerical simulations and corresponding bubble shape

Simulation C10 (Pa) C01 (Pa) D1 (Pa
–1) G (kPa) K (kPa) m k

1 367.4 0.0 0.0 0.73 ¥ 0.500 1.0
2 367.4 10.0 0.0 0.75 ¥ 0.500 1.1
3 367.4 10.0 0.000274 0.75 7.30 0.450 1.0
4 367.4 0.0 0.000274 0.73 7.30 0.451 0.9
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minor axes, k, was determined and is shown in Table 1.
For a perfectly spherical bubble k is equal to unity. For
values other than one, the bubble shape is elliptical.
Values larger than one imply a bubble with a ‘flattened’
top whereas values smaller than one imply a bubble
which is elongated in the vertical direction. From Ta-
ble 1, it is apparent that the neo-Hookeian material
(material 1) and material 3 are spherical. For the other
two materials, the bubble is elliptical.

Stress vs strain at the bubble top is plotted in Figs. 8,
9, 10 and 11 for materials 1 to 4 respectively. On each
graph the numerical and analytical curves are shown.
The analytical stress is calculated using Eqs. (A2), (A3)

and (A4). For the compressible materials 3 and 4, an
additional curve called ‘semi-numerical’ is plotted. For
this curve, the numerical strains were used to calculate
the wall thickness, assuming material incompressibility
(Eq. A5). The latter assumption is of course invalid for
materials 3 and 4 where D1 is non-zero. This thickness
was used in Eq. (A2) to calculate the stress. The cor-
rected radius of curvature was used for the elliptical
bubble of material 4 (Eq. A7).

It is apparent that Bloksma’s analysis leads to an
accurate stress-strain curve only for the Neo Hookeian
material and in this case, the analytical and numerical
curves coincide. This is in agreement with similar ob-
servations made by Williams (1980) in his analysis of
rubber inflation. A small discrepancy, mainly in the
stress, is apparent as the numerical curve seems to ‘end’
earlier than the analytical, i.e. the analytical prediction
of the stress is approximately 10% higher than the true,
numerical value. In contrast, Bloksma’s analysis applied
to material 2 data (Fig. 9) leads to a stress-strain curve
that has a large discrepancy from the true curve. The
stress at large strains, is overestimated by a factor of
approximately 2.5 and the strain is also considerably
overestimated (see Fig. 6).

The analysis also leads to large errors in the stress-
strain curve for material 3 (Fig. 10). In contrast to the
previous figure, the end result is that the analytical
curve appears higher than the numerical curve. In ad-
dition, the assumption of incompressibility (semi-
numerical) leads to a curve which is also in error, even
though the stresses are reduced and the values become
closer to the true numerical values. The errors in the
stress are plotted vs bubble height in Fig. 12. At large

Fig. 3. Biaxial stress strain
curves of four materials studied
in numerical analysis

Fig. 4. Comparison of stress-strain at the top of the bubble with
biaxial stress-strain curve for material 1 (C10=367.4 Pa,
C01=0.0 Pa, D1=0.0 Pa–1)
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heights the analysis is in error by approximately 440%.
The assumption of incompressibility, even though it
might sound reasonable for a material whose initial
Poisson’s ratio is 0.45, leads to errors of approximately
200% at large heights though the errors in the strain
are much smaller (Fig. 13). This same trend was ob-
served for the experimental data of Part I, reproduced
in Fig. 14.

The numerical stress-strain curve is lower than the
analytical predictions for material 4 (see Fig. 11). As was
shown in Fig. 6, the strain is now underestimated by
Bloksma’s analysis, in contrast to the other three

materials investigated. As a result, the thickness calcu-
lated from Eq. (A5) is smaller than the analytical value,
thus increasing the stress and the error even further.

Finally, the numerical thickness distribution for ma-
terial 3 when the bubble height is equal to 80 mm is
plotted in Fig. 15. Material 3 was chosen as the ana-
lytical errors for this material followed the same trends
as for the experimental study of Part I. The analytical
prediction (Eq. A6) is also plotted. It is apparent that
the numerical distribution is more uniform than the
analytical one, once again agreeing with the experi-
mental findings of Part I.

Fig. 5. Comparison of analyti-
cal and numerical pressure vs
height data

Fig. 6. Comparison of analyti-
cal and numerical strain at
bubble top vs height data

545



Fig. 7. Comparison of analyti-
cal and numerical thickness at
bubble top vs height data

Fig. 8. Stress-strain curves for material 1 (C10=367.4 Pa,
C01=0.0 Pa, D1=0.0 Pa–1)

Fig. 9. Stress-strain curves for material 2 (C10=367.4 Pa,
C01=10.0 Pa, D1=0.0 Pa–1)

Fig. 10. Stress-strain curves for material 3 (C10=367.4 Pa,
C01=10.0 Pa, D1=0.000274 Pa–1)

Fig. 11. Stress-strain curves for material 4 (C10=367.4 Pa,
C01=0.0 Pa, D1=0.000274 Pa–1)
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Conclusions

The numerical results reinforce the conclusions drawn in
Part I of the study. Specifically, that, Bloksma’s analysis
of the bubble inflation test could lead to large errors in
the calculated stress-strain curve. The accuracy of the
analysis was dependent on the material properties. For a
neo-Hookeian material, Bloksma’s analysis leads to ac-
curate results. This is because, for this material, all the
assumptions made in the analysis regarding the bubble
shape, the material’s incompressibility and the bubble
wall thickness distribution are accurate. However, for
the other materials investigated in this study, the errors
were very large. Specifically, the stress is largely over-
estimated whereas the strain is overestimated for some
materials and underestimated for others. One particular
material (material 3), led to very similar comparisons
between numerical and analytical results to the com-
parisons between experimental and analytical results
presented in Part I.

Even if the material is slightly compressible, i.e. the
initial Poisson’s ratio is in the region of 0.45, the in-
compressibility assumption will lead to large errors in
the stress-strain curve. Therefore, care should be taken
when assumptions regarding the compressibility of
dough are made.

Since the purpose of the bubble inflation test is to
determine the stress-strain curve and hence characterise
the material, it will not be known, a priori, whether
Bloksma’s analytical method will lead to accurate re-
sults. Therefore, bubble height, strain and thickness as
well as pressure need to be recorded during the test. In
addition, efforts should be made to perform the test
under constant strain rate by using a testing machine
that is capable of adjusting the crosshead speed

Fig. 12. Error in stress vs bubble height for material 3
(C10=367.4 Pa, C01=10.0 Pa, D1=0.000274 Pa–1)

Fig. 13. Error in strain vs bubble height for material 3
(C10=367.4 Pa, C01=10.0 Pa, D1=0.000274 Pa–1)

Fig. 14. Stress-strain curves reproduced from Part I of the study

Fig. 15. Comparison of numerical and analytical bubble thickness
distribution for material 3 (C10=367.4 Pa, C01=10.0 Pa,
D1=0.000274 Pa–1)
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according to the changes in the strain, via a feedback
loop control system.
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Appendix

The analysis by Bloksma (1957) leads to the following
expressions for the planar strain, �, and stress, r, at the
top of the inflated bubble:

e ¼ ln 1þ h2

a2

� �
ðA1Þ

r ¼ PR
2tt

ðA2Þ

where h is the bubble height, a the initial sample radius,
P the pressure, tt the thickness at the bubble top and R
the bubble radius. The latter is calculated from

R ¼ a2 þ h2

2h
ðA3Þ

The thickness at the top of the bubble is given by

tt ¼ t0 1þ h2

a2

� ��2
ðA4Þ

where t0 is the initial sample thickness. Alternatively, the
thickness could also be calculated directly from known
strain values assuming material incompressibility:

tt ¼ t0e�2e ðA5Þ

The non-uniform distribution for thickness, t, along
the bubble is described by

t ¼ t0
a4 þ s2h2

a2 a2 þ h2ð Þ

� �2
ðA6Þ

Finally, the radius of curvature, Rc, for an elliptical
bubble is given by

Rc ¼
a2 þ k2h2

2h
ðA7Þ

where k is the ratio of the major to the minor axes of the
ellipse.
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