
Introduction

Plastic fluids constitute a class of frequently encoun-
tered fluids. Examples are concentrated suspensions,
food stuffs, plaster, cement pastes, mortar, ceramic
slices, pharmaceuticals, slurries, and so on. Frequently
thixotropy accompanies the plastic behavior. Deter-
mining the viscosity of these fluids can be achieved
either in the CR- or CS-mode. The latter has the
advantage that the yield stress can be obtained without
any extrapolation. Irrespective as to what mode is used
it is necessary to manipulate the measured data (torque
M and angular velocity in case of rotational visco-
meters) in order to obtain the flow curve. In the case of
tangential annular flow between concentric cylinders
the true flow curve can only be approximated (Krieger
and Elrod 1953).

Without manipulation of the experimental data (like
the Rabinowich-Mooney correction in capillary visco-
metry) one usually obtains only the apparent flow
curve. Without exception this is the case if programs are
used, which are supplied by the manufacturers of com-
mercial instruments. One easy way to convert apparent
flow curves into true ones relies on the Method of Rep-
resentative Shear Rate and, respectively, representative
shear Stress (MRSR/S). It was originally introduced by
Schümmer (1969, 1970), who studied capillary flow of a
power law fluid. He realized that if he shifted the ap-
parent wall shear rate _cca by a factor bc ¼ p

4

� �
to the

representative one, _cc ¼ b̂bc _cca, he could approximate the
true flow curves within a 3% error for 0.25 £ n £ 1.4.
Since this error is within the scatter of experimental data
the MRSR/S is extremely attractive to the practical
everyday user. The method has been applied to other
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Abstract For the most common
types of viscometers the apparent
flow curve of plastic fluids is studied.
For torsional flow, where the shear
rate is the natural variable, the ap-
parent yield stress exceeds the true
yield stress sc by more than 33%. If,
on the other hand, s is the natural
variable (like in capillary flow, slit
flow, and concentric cylinder flow)
the yield stress is correctly predicted,
but the behavior close to sc differs
fundamentally. If the apparent shear
rate _cca goes to zero like s� scð Þ1=n

(where the power law index n could
be the power law index of a Her-
schel-Bulkley fluid), the true shear
rate has to be proportional to
s� scð Þ 1=n½ ��1 for s! sc. For n=1

this implies a discontinuity of _cc at sc
( _cc ¼ 0 for s < sc). For tangential
annular flow between concentric
cylinders the ratio of radii jð Þ enters.
Using an exact relation between _cc
and _cca reveals that no single (j-
dependent) expression for the
apparent flow curve can exist, which
would for plastic fluids cover the
entire flow regime (s > sc).
Irrespective as to what viscometer is
used the far field behavior of the
apparent flow curve and the true
flow curve will, in general, differ too,
though only quantitatively.
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viscometric devices and other model fluids as well
(Giesekus and Langer 1977; Laun 1983; Laun and Hir-
sch 1989; Brunn and Vorwerk 1993; Caravalho et al.
1994). Its mathematical justification lies in the Mean
Value Theorem (MVT) of integral calculus. Rigorously
adhering to the MVT a model free estimate of bc for the
most common types of viscometers was recently pre-
sented (Brunn and Wunderlich 2000). For plastic fluids
it turned out that a yield stress dependent shift factor is
required. Thus, it is important to know if experimental
data will furnish a yield stress an if so will this be the true
yield stress.

To investigate this as well as the relation between
apparent plastic flow curves and the true flow curve will
be the subject of this study.

Plastic fluids in torsional flow

Plastic fluids are fluids with a yield stress sc, i.e., if the
shear stress s does not exceed sc, the plastic fluid will not
flow (but only deform elastically) and the shear rate _cc is
zero. This implies that close to the yield stress the shear
viscosity g, regarded as a function of _cc, has a singularity
of order 1, i.e.,

g ¼ gð _ccÞ ! sc

_cc
for s! scþ ð1Þ

If we anticipate for s > sc, at least close to the yield
stress, a functional dependence of g upon _cc of the form

g ¼ gð _ccÞ ¼
ss

c þ m _ccn
� �1

s

_cc
; n > 0 ð2Þ

then Eq. (1) is automatically satisfied. Equation (2)
could also be regarded as a legitimate constitutive
equation for plastic fluids, i.e., be valid not only close to
sc.

It is a monotonically decreasing function of _cc as long
as n

s � 1 and implies a non-negative differential viscosity
ĝg:

ĝg ¼ ds
d _cc
� 0 ð3Þ

Thus, subject to the restraint n/s £ 1, Eq. (2) can be used
as a model for plastic fluids.

Some frequently used models for plastic fluids are
special cases of Eq. (2). Examples are (for s > sc):

1. The Bingham fluid

s ¼ sc þ gB _cc ð4aÞ

i.e., m ¼ gB, s=1, n=1

2. The Casson fluid

ffiffiffi
s
p
¼ ffiffiffiffi

sc
p þ

ffiffiffiffiffiffiffi
gc _cc

p
ð4bÞ

i.e., m ¼ ffiffiffiffiffi
gc
p

, s=1/2, n=1/2

3. The Herschel Bulkley fluid

s ¼ sc þ m _ccn ð4cÞ

i.e., s=1,

and

4. The Vocadlo fluid

_cc ¼ 1

K
ðss � ss

cÞ ð4dÞ

i.e., m=K, n=1

For torsional flow (flow between concentric parallel
disks of radius R and distance H, rotating with angular
velocity W relative to each other) the apparent viscosity
ga is given by

ga ¼ gað _ccRÞ ¼
sa

_ccR
¼ C1

M
X

ð5Þ

with

C1 ¼
2H
pR4

ð6Þ

a purely geometrical quantity. Here M is the torque
required to hold one disk stationary relative to the ro-
tating one. With

_ccR ¼
RX
H

ð7Þ

the (ideal) rim shear rate, the apparent rim shear stress
sa is given by (e.g., Bird et al. 1977)

sa ¼
4

_cc3R

Z_ccR

0

d _cc _cc3g _ccð Þ ð8Þ

Utilizing Eq. (1) is follows that close to the yield stress,
i.e., for _ccR ! 0, sa is given by

sa ¼
4

3
sc; for _ccR ! 0 ð9Þ

This implies that the apparent yield stress exceeds the
true yield stress sc by more than 33%.

Utilizing Eq. (2) (with n/s £ 1) we obtain far from the
yield stress

sa !
4

3þ n
s

s1; for s� sc ð10Þ

where s1 is the s� sc limit of Eq. (2), i.e.,

s1 ¼ m
1
s _cc

n
s ð11Þ
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Thus, in torsional flow, the apparent viscosity ga shows a
first-order singularity in _cc at an apparent yield stress of
4
3 sc. Even the far field behavior (s� sc) of ga differs
from the far field behavior of g, though only quantita-
tively by a factor of 4

3þn
s
.

For n
s ¼ 1 (e.g., Bingham and Casson fluid), the far

field behavior of ga and g coincide. Figure 1 sketches the
apparent flow curve (sa ¼ sað _ccÞ) for a Herschel-Bulkley
fluid1 with n=1/2.

Experimentally one measures M and W and thus ga.
Commercial instruments usually furnish parameters of
approximation formulas for ga, the apparent shear vis-
cosity. Thus, it is instructive to find out the fluid’s rhe-
ology, if ga is approximated by formulas in the form of
Eq. (2), i.e.,

sa ¼ sað _ccRÞ ¼ s0csþ m0 _ccn
R

� �1
s ð12Þ

Here s0c is the apparent yield stress which, as shown
before, exceeds the fluid specific yield stress sc by a
factor of 4

3. As the example of a Herschel Bulkley fluid
has shown, the fluid specific property m can differ from
an apparent quantity m¢ as well (see footnote 1).

Inverting Eq. (8) leads to

sR ¼ sRð _ccRÞ ¼
1

4
3þ d log sa

d log _ccR

� �
sa ð13Þ

If sa is approximated by Eq. (12), this implies

sR ¼ 1=4 3s0csþ 3þ n
s

� 	
m0 _ccn

R

h i
s0csþ m0 _ccn

R

� �ð1�sÞ=s ð14Þ

Thus, unless s=1 (apparent Bingham and Herschel-
Bulkley fluid), the fluids rheology functionally differs

quite substantially from its apparent one2. Even for
fluids with n

s=1 (but s „ 1; e.g., Casson fluid), for which
the far field behavior of sa and sR coincide (see Eq. 10),
will the behavior of sa and sR for _ccR ! 0 be quite dif-
ferent. Figure 2 shows this for an apparent Casson fluid:

ffiffiffiffiffi
sa
p ¼

ffiffiffiffi
s0c

p
þ

ffiffiffiffiffiffiffiffiffi
g0c _ccR

p

for which one finds

sR ¼ 1=4 3
ffiffiffiffi
s0c

p
þ 4

ffiffiffiffiffiffiffiffiffi
g0c _ccR

p� 	 ffiffiffiffi
s0c

p
þ

ffiffiffiffiffiffiffiffiffi
g0c _ccR

p� 	
ð15Þ

Plastic fluids in capillary/slit flow

In capillary as well as in slit flow the experimentally
accessible apparent viscosity is given by the analogue to
Eq. (5), namely

ga ¼ gaðswÞ ¼
sw

_cca
¼ C2

Dp
_VV

ð16Þ

where C2 is a purely geometrical constant. Here sw is the
maximum (or wall) shear stress and _cca the apparent
shear rate given by (e.g., Brunn and Vorwerk 1993)

_cca ¼
iþ 1

si
w

Zsw

sc

ds
si

g sð Þ ð17Þ

with i=2 for slit flow and i=3 for capillary flow.
This relation shows that for these flows the natural

variable for g is the shear stress. Thus, Eq. (2) has to be
used in the form

Fig. 1. The flow curve (solid
line) and apparent flow curve
(dashed) for torsional flow of a
Herschel Bulkley fluid with
n=1/2

1 For a Herschel Bulkley fluid sa is given by sa ¼ 4
3 sc þ 4

3þn

� 	
m _ccn

R.
This, too, is of the Herschel Bulkley type

2 For s=1 the apparent flow curve will differ from the true flow
curve only quantitatively, but not qualitatively
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g ¼ gðsÞ ¼ s

1
m ss � ss

c

� �� �1
n

ð18Þ

This implies for sfisc the following expression for the
shear viscosity:

g! sc

_cc
¼ msnþ1�s

c

s

� �1
n 1

s� scð Þ
1
n

; for s! sc ð19Þ

i.e., a singularity of g of order 1/n for s! sc. Using
Eqs. (17) and (19) the corresponding limiting behavior
of ga is

ga !
sc

_cca
¼ nþ 1

nðiþ 1Þ
sc

s� scð Þ g; for s! sc ð20Þ

This implies a singularity of ga of order 1þ 1
n, i.e., of one

order higher than the singularity of g.
Far from the yield stress, where _cc becomes asymp-

totically equal to _cc1,

_cc1 ¼
ss

m


 �1
n
; for s� sc ð21Þ

we have

_cca ¼
iþ 1

iþ s
n


 �
_cc1; for sw � sc ð22Þ

Thus, unless s/n=1, as is the case for a Bingham and for
a Casson fluid, the far field behavior of ga will differ
quantitatively from the far field behavior of g by a factor
of (i+s/n)/(i+1). For the physically meaningful range of
n
s � 1 this implies ga=g � 1. The apparent viscosity can
never be less then the true viscosity, a result valid for
torsional flow as well. Figure 3 illustrates this for a
Vocadlo fluid with s=2 in capillary flow.

Since, without exception, commercial instruments
supply approximation formulas for apparent flow
curves, it is instructive to show what this implies if
the fluid is apparently a plastic one. To this end let
us assume that the fluids apparent rheological behavior
can be approximated by an analogue of Eq. (18), i.e.,

_cca ¼
1

m0
ss

w � ss
c

� �� �1
n

ð23Þ

To obtain the true flow curve requires the inversion of
Eq. (17). This is given by

_ccw ¼ _ccw swð Þ ¼
1

iþ 1
iþ d log _cca

d log sw

� �
_cca ð24Þ

If the measured apparent shear rate turns out to be
given by Eq. (23) then the true wall shear rate has to be

_ccw ¼
1

iþ 1

iþ s
n

� �
ss

w � iss
c

� �

ðm0Þ1=n
ss

w � ss
c

� �ð1=nÞ�1 ð25Þ

This shows that Eq. (23) can only be used for n £ 1.
For n=1 (e.g., apparent Bingham and Vocadlo fluid),

where _ccaðswÞ tends to zero linearly for swfisc+, Eq. (25)
predicts a finite value for _ccw. Phrased differently, only a
finite value of g for s! scþ (and g ¼ 1 for s < sc) can
lead to the behavior ga / 1

s�sc
for s! scþ. If, on physical

grounds, one rejects a discontinuity of _cc (or g) at s ¼ sc,
then all attempts to approximate ga for plastic fluids via
formulas, which admit a first order discontinuity (i.e., a
proportionality of gatoðs� scÞ�1) for s! sc should be
abolished. Figure 4 illustrates this for an apparent
Bingham fluid:

_cca ¼
0; sw < sc

sw�sc
g0B

; sw > sc

�

Fig. 2. Normalized Casson
plot of a fluid, whose apparent
flow curve (dashed line) in tor-
sional flow shows Casson-like
behavior; ya ¼

ffiffiffiffiffi
sa
p  ffiffiffiffi

s0c
p
þ

�
ffiffiffiffiffiffiffiffiffi
g0c _ccR

p
� ¼ 1 in comparison to

the scaled true flow curve (solid
line) y ¼ ffiffiffiffiffi

sR
p  ffiffiffiffi

s0c
p

þ
ffiffiffiffiffiffiffiffiffi
g0c _ccR

p� �
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for which the true rheology would be given by

_ccw ¼

0; sw < sc

sw � i
iþ1sc

� 	

g0B
; sw > sc

8
>><

>>:
ð26Þ

Plastic fluids in angular flow between
concentric cylinders

For this flow the apparent viscosity is given by

ga ¼ gaðsi; jÞ ¼
si

_ccaðsi; jÞ
¼ C3

M
Xr

ð27Þ

with Xr the angular velocity of one cylinder relative to
the other (of radii Ri and R0 ¼ jRi, j>1) and M the
torque per unit height required to maintain that

situation. The constant C3 is a purely geometrical
quantity. Here si is the shear stress at the inner cylinder.
The apparent shear rate _cca is directly related to Xr:

_cca ¼
2j2

j2 � 1
Xr ð28Þ

With

s0 ¼ si j2


ð29Þ

the shear stress at the outer cylinder, Xr is given by

Xr ¼
1
2

Rsi

sc

ds _cc=s;s0 < sc < si

1
2

Rsi

s0

ds _cc=s;s0 > sc

8
>>><

>>>:

ð30Þ

These relations show that, in contrast to the cases
studied thus far, apparent quantities ð _ccaorgaÞ depend
upon the geometry, though only via j, the ratio of radii.

Fig. 3. The flow curve (solid
line) and apparent flow curve
(dashed) in capillary flow of a
Vocadlo fluid with s=2. Note
the infinite slope of the appar-
ent flow curve at the yield stress,
while the slope of the true flow
curve is 1/2 at sc

Fig. 4. Bingham plot of a fluid
whose apparent flow curve
(dashed) in slit flow shows
Bingham behavior. Note the
jump of the true wall shear rate
_ccw (solid line) at the yield stress
sc
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As seen above, s is the natural variable and the results of
the last section will (qualitatively) carry over. For ex-
ample, close to the yield stress, where Eq. (19) holds,
Eq. (20) has to be replaced by

ga ¼ 1þ 1

n


 �
1� 1

j


 �
sc

s� sc
g; for si ! sc ð31Þ

Far from the yield stress, the equivalent of Eq. (22) be-
comes

_cca ¼
n
s

1� j�2s=n
� �

ð1� j�2Þ _cc1; for s0 � sc ð32Þ

Fluid specific parameters enter this relation in the
combination n

s. For n
s ¼ 1 (e.g., Bingham and Casson

fluid) _cca and _cc1 coincide, irrespective of j. In all other
cases, _cca differs quantitatively from _cc1.

Again it is instructive to consider the case, where the
apparent rheological behavior admits an approximation
in the form of Eq. (23):

_cca ¼
1

m0
ss

i � ss
c

� �� �1
n

ð33Þ

As is well known, Eq. (28) in conjunction with
Eqs. (30a) and (30b) cannot be converted for arbitrary
values of j (the exception being j=1). Thus, it seems
impossible to extract information about the fluid rhe-
ology, which would lead to the validity of Eq. (33).
However, if we concentrate on Eqs. (30a) and (30b)
rather than on Eq. (28), then the inversion is straight-
forward and one gets for the true shear rate at the inner
cylinder (Steger and Brunn 1999)

_cci ¼
2 dXr

d log si
; s0 < sc < si

2 @Xr
@ log si

���
s0
;sc < s0

8
<

:
ð34Þ

Thus, plotting the measured data half logarithmically as
Xr ¼ Xrðlog siÞ, the slope of that curve will furnish half
of the true wall shear rate. For sc < s0 this requires fixed
s0, i.e., a constant value of M


R2
0. Writing Eq. (28) in the

form

Xr ¼
1

2

si � s0
si

_cca ð35Þ

shows the relation between _cci and _cca, namely

_cci ¼
1� 1

j2

� � d _cca
d log si

;s0 < sc < si

1
j2 þ 1� 1

j2

� � @ log _cca
@ log j2

���
s0

� �
_cca; sc < s0

8
><

>:
ð36Þ

In deriving these formulas we relied heavily on the fact
that rheological quantities depend upon the fluid, but
are independent of the geometry. Yet, as the expressions

at Eq. (31) (for s! scþ) and Eq. (32) (for s0 � sc)
show, the relation between _cca and _cci (and consequently
between ga and g) does involve j. Insisting that _cci does
not depend upon j requires a geometry dependent
apparent shear rate _cca ¼ _ccaðsi; sc; jÞ. As far as the
approximation given by Eq. (33) is concerned, this can
only be true if m¢ is not a constant, but rather a function
of j.

As far as Eq. (36a) in concerned this requires

m0 ¼ m� 1� 1

j2


 �n

; so < sc < si ð37Þ

with m* a fluid specific constant.
The corresponding wall shear rate _cci thus becomes

_cci ¼
s
n

ss
i

ss
i � ss

c

1

m�
ss

i � ss
c

� �� �1
n

; so < sc < si ð38Þ

As in the case of capillary/slit flow the restraint n<1 is
needed for Eq. (33) to be applicable. For n<1, Eq. (38)
represents a plastic fluid, although not the same type as
Eq. (18).

If we note that Eq. (33) with m¢ given by Eq. (37) is
equivalent to the approximation

Xr ¼
1

2

1

m�
ss

i � ss
c

� �� �1
n

ð39Þ

then it becomes clear, why this approximation cannot
used for so > sc. It is inconsistent with the correct ex-
pression for Xr (see Eq. 30b). Phrased differently, it is in
the interval so < sc < si entirely legitimate to approxi-
mate experimental data by Eq. (33), if the j-dependence
of m¢ as given by Eq. (37) is taken care of. Outside that
range Eq. (33) cannot be used.

Within its range of validity ðn < 1; so < sc < siÞ the
apparent shear rate varies between 0 (at si ¼ sc) and
_cca;max (reached at si ¼ jsc). The corresponding variation
of the true wall shear rate _cci is from 0 (unless n=1) to
s
n _cca;max. Figure 5 shows details of these facts for an
apparent Hershel-Bulkley fluid, i.e.,

_cca ¼
1

1� 1
j2

1

m�
si � scð Þ

� �1
n

; so � sc � si ð40Þ

It is instructive to note that for si ! sc the apparent
flow curve si ¼ sið _ccaÞ always has an infinite slope while
the slope of the true flow curve varies between zero
(for 1

2 < n < 1) and infinity for n < 1
2. The value of 1

2
for

n ¼ 1

2

separates these two cases.
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Summary and conclusion

In this study the relation between flow curves and ap-
parent flow curves was examined for plastic fluids. The
results can be summarized as follows:

1. In viscometers, in which the shear rate is the natural
variable (torsional flow), the yield stress is incorrectly
predicted. The measurable apparent yield stress sac
exceeds the true yield stress sc by a factor of 4

3. For
_cc! 0 the apparent viscosity ga will tend to infinity as
_cc�1 at the apparent yield stress sac while g will do
likewise at the true yield stress sc. Even the far field
behavior of ga and g will differ, though only quanti-
tatively by a factor of 4

3þn
s
. Since n/s £ 1 this factor can

never be less than one.
2. In capillary- and slit viscometers the yield stress is

correctly predicted. The behavior close to the yield
stress differs fundamentally, however. If, for s! sc,
the shear rate vanishes like s� scð Þ1=n, the apparent

shear rate vanishes like ðs� scÞ½1=n�þ1. Phrased dif-
ferently, if the apparent shear rate turns out to vanish
like sw � scð Þ1=n, then the true wall shear rate has to
vanish like sw � scð Þ½1=n��1. Thus, n £ 1 is required in
order to obtain meaningful results. For n=1 (e.g.,
apparent Bingham fluid, apparent Vocadlo fluid) this
implies a finite value of _ccw as s! scþ (but _ccw ¼ 0 for
sw � sc�). The corresponding jump of g (from infinity

to a finite value) seems physically inadmissible, thus
restricting for the apparent flow curve the range of n
to values less than one. Again, the far field behavior
of ga and g will differ quantitatively, unless n

s ¼ 1.
3. In tangential annular flow between concentric cylin-

ders the results of 2. will carry over with one addi-
tional complication, namely the direct dependence
upon the ratio of radii, j. Using an exact differential
relation between _cca and _cc reveals that a j-dependent
approximation formula for _cca may – again only for
n<1 – be entirely legitimate, as long as the yield stress
is encountered within the fluid filled space (i.e., for
so � sc � si). However is not legitimate to use that
formula outside this range (i.e., for sc < s0). As a
matter of fact, if we use the approximation of _cca
by Eq. (33) (with m¢= m¢(j) as given by Eq. (37) in
its forbidden range sc < so we would obtain by
Eq. (36b)

_cci ¼
ss

i � ss
c

m0


 �1
n

� ss
i � j2sss

c

j2sm0


 �1
n

; sc < so ð41Þ

There is no value for s and n, which would make this
independent of j. Programs from manufactures of
commercial viscometers, which do furnish approxima-
tion formulas for apparent flow curves of plastic fluids
for this type of flow, should be discarded.

In all cases the apparent viscosity ga can never be less
than the true viscosity g, i.e., ga=g � 1.

Fig. 5. The flow curve (solid
line) and apparent flow curve
(dashed) of a fluid in circular
Couette flow (j=1.079, DIN
53018) with apparent
Hershel-Bulkley behavior

xa ¼ _cca
m�
sc

� 	1
n


 �
in comparison

to the true flow curve

x ¼ _cci
m�
sc

� 	1
n


 �
for various

values of n
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