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Abstract
We derive an approximate analytic  expression for the diffusiophoretic mobility of a cylindrical colloidal particle  
oriented perpendicularly to an applied electrolyte concentration gradient field in a symmetrical electrolyte solution. This  
expression, which is correct to the third order of the particle zeta potential, is applicable for particles with low and moderate  
zeta potentials at arbitrary values of the electrical double layer thickness. This is an improvement of the mobility formula  
derived by Keh and Wei (2002), which is correct to the second order of the particle zeta potential. We also calculate the 
average diffusiophoretic mobility of a cylinder oriented at an arbitrary angle between its axis and the applied electrolyte  
concentration gradient field by combining the obtained mobility expression with the previously obtained mobility expression  
for a cylinder oriented parallel to the applied electrolyte concentration gradient field.
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Introduction

There have been a lot of theoretical studies on diffusiophore-
sis of particles of various types such as rigid spheres [1–15]  
(see in particular Ref. [6] for weakly charged spheres with 
arbitrary electrical double layer thickness, Ref. [14] for mod-
erately charged spheres with arbitrary electrical double layer  
thickness, Ref. [4, 5, 12] for highly charged spheres, and Ref.  
[8, 11, 13] for spheres in a general electrolyte solution), rigid  
cylinders [16–18], particles in an electrolyte with finite ion size  
[19, 20], dielectric liquid drops [21–23], conducting drops or 
mercury drops [24–26], and soft particles (polymer-coated 
particles) [27–33]. The diffusioosmosis in fibrous porous 
media is closely related to the diffusiophoresis of cylindrical 
particles. Keh and his coworkers have developed the general 
theory of diffusioosmosis [34–37]. Keh and Wei [34] pre-
sented an analytic formula for the transverse diffusiophoretic 
mobility of a weakly charged cylindrical particle oriented 
perpendicular to the applied electrolyte concentration gra-
dient field. This expression is correct to the second power 
of the zeta potential of the particle. In the present paper, we 
make corrections to the third powers of zeta potentials in  

their formula [34] and derive an analytic diffusiophoretic 
mobility expression for a cylinder in a symmetrical elec-
trolyte solution applicable for low to moderate particle zeta 
potentials. We also calculate the diffusiophoretic mobility  
of a cylinder oriented at an arbitrary angle between its axis 
and the applied electrolyte concentration gradient field by 
combining the obtained transverse mobility expression with  
a previously obtained expression for the tangential diffu-
siophoretic mobility of a cylinder oriented parallel to the  
applied electrolyte concentration gradient field [18].

Theory

Consider an infinitely long cylinder of radius a and zeta 
potential ζ moving with a diffusiophoretic velocity U in 
an aqueous liquid of relative permittivity εr and viscosity 
η containing a symmetrical electrolyte of valence Z under 
an applied constant electrolyte concentration gradient. The 
ionic drag coefficient of electrolyte cations λ+ and that of 
electrolyte anions λ− may be different. We take a cylindri-
cal coordinate system (r, θ, z) with its origin fixed at the 
center of the cylinder, where the z-axis coincides with the 
cylinder axis (Fig. 1). Let n+(r) be the concentration (num-
ber density) of cations at position r, n−(r) be that of anions, 
and n(r) be their concentrations beyond the electrical double 
layer around the cylinder, where n+(r) = n−(r) = n(r). Let the 
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applied electrolyte concentration gradient be expressed in 
terms of n(r) as ∇n. We denote by n∞ the bulk concentration 
of electrolytes in the absence of ∇n. The following vector α 
proportional to ∇n is introduced:

where k is the Boltzmann constant, T is the absolute tempera-
ture, and e is the elementary electric charge. We assume that 
the field α is weak so that U is linear in α and the Reynolds 
number of the liquid flow is low so that inertial terms in the 
Navier–Stokes equation can be neglected, and the liquid can 
be regarded as incompressible. We also assume that no elec-
trolyte ions can penetrate the particle surface.

We consider first the cylinder oriented perpendicularly 
to α and denote the diffusiophoretic velocity U by U

⟂
 . 

The z-axis, which coincides with the cylinder axis, is put 
perpendicular to α (Fig. 1).

It has previously been shown [12] that one can obtain the gen-
eral expression for the diffusiophoretic velocity U of a colloidal 

(1)� =
kT

Zen∞
∇n

particle in an electrolyte concentration gradient field α from the 
expression for its electrophoretic velocity UE in an applied elec-
tric field E by replacing E with α, since the governing electroki-
netic equations take essentially the same form for U and UE [12]. 
The only difference is the far-field boundary condition for the 
deviations δμ±(r) of the electrochemical potentials of ions μ±(r) 
caused by α and E, where μ+(r) and μ−(r) are, respectively, the 
electrochemical potentials of cations and anions. The transverse 
diffusiophoretic velocity U

⟂
 in a transverse field α can thus be 

derived from the corresponding expression for UE [38, 39], viz.,

with

and

where

are the scaled ionic drag coefficients of cations and anions. 
The equilibrium electric potential ψ(0)(r) is assumed to sat-
isfy the cylindrical Poisson-Boltzmann equation, viz.,
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Fig. 1   A cylindrical colloidal particle of radius a moving with a veloc-
ity U⊥ in a transverse electrolyte concentration gradient field ∇n or α 
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with

where y(r) is the scaled equilibrium electric potential, κ is the 
Debye-Hückel parameter, and εo is the permittivity of a vacuum. 
Equation (9) is subject to the following boundary conditions:

The liquid fluid velocity u(r) and the deviations δμ±(r) of 
the ionic electrochemical potentials μ±(r) due to α are related 
to h(r) and ϕ±(r), respectively, as

where α is |α|. Let us define the scaled diffusiophoretic mobil-
ity U∗

⟂
 as

We expand y(r) in powers of ζ, which is the solution to 
Eq. (9) [39], viz.,

with

where

is the scaled zeta potential and In(κa) and Kn(κa) are, respec-
tively, the nth order modified Bessel functions of the first 
and second kinds.
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We first derive an expression for U∗
⟂
 correct to the order of 

ζ2. It follows from Eqs. (3), (4), (6), and (17) that the following 
approximate form for G(r) correct to the order of ζ2, which 
involves only y1(r), can be obtained:

By combining Eq. (2) with Eq. (21) for G(r) and Eq. (18) 
for y1(r), we obtain an approximate expression for U⊥* 
which is correct to the order of ζ2, viz.,

where

and

Equation (22) agrees with the result of Keh and Wei [34]. 
Note that f1(κa) and f2(κa) are equivalent to Θ1(κa) and Θ2(κa), 
respectively, in their paper (Eqs. (35a) and (35b) in Ref. [34]). 
Equation (22) for U⊥* consists of two terms. The first term 
is the electrophoresis component and the second term is the 
chemiphoresis component. Note also that f1(κa) given by 
Eq. (23) corresponds to Henry’s function for the transverse 
electrophoretic mobility of a cylinder oriented perpendicular 
to an applied electric field [38, 39].

Next let us derive an expression for U⊥* correct to the 
order of ζ3. This term is related to the electrophoresis com-
ponent, and thus, it is proportional to β. By using the same 
method employed to obtain the transverse electrophoretic 
mobility of a cylinder of radius a correct to the order of 
ζ3 [39], by using Eq. (17), we finally obtain the following 
expression for U∗
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with

and

where

and

The first and second terms on the right-hand side of 
Eq. (25) are equivalent to Eq. (22), and the last term is the 
correction term of the order of ζ3 to Eq. (22). The above 
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functions f1(κa), f2(κa), f3(κa), and f4(κka) defined by Eqs. 
(23), (24), (26), and (27) in the present paper, respectively, 
correspond to the functions f1(κa)–f4(κa) defined in the 
previous paper [39] but they differ from each other by 
a factor of 2/3 due to different definitions in the present 
paper and the previous paper [39].

In the large κa limit (κa → ∞), Eq. (25) becomes

which agrees with the result for a particle with a planar sur-
face [1, 2]. In the small κa limit (κa → 0), on the other hand, 
Eq. (25) becomes

It is thus seen that there are no contributions of f3(κa) 
and f4(κa) in the limits of κa → ∞ and κa → 0.

We next consider the tangential diffusiophoretic mobil-
ity U∗

∥
 of a cylindrical particle oriented parallel to α. It can 

be shown [18] that U∗
∥
 can be expressed as

where

Note that Eq. (32) is already correct to the order of �̃3 , 
since the next-order correction term to Eq. (32) is of the 
order of �̃4 . It is to be noted that U∗
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 depends on κa unlike 

the case of electrophoresis, where the tangential electropho-
retic mobility of a cylinder does not depend on κa [38, 39].

In the limit of κa → ∞, f(κa) tends to 1 so that Eq. (32) 
tends to Eq. (30), viz.,

In the opposite limit of κa → 0, f(κa) tends to 0 so that 
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opposite limit of κa → 0, the limiting value of U∗
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 (Eq. (35)) 

is twice that of U∗
⟂
 (Eq. (31)).

For a cylindrical particle oriented at an arbitrary angle 
between its axis and the applied electrolyte concentration 
gradient field a, its diffusiophoretic mobility U∗

av
 averaged 

over a random distribution of orientation is given by [40]:
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Results and discussion

The main result of this paper is Eq. (25) for the transverse 
diffusiophoretic mobility U∗

⟂
 of a cylinder oriented per-

pendicular to an applied electrolyte concentration gradi-
ent, which is correct to the order of ζ3. Equation (25) is an 
improvement of Eq. (22) correct to the order of ζ2.

Since Eqs. (23), (24), (26), (27), and (33) for f1(κa)–f4(κa) 
and f (κa) are not very convenient for the practical use, since 
they involve modified Bessel functions and numerical inte-
grations, we derive simpler approximate formula for f1(ka), 
f3(ka), and f4(ka) without involving modified Bessel func-
tions and numerical integrations on the basis of the same 
approximation method as used in the electrophoresis problem 
[38, 39]. As for f2(κa), Keh and Wei [34] derived an excellent 
approximate expression (Eq. (38)). Thus, we find that
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Also, we find that f(κa) given by Eq. (33) can be approxi-
mated with negligible errors as

By using the above equations, Eq. (25) becomes 

and Eq. (32) becomes

Figure 2a, b shows some results of U∗
⟂
 calculated via Eq. (25) 

(or Eq. (42) with negligible errors) for a cylinder of radius a in 
an aqueous KCl solution (m+  = 0.176, m−  = 0.169, β =  − 0.02) 
(Fig.  2a) and NaCl solution (m+  = 0.258, m−  = 0.169, 
β =  − 0.2) (Fig. 2b) at 25 °C (solid curves) in comparison with 
those obtained via Eq. (22) (dotted curves, Keh and Wei [34]). 
The contribution of the correction term of order ζ3 is related to 
the electrophoresis component of diffusiophoresis and becomes 
more significant as β becomes larger. Indeed, it is seen from 
Fig. 2a, b that this correction contribution is larger for NaCl 
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Fig. 2   Scaled diffusiophoretic 
mobility U∗

⟂
 of a cylindrical 

colloidal particle of radius a 
in an aqueous electrolyte solu-
tion at 25 °C as a function of 
the scaled zeta potential �̃  at 
several values of κa. Calculated 
via Eq. (25) (or Eq. (42) with 
negligible errors) (solid curves) 
in comparison with the results 
for U∗

⟂
 correct to the order of 

ζ.2 obtained from Eq. (22) (Keh 
and Wei [8]) (dotted curves). 
Results for KCl (m+  = 0.176, 
m−  = 0.169, β =  − 0.02) (a) and 
NaCl (m+  = 0.258, m−  = 0.169, 
β =  − 0. 2) (b)
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(β =  − 0.2) than for KCl (β =  − 0.02). We also see that this con-
tribution is large for moderate values of κa (0.1 < κa < 100) and 
becomes small for large κa (> 100) or small κa (< 0.1), vanish-
ing in the limit of κa → ∞ (thin double layer limit) or κa → 0 
(thick double layer limit). Note that in these two limiting cases 
the solid and dotted curves coincide with each other.

In Fig. 3a, b, we plot the scaled average electrophoretic 
mobility given by Eq. (36) of a cylinder of radius a and zeta 
potential ζ as a function of scaled zeta potential �̃  (solid 
curves) in comparison with the scaled diffusiophoretic 
mobility U∗

sp
 of a sphere of the same radius a and zeta poten-

tial ζ as the cylinder, which is correct to the order of ζ3 (dot-
ted curves) [14]. It is seen that the curve for Usp* lies 
between those for U∗

∥
 and U∗

⟂
 and is close to that of U∗

av
.

It has been shown [1, 2] that in the case of diffusiopho-
resis of a sphere, the chemiphoresis component causes the 
particle to move toward higher electrolyte concentrations, 
while the electrophoresis component moves the particle 
toward higher or lower electrolyte concentrations depend-
ing on the sign of the particle zeta potential, which may 
cause a sign reversal of the diffusiophoretic mobility in some  
cases. Figures 2 and 3 demonstrate that a cylinder exhibits  
the same diffusiophoretic behavior as a sphere. That is, for 
electrolytes with almost equal ion mobilities such as KCl 
(β =  −0.02, Figs. 2a and 3a), the electrophoretic contribu-
tion becomes negligible relative to chemiphoresis and almost  
only chemiphoresis component moves the cylinder toward  
higher electrolyte concentrations (positive diffusiophoretic  
mobility). In the case of  a cylinder with large κa in NaCl 
(β =  −0. 2, Figs. 2b and 3b), however, a particle of low to 
moderate positive  zeta potential migrates toward lower 

electrolyte concentrations, while a particle of high posi-
tive  zeta potential can migrate toward higher electrolyte  
concentrations.

Evel and others [41] measured the diffusiophoretic mobil-
ity of spherical latex particles. As for cylindrical particles, 
McMullen and others [42] recently performed diffusiopho-
resis measurement of DNA cylinders. The present theory is 
thus expected to apply for such systems.

Concluding remarks

Keh and Wei [34] derived an analytic expression for the trans-
verse diffusiophoretic mobility of a cylinder in a symmetrical 
electrolyte solution correct to the order of ζ2. In the present 
paper, we have provided the next-order correction terms to the 
mobility expression by Keh and Wei [34] and derived Eq. (25) 
as well as its simpler approximate expression (Eq. (42)). These 
equations, which are correct to the order of ζ3, are applicable for 
any values of κa at low to moderate values of ζ. The contribu-
tion of the correction terms becomes larger as the magnitude of 
β becomes larger and becomes zero in the limits of κa → ∞ and 
κa → 0. We also present an approximate expression (Eq. (43)) 
for the tangential diffusiophoretic mobility and calculate the 
average diffusiophoretic mobility of a cylinder oriented at an 
arbitrary angle between its axis and the applied electrolyte con-
centration gradient field using Eq. (36).
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Fig. 3   Scaled average diffusiophoretic mobility Uav* of a cylindrical colloi-
dal particle of radius a in an aqueous electrolyte solution at 25 °C as a func-
tion of the scaled zeta potential �̃  at κa = 10. Calculated via Eqs. (25) and 
(32) (or Eqs. (42) and (43) with negligible errors) (solid curves) in com-

parison with the results for the diffusiophoretic mobility Usp* for a spheri-
cal particle [14] (dotted curves). Results for KCl (m+  = 0.176, m−  = 0.169, 
β =  −0.02) (a) and NaCl (m+  = 0.258, m−  = 0.169, β =  −0. 2) (b)
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