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Biaxial deformation of dough using the bubble
inflation technique. I. Experimental

Abstract The bubble inflation test
has been used to determine the equi-
biaxial stress-strain curve of flour/
water dough. This was achieved by
undertaking experimental measure-
ments of strain, wall thickness and
radius of curvature at the top of the
bubble as well as applied pressure. It
was observed that the bubble was
spherical initially but changed to an
elliptical shape at large strains. The
analysis derived by Bloksma (1957)
was also used to calculate stress and
strain at the top of the inflated
bubble from gauge pressure and
bubble volume data. It was found
that the analysis led to accurate
bubble heights at moderate strains
only, a consequence of the non-
spherical bubble shape. In addition,
at the top of the bubble, the analyt-
ical strain was larger and the thick-

ness was much smaller than the
experimental values. The bubble
wall thickness distribution was more
uniform than the analytical predic-
tions. The discrepancies in bubble
height, radius of curvature, strain
and thickness had a major effect in
the analytical stress-strain curve, as
both stress and strain were overesti-
mated, the stress being in error by a
factor of four at large strains.
Therefore, it is concluded that when
the bubble inflation test is used, it is
necessary that experimental readings
of strain, thickness and radius of
curvature as well as pressure should
be made to ensure accurate stress-
strain curves.
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Introduction

It has long been recognised that baking performance
and the quality of the finished product, i.e. bread, are
strongly dependent on the mechanical properties of the
dough used. In addition, knowledge of the material be-
haviour of dough is a necessary condition for the sim-
ulation and optimisation of common processing
operations such as mixing, sheeting, extrusion and cut-
ting. As a result of the potential benefits to the food
industry, mechanical characterisation of dough has been
the subject of several research studies.

As processing operations generally involve large
strains, the experimental techniques used need to ensure

that the samples are subjected to similar deformations.
Large deformation of dough has been studied under
lubricated uniaxial compression by Janssen et al. (1996),
Bagley and Christianson (1986), Bagley et al. (1988,
1990), Huang and Kokini (1993) and Sliwinski et al.
(1996). For an incompressible material tested under
frictionless conditions, uniaxial compression is equiva-
lent to equi-biaxial tensile loading. The compression test
is by far the most commonly used method as it is very
simple to perform. There is no need to grip the sample,
which is a problem for a very soft solid such as dough.
However, the big disadvantage of the test is the presence
of friction between the sample and the loading platens.
Such friction leads to a non-homogeneous stress
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distribution and invalidates the data. Lubricants can be
used to reduce such friction though totally eliminating it
is difficult, especially at larger strains. Uniaxial tension
tests on dough have been performed by Rasper (1975),
Tschoegl et al. (1970) and Meissner and Hostettler
(1994). The main problems with this test are the at-
tachment of the dough to the loading grips, the con-
siderable deformation under the weight of the sample
and the occurrence of viscous flow of the dough near the
clamps.

An alternative to the uniaxial compression and ten-
sion tests is the bubble inflation technique. In this test, a
sample in the shape of a thin disc is held in a clamp at its
circumference and inflated to a spherical ‘balloon’ using
pressurised air (see Fig. 1). In this way, a state of equi-
biaxial tension is achieved at the top of the bubble. This
method has long been used for the characterisation of
synthetic polymers, especially rubbers and polymer
melts by many researchers, e.g. Yang and Dealy (1987),
Joye et al. (1972), Treloar (1944), Reuge et al. (2001) and
Rachik et al. (2001). Apart from dough, other biological
materials that have been characterised using the same
method include arterial tissue and fruit skins, as re-
viewed by Shadwick (1992).

The bubble inflation test has been made popular
within the dough industry by the belief that it ‘simulates’
the expansion of the many air cells present in the dough
during the baking process (Rasper and Danihelkova
1986). This led to the development of commercial test
rigs known as ‘alveographs’. Early attempts to derive
fundamental properties, i.e. stress-strain relationships,
from the alveograph were made by Hlynka and Barth
(1955). They assumed that the dough stretches into a
bubble which is part of a sphere with a constant wall

Attached to Instron crosshead
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Pressure Transducer
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Attached to Instron base

Fig. 1. Schematic of bubble inflation test rig

thickness. This assumption is regarded as a gross
approximation as considerable non-uniformity in the
thickness of the bubble exists; it is much thinner at the
top than at the base of the bubble. Bloksma (1957)
derived an analysis that attempts to take into account
this non-uniformity in thickness. His analysis has been
used in practically all later research without any reser-
vation with the exception of Launay et al. (1977) who
performed time-lapse photographic studies to investi-
gate the accuracy in some of the analytical expressions in
Bloksma’s work. They found that they were accurate
only at moderate bubble volumes and air flow rates.

The aim of the current work is to use the bubble
inflation technique in order to determine the stress-strain
relationship of dough under equi-biaxial loading con-
ditions. Specifically, the accuracy of the analysis pro-
posed by Bloksma will be investigated by comparing
with independent experimental measurements of bubble
height, strain and thickness.

Experimental procedures

Simple flour/water dough was mixed using a laboratory six-pin
mixer capable of recording torque during the mixing process. The
flour was supplied by General Mills (USA) with a blend compo-
sition of: 13.25% +£0.75% moisture, 10.5% +0.35% protein and
0.5% +0.03% ash contents. Ash and protein are both quoted on
the 14% moisture basis standard. The dough was made by mixing
198.5 g of flour with 120 g distilled water and 1.5 g salt (sodium
chloride), giving a total of 320 g of dough from each mix. The flour
and salt solution were pre-chilled to —20 °C and 3 °C respectively.
The speed of the mixer was kept constant at 118 rpm. The mixing
duration was kept constant at 3 min for all samples. The final
dough temperature was in the range of 17-19 °C.

Similar sample preparation procedures to those described by
Dobraszczyk (1997) and Dobraszczyk and Roberts (1994) were
followed. The mixed dough was rolled into a sheet, approximately
6 mm in thickness. Circular disks were then cut out using a 50 mm
diameter pastry cutter. Each disk was placed into a specially made
clamping device and flattened with a manual press to form a sample
with a thickness of 1.5 mm and a diameter of 55 mm. After the
samples were prepared they were left at room temperature for a
minimum of 45 min before testing. A thin coating of paraffin oil
was applied on the exposed surfaces to prevent drying of the
samples.

The bubble inflation rig was manufactured at Imperial College,
based on the design by Dobraszczyk and Roberts (1994). It was
built such that it could be mounted on a conventional Instron
testing machine. The piston is attached on the crosshead of the
machine. When the crosshead is displaced downwards, the air
trapped in the system is displaced, thus inflating the dough sample
(see Fig. 1). The crosshead speed was kept constant at 50 mm/min
for all tests. The cross sectional area of the piston was 7.9x107* m?.
All samples were tested at room temperature that was kept con-
stant at 21 °C. The radius of the samples was 27.5 mm.

The pressure inside the dough bubble was continuously moni-
tored via a 50-mbar pressure transducer (HCXMO050D6V Farnell),
which was calibrated prior to the tests using an airline and a ma-
nometer. An A-D converter was used to input the transducer signal
vs time to a computer. The displacement of the piston is recorded
directly by the Instron so that gauge pressure-piston displacement
data are obtained.
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The height of the bubble was measured using a Hitachi Denshi
CCD camera positioned such that the side of the bubble was in
view. The CCD images were analysed using image analysis soft-
ware (NIH-image). The same images were used to determine the
shape of the bubble, by measuring the major and minor axis, « and
p respectively (see Fig. 2). Such measurements were only possible
once the bubble height exceeded its radius. For a perfectly spherical
shape o and ff should be equal. Note that for abbreviation purposes
the bubble is called spherical even though it is only a part of a
sphere as the lower portion is not present, i.e. where the clamp
holds the bubble.

The strain at the top of the bubble was measured by positioning
the camera directly above the bubble. The strain during inflation
was based on analysing the deformation of an orthogonal grid
painted on to the sample before inflation (see Fig. 3). Food col-
ouring (Supercook black) and a circular brass plate with vertical
lines of 0.3 mm width and a distance of 1.7 mm between each line
were used to produce the grid. The paint was air brushed on to the
stencil giving 28 lines in one direction. By rotating the stencil 90°,
lines in the orthogonal direction were obtained to form a grid. For

Fig. 2. Side view of the inflated sample

Fig. 3. Deformation of
orthogonal grid at various strains

ST o

effective lighting, fibre optical lights were used. The distance be-
tween the camera lens and the top of the bubble was continuously
changing during inflation, thus causing a change in the magnifi-
cation factor. This was taken into account in the analysis by in-
corporating a calibration factor. The effect of the bubble curvature
on the measured grid deformation and hence the strain was also
investigated and it was found to be negligible. Images showing the
deformation of the grid at various strains are shown in Fig. 3.

In order to measure the thickness of the bubble, the inflation
process was interrupted by stopping the crosshead movement when
the samples reached various heights smaller than the failure height.
The bubble was then allowed to dry at room temperature. Once the
bubble top was dry, a section was cut out and the thickness mea-
sured using a digital micrometer. The amount of time needed to dry
the sample fully was impractically large at bubble heights less than
35 mm,; hence no data were obtained in that region.

The bubble height was measured at the beginning and end of
the drying process and the disagreement was only 0.3%. In addi-
tion, the grid on the samples was used to check the effect of drying
on strain, by comparing the strain when the inflation was stopped,
to the strain just before the dried sample was cut. A disagreement
of approximately 7% was observed. This was probably due to the
shrinkage of the sample during drying. Note that the reduction in
weight of the dough due to drying was experimentally found to be
around 30%. As density of dough and water are very close, the
reduction in volume due to drying is also expected to be around
30%. This implies approximately a 10% decrease in each of the
three dimensions. Therefore, there is confidence that the dried
bubble thickness is a good approximation to the actual non-dried
bubble thickness.

One sample inflated to a height of 81 mm was left to dry for
sufficient time such that the sides as well as the top of the bubble
were dry. This allowed the thickness distribution along the bubble
to be determined.

An alternative method of measuring the bubble thickness was
investigated. Samples were inflated to various heights and the top
of the bubble was frozen using liquid nitrogen. The frozen section
was cut and then measured with a digital micrometer. The mi-
crometer anvils were frozen to reduce the heat transfer between the
anvils and the element. It was observed that a sheet of ice was
formed on all the samples, leading to thickness measurements that
were erroneously high so the method was not investigated further.

.
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Analysis

As mentioned earlier, Bloksma (1957) proposed an an-
alytical procedure for calculating the stress and strain at
the top of the bubble from the experimental data. The
analysis is based on the following assumptions: i) the
dough is incompressible, ii) the bubble is spherical and
iii) each dough particle is shifted normally to itself
during inflation.

As the bubble inflates, the wall thickness reduces.
However, due to the non-uniform deformation along the
surface of the bubble, the thickness at the top is smaller
than the thickness at the base of the bubble close to the
clamp and a thickness distribution arises. Bloksma
(1957) derived the following relationship describing this
distribution:

at + s*h? :
t=h Lﬂ(az + th (1)
where 1, is the original sample thickness, a the original
sample radius, / the bubble height and ¢ the thickness of
the small element whose original position is described by
the distance s from the centre of the sample (see Fig. 4).
Note that the path of the element shown in Fig. 4 by two
arcs, is determined by the third assumption stated above,
i.e. that each element is shifted normally to itself during
inflation. The thickness at the top of the bubble, ¢,, is
then derived by setting s=0 in Eq. (1):

W\
tt — t()(l +—2>
a

The height of the bubble can be calculated by con-
sidering the volume, V, of the air enclosed in the bubble:

(2)

Tto _a s

A
A 4

Fig. 4. Geometry of bubble expansion

v =%h(3a + 1) (3)

This volume can be calculated via two methods:

1. Assume that the pressure, P, is so small that V is
equal to the volume of air displaced by the piston, i.c.
incompressible behaviour of the air.

2. Use perfect gas law at constant temperature
(PV =constant) to derive the new volume of the dis-
placed air enclosed in the system and hence in the
bubble.

Both assumptions were investigated and it was found
that there was negligible effect on the results. Thus, as-
sumption 1, which involved the simplest calculation, will
be used throughout. In that case V' is given by

V =A46 4)
where A is the cross sectional area of the piston (7.9x10
m?) and § is the piston displacement. Equation (3) is
solved for / using the Newton-Raphson numerical
method.

Considering the geometry of the bubble, the radius R
is given by

a* + h?
R= P (5)

Using the incompressibility assumption together with
Eq. (2), the planar strains €, €, and the strain through
the thickness, ¢,, at the top of the bubble are given by

1 n?
by =8y = — b= ln<1 +;)

Finally, the stress, o, is calculated from the usual
relationship for a pressurised spherical vessel:

(6)

PR

=5 ™)

[

where P is the pressure inside the bubble. Note that the
same relationships for 7, ¢ and €, can be derived from
large strain theory of membranes (Williams 1980).

An alternative analysis can be performed if the as-
sumption of a uniform bubble thickness is made. Again
assuming incompressibility, the thickness can be calcu-
lated from

na2t0
t= 8
: )

where S is the corresponding surface area of the bubble.
The latter is given by

S = 2nR* £ 2nRVR? — a2 9)
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where the positive and negative signs are for the cases of
h> R and h <R respectively. Note that at 1=R, R=a
and the two solutions result in the same answer.

Results

The experimentally measured bubble height and that
calculated using Egs. (3) and (4) are compared in Fig. 5.
It is apparent that for heights less than 60 mm the ex-
perimental and analytical values are in good agreement.
For larger heights, a deviation is observed reaching a
maximum of approximately 9% at heights equal to
80 mm. This implies that the assumption of a perfect
spherical shape is only accurate at moderate strains. This
conclusion is further supported by the results shown in
Fig. 6, where measurements of the major and minor axes
o and f respectively from two replicate tests are plotted.
It is observed that for o larger than 35 mm, which cor-
responds to / larger than 58 mm, o is noticeably larger
than f. This deviation from a perfect spherical shape
was evident during the tests as at large strains the bubble
assumed a slight elliptical shape with a ‘flattened’ top
(see Fig. 2). The ratio o/f will be referred to as k. From
Fig. 6, k is 1.1 for h larger than 58 mm whereas for &
smaller than 58 mm, k is equal to 1.0.

Figure 7 shows the average pressure vs bubble height
data. The curve shown is the average from all 23 tested
samples. The usual peak is observed which has no sig-
nificance in terms of the stress-strain curve as the latter
shows no maximum or inflection points coinciding with
the peak in the pressure plot (see Fig. 12).

The results from the tests where the strain was mea-
sured directly by analysing the deformation of the
painted grid are shown in Figs. 8§ and 9. The assumption
regarding the equi-biaxial deformation at the top of the
bubble is justified by the results of Fig. 8, where the
strains in the two planar directions, €, and ¢, are shown
to be almost equal to each other. The measured strain is

100 +
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Fig. 5. Comparison of experimental and analytical bubble height
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Fig. 9. Strain at the top of the bubble vs bubble height

compared with the analytical strain (Eq. 6) in Fig. 9.
Each point in Fig. 9 corresponds to a single test where
the inflation was stopped at various bubble heights such
that the bubble thickness could be measured as well.
Considerable scatter is observed highlighting the vari-
ability of dough as well as the complexity of the mea-
surements. Nevertheless, it is apparent that the
analytical strains are larger than the experimental ones.

The thickness at the top of the bubble was also in-
vestigated. Analytical values were calculated from
Eq. (2) and experimental values were obtained from the
dried samples. In addition, the following relationship
can be derived from Eq. (6):

t, = tge > (10)

so that an extra set of thickness data can be derived by
substituting the experimentally measured strains in
Eq. (10).

The three sets of data are plotted vs bubble height in
Fig. 10. It is apparent that the thickness calculated from
Eq. (2) is the smallest and that the one physically mea-
sured after the bubble had dried is the largest of the
three. The fact that Egs. (6) and (10) would lead to an
underestimation of the thickness is anticipated, as it was
shown earlier in Fig. 9 that the actual strain €, at the top
of the bubble is smaller than the analytical value. This of
course implies that the actual strain ¢, is also smaller
than predicted.

Experimental data for the bubble thickness as a
function of the distance s are compared with analytical
data (Eq. 1) in Fig. 11. It is observed that the predic-
tions are far from the experimental values. The real
distribution of thickness and hence strain along the
bubble is more uniform than the analytical one. As a
result, the thickness at the top of the bubble is much
larger than the analytical predictions. The disagreement
between the two decreases for increasing s up to

0.35
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0.30 A Oequation 2
Aexperimental
4 +equation 10

o o
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Fig. 10. Thickness at the top of the bubble vs bubble height
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Fig. 11. Distribution of bubble wall thickness

s=12.8 mm and thereafter the predicted value overes-
timates the measured one.

As the thickness distribution was more uniform than
Bloksma’s analysis predicted, it was decided to investi-
gate the accuracy of the alternative assumption of uni-
form thickness. Equations (8) and (9) are used to
calculate the new thickness and the result is displayed in
Fig. 11. However, once again there is no agreement with
the measured value. At the top of the bubble, the
thickness is now overestimated by a factor of two. As the
prediction is rather poor, no further analysis was con-
ducted with the constant thickness assumption.

The elliptical shape of the bubble at larger strains
means that the radius R as calculated by Eq. (5) will be
in error. The correct radius of curvature at the top of the
bubble, R,, can be calculated by

[1 + £'x(0)]

Re=""pn00)

(11)
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where f’x(0) and f”x(0) are the first and second deriv-
atives respectively of the function f(x) describing the
shape of the bubble, evaluated at x=0. As the shape is
elliptical (see Fig. 2), f(x) is

. 2\
10 =p(1-%) (12)
The height of the bubble 4 can be written as
h=p+f(a) (13)
Equations (11), (12) and (13) lead to
a + k*n?
Ri=—F7~— 14

where k is the ratio o/ff. Note that for k=1, the bubble is
spherical and Eq. (5) is recovered.

Therefore, this corrected value for the radius of cur-
vature at the top of the bubble should be used in Eq. (7)
instead of R. From the experimental observations pre-
sented above the value of k should be equal to 1.0 for
h <58 mm and equal to 1.1 for h > 58 mm. This will lead
to the correct value for g, provided P and ¢, are also
accurate.

Finally, the stress-strain curve is investigated. One
experimental and one analytical point was derived from
each test such that corresponding stress-strain curves
were obtained. The true, ‘experimental’ curve is shown
in Fig. 12. This is the true curve as the strain was de-
termined experimentally and the stress was calculated
from Eq. (7) using the experimental values of P, ¢, and
R.. Note that the latter requires the values of 4 and &
which were also determined experimentally.

The ‘analytical’ curve is also shown in Fig. 12 for
comparison purposes. In this case the strain was calcu-
lated from Eq. (6). Both R and ¢, needed in Eq. (7) for
the calculation of ¢, were calculated using Egs. (5) and
(2) respectively. Therefore, in this case, the only experi-

120 4

Oanalytical
Xsemi-experimental
+experimental

@ o
o o
L

Stress, o (KPa)
[*2]
o

40

20 4

0 0.5 1 15 2 25 3
Strain, e

Fig. 12. Stress-strain curves

mental measurements that are needed are the pressure, P
and the piston displacement, i.e. the bubble volume, V.

From Fig. 12, it is observed that the analytical curve
is in error. The stress is overestimated by a factor of four
at large strains. The strain is also overestimated but by a
much smaller amount (see Fig. 9). This disagreement
between the analytical and the experimental curve points
to the inaccuracy of the simplifying assumptions in
Blokma’s analysis regarding the shape of the bubble, the
material’s incompressibility and the wall thickness dis-
tribution.

Figure 12 shows an additional curve called ‘semi-ex-
perimental’. This curve was determined in an identical
way as the experimental curve apart from the thickness,
t,;, which was calculated using Eq. (10), i.e. assuming the
dough is incompressible. This was used in Eq. (7) to
calculate the stress. Therefore the experimental mea-
surements that are needed in this case are ¢, P and R,
(hence / and k). The importance of this case lies in the
fact that there is no need to interrupt the tests at various
heights to allow the bubble to dry. This would lead to
less experimental scatter and hence a smaller number of
tests as each experiment would lead to a continuous
trace of the stress-strain curve. In addition to the prac-
tical implications, this case also allows the accuracy of
the incompressibility assumption to be determined, as
the latter is the only assumption that is made in this case.

From Fig. 12, it is apparent that the stress at large
strains in the ‘semi-experimental’ curve is still overesti-
mated, this time by a factor of two. Therefore, it is
concluded that the compressibility of the dough of this
study cannot be ignored as it has a large effect on the
calculated stress values. Also of interest is the fact that
the semi-experimental and analytical curves are very
close to each other. This has no significance however as
the same instant during the inflation process corresponds
to a different stress-strain point along the same curve.

In order to bring the semi-experimental data closer to
the experimental data, the assumption of incompress-
ibility needs to be relaxed. Incompressibility implies that
the Poisson’s ratio, v, is equal to 0.5. Hooke’s law ap-
plied to bi-axial loading leads to the following rela-
tionship between the strains €, and e,:

2v
e
l—v™

(15)

& =—

For a value of v equal to 0.46, Eq. (15) becomes

& = —1.704¢, (16)

Therefore the thickness at the top of the bubble can
be calculated from

—1.704¢,

t, = te (17)

Note that the coefficient of ¢, now becomes —1.704
compared to -2 in Eq. (10). Using these new values of ¢,
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in the calculation of stress leads to the stress-strain curve
shown in Fig. 13 (semi-experimental, v=0.46). The
original curve (semi-experimental, v=0.5) as well as the
experimental data are re-plotted for comparison pur-
poses. It is observed that changing v from 0.5 to 0.46
shifts the data downwards by approximately 100% at
large strains, bringing them very close to the experi-
mental data. Therefore, if v is known a priori, the in-
dependent measurement of bubble wall thickness is not
necessary.

Finally, the experimental strain data can be used to
determine the strain rate during the test as shown in
Fig. 14. The results are not very accurate as they are
obtained from differentiation of experimental data that
were smoothed. Nevertheless, it is obvious that a large
variation in strain rate is occurring with a substantial
decrease in the strain rate as the test progresses. This
variation is a consequence of the constant inflation rate,
1.e. constant crosshead speed during the test. This
complicates the analysis of the test even more as the
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strain rate needs to be constant for a highly viscoelastic
material such as dough. Therefore, efforts should be
made to perform the tests under constant strain rate by
using a testing machine that is capable of adjusting the
crosshead speed according to changes in the strain, via a
feedback loop control system.

Conclusions

The correct stress-strain curve of the dough under in-
vestigation has been determined. This was achieved by
undertaking experimental measurements of strain, wall
thickness and radius of curvature at the top of the
bubble as well as applied pressure.

These measurements are quite complicated and thus
prone to experimental scatter as well as being time-
consuming. A much simpler way would be to derive the
stress-strain curve with the aid of an analytical proce-
dure that can be used to predict test variables such as
strain, wall thickness and radius of curvature. Such an
analysis was derived by Bloksma (1957) and has been
used in several dough studies. However, it has been
shown that for the material and test conditions of this
study, Bloksma’s analysis leads to serious errors in the
calculated stress-strain curve, with the stress overesti-
mated by a factor of four at large strains. This is due to
the invalid simplifying assumptions in the analysis.

The first assumption in the analysis regarding the
spherical shape has been shown to be accurate at mod-
erate strains only. At larger strains, the bubble assumed
an elliptical shape with a ratio of major to minor axis
equal to 1.1.

The assumption regarding the incompressibility of
the material was also found to be inaccurate. The
compressibility could be due to the air pockets intro-
duced in the dough during mixing. When a Poisson’s
ratio of 0.46 is used instead of 0.5, the semi-experimental
data become very close to the experimental data.

The strain at the top of the bubble was also overes-
timated by Bloksma’s analysis although by a much
smaller amount than the overestimation in stress. In
addition, the analytical wall thickness distribution was
not realistic. The experimental thickness distribution
was far more uniform than the analytical value. The
experimental values for the thickness at the top of the
bubble were much larger than the analytical values.

It is not known how a different dough composition
and/or different inflation rate and temperature would
affect the accuracy of the analytical assumptions.
Launay et al. (1977), who also investigated the analytical
thickness distribution, stated that its accuracy decreased
with increasing inflation rate and bubble height. A study
is presently underway whose aim is to examine the effect
of the inflation rate on the accuracy of the analytical
derivations.
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The implication of the large error in the stress-strain
curve is that bubble inflation tests should only be un-
dertaken if experimental readings of strain, thickness
and radius of curvature as well as pressure are recorded.
This makes the test far less attractive as these measure-
ments are complex and time-consuming. Ideally, an al-
ternative method for measuring the thickness at the top
of the bubble should be used, which will allow contin-
uous recording of the thickness. The use of lasers is
currently being investigated. As the errors are so large, it

is believed that a finite element numerical analysis of the
bubble inflation test should be performed. This would
enable comparisons to be made between analytical, ex-
perimental as well as numerical data and would aid in
the deeper understanding of the problem.

Acknowledgements The authors would like to acknowledge the fi-
nancial support of General Mills, USA. They would also like to
thank Dr B. Dobraszczyk of University of Reading for the advice
regarding many aspects of the bubble inflation test and Mr A.
Oppenheimer of General Mills for his advice on dough preparations.

References

Bagley EB, Christianson D (1986) Re-
sponse of chemically leavened doughs to
uniaxial compression. In: Faridi H,
Faubion JM (eds) Fundamentals of
dough rheology. Americal Association
of Cereal Chemists, St Paul, MN, 27-36

Bagley EB, Christianson DD, Martindale
JA (1988) Uniaxial compression of a
hard wheat flour dough. J Texture Stud
19:289-305

Bagley EB, Christianson DD, Trebacz DL
(1990) The computation of viscosity and
relaxation time of doughs from biaxial
extension data. J Texture Stud 21:339—
354

Bloksma AH (1957) A calculation of the
shape of the alveograms of some rhe-
ological model substances. Cereal Chem
34:126-136

Dobraszczyk BJ (1997) Development of a
new dough inflation system to evaluate
doughs. J] Am Assoc Cereal Chem
42:516-519

Dobraszczyk BJ, Roberts CA (1994) Strain
hardening and dough gas cell-wall fail-
ure in biaxial extension. J Cereal Sci
20:265-274

Hlynka I, Barth FW (1955) Chopin alveo-
graph studies. I. Dough resistance at
constant sample deformation. Cereal
Chem 32:463-471

Huang H, Kokini JL (1993) Measurement
of biaxial extensional viscosity of wheat
flour doughs. J Rheol 37:879-891

Janssen AM, van Vliet T, Vereijken JM
(1996) Rheological behaviour of wheat
glutens at small and large deformations.
J Cereal Sci 23:19-31

Joye DD, Poehlein GW, Denson CD (1972)
A bubble inflation technique for the
measurement of viscoelastic properties
in equal biaxial extensional flow. Trans
Soc Rheol 16:421-445

Launay B, Bure J, Praden J (1977) Use of
the Chopin Alveographe as a rheologi-
cal tool. I. Dough deformation mea-
surements. Cereal Chem 54:1042-1048

Meissner J, Hostettler J (1994) A new
elongational rheometer for polymer
melts and other highly viscoelastic lig-
uids. Rheol Acta 33:1-21

Rachik M, Schmidt F, Reuge N, Le Maoult
Y, Abbe F (2001) Elastomer biaxial
characterisation using bubble inflation
technique. 1. Experimental investiga-
tions. Polym Eng Sci 41:532-541

Rasper VF (1975) Dough rheology at large
deformations in simple tensile mode.
Cereal Chem 52:24-41

Rasper VF, Danihelkova H (1986) Alve-
ography in fundamental dough rheolo-
gy. In: Faridi H, Faubion JM (eds)
Fundamentals of dough rheology.
American Association of Cereal Chem-
ists, St Paul, MN, pp 169-180

Reuge N, Schmidt FM, Le Maoult Y,
Rachik M, Abbe F (2001) Elastomer
biaxial characterisation using bubble
inflation technique. I. Experimental in-
vestigations. Polym Eng Sci 41:522-531

Shadwick RE (1992) Soft composites. In:
Vincent JEV (ed) Biomechanics-materi-
als, a practical approach. IRL Oxford
University Press, pp 133-163

Sliwinski E, van Vliet T, Kolster P (1996)
On the relationship between large de-
formation properties and biochemical
parameters of wheat flour dough in re-
lation to breadmaking quality. In: Pro-
ceedings of 6th International Gluten
Workshop, North Melbourne, Austra-
lia, pp 211-217

Treloar LRG (1944) Strains in an inflated
rubber sheet and the mechanism of
bursting. Trans Inst Rubber Ind
19:201-212

Tschoegl NW, Rinde JA, Smith TL (1970)
Method for determining the large de-
formation and rupture properties in
simple tension. J Sci Food Agric 21:65—
70

Williams JG (1980) Stress analysis for
polymers. Ellis Horwood, Chichester,
pp 231-245.

Yang MC, Dealy JM (1987) Control of
strain rate in a sheet-inflation rheome-
ter. J Rheol 31:113-120



