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Abstract
In this study, Cu-doped ZnO nanomaterials were fabricated by the sol–gel method  using the extract of Piper chaudocanum 
L. leaves and the mixture of Zn (II) and Cu (II) salts. The Cu-doped ZnO nanomaterials changed from the Zn1−xCuxO solid 
solution into the ZnO/CuO nanocomposites with increasing Cu content from 1 to 10%. The monodisperse particles agglomer-
ate into a block; the pyramidal blocks tent to form a longer and narrower in width at high Cu content with increasing porosity 
and adsorption sites. The pHpzc of ZSCu10 was about 8.8. The Cu (II) adsorption increased with increasing the Cu content 
while the optimum conditions were found to be pH 7; adsorption time 120 min and adsorption efficiency at 1.0 g/l ZSCu10 
or 10 ppm Cu (II) reached about 99%. The adsorption isotherms were fitted well with the Langmuir model while adsorption 
kinetics followed pseudo-second-order.

Keywords  Cu-doped ZnO · Green synthesis · Cu (II) adsorption · Piper chaudocanum L. extract

Introduction

Copper was the first metal to be widely used by humans. 
The normal range of copper level in the dietary for adults is 
1 to 3 mg/day and 0.1–1 mg/day in drinking water, which 
is needed for several functions in the human body [1]. In 
nature, Copper is found in ore deposits around the world. 
Copper is used for many different applications essential to 
modern life, such as electricity, electronics, telecommuni-
cations, and a high-quality material for architecture, both 
exterior and interior, gas piping systems, plumbing, fire 
sprinklers, and more. Copper is the second most used non-
ferrous metal in the industry [2]. But, copper is considered 
one of the earliest known toxic metals. The copper content 

in the environment is increasing due to the amount emitted 
from natural, from various industries, and also from man-
made sources [3], raising serious environmental pollution.

For the removal of copper (heavy metal in general) from 
aqueous solutions, numerous conventional methods have 
been used, including chemical precipitation, flocculation, 
membrane filtration, ion exchange, electrochemical treat-
ment, photo-catalysis, or adsorption [4–6]. Among these 
methods, adsorption is employed as the main concern of 
scientific research due to its high removal efficiency, ease of 
operation, and cost effectiveness. Various material has been 
studied for the adsorption of Cu (II) from aqueous solutions, 
such as biochar [3, 5], modification of biochar [7], chitosan 
and modified chitosan [8, 9], Martil sand [10], iron oxide 
coated sand [11], iron oxide [12], iron-perlite composite 
[6], biochar–biopolymeric hybrid [13], ZnO [14–16], ZnO 
hybrid [17], leaf powder [18], …. For those materials, ZnO 
and modified ZnO have received a lot of attention. ZnO is 
regarded as an environment friendly and low-cost multi-
functional material. ZnO is not really a new material, but it 
has attracted research interest in recent decades because of 
its excellent properties and application [15, 19, 20]. ZnO is 
one of the nanometer-sized particles with the most diverse 
structure among all known materials: zero-dimensional 
(0D), 1D, 2D, and 3D. Each of these nanostructures can 
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occur in many different morphologies: nanorods, nanofi-
bres, nanowires, nanotubes, nanorings, … in 1D strcutures; 
nanosheets, nanopellests, … in 2D or flower, snowflakes, in 
3D [16, 21]. ZnO particles can be synthesized with differing 
shape, size, and spatial structure depending on the synthesis 
methods, conditions, and precursors in the synthesis pro-
cess. In general, the specific surface area and the number 
of active surface site facilitating absorption increase with 
the decrease of ZnO nanoparticles (NPs). Practical stud-
ies have also demonstrated that ZnO and modified ZnO 
materials are good adsorbents for different types of pollut-
ants: heavy metal, drug, dye, … [15, 17, 21–28]. ZnO and 
modified ZnO can be synthesized by many methods, such 
as co-precipitation, sol–gel, hydrothermal, mechanochemi-
cal processes, and vapor deposition. In which, the sol–gel 
method is chosen by many researchers. But this method 
also has to use many different chemicals such as potassium 
hydroxide [29], ammonium solution [30], tartaric acid [31], 
oxalic acid [32], methanol and acetyl axetone [33], dietha-
nolamine [34], 2-methoxyethanol and mono ethanolamine 
[35], m-cresol [36], citric acid and ethylene glycol [37], pol-
yvinylpyrrolidone [38], …. Green synthesis recently attracts 
much attention. This method uses biomaterials as one of the 
precursors of the synthesis process, such as bacteria, fungi, 
yeasts, algae, plants, agricultural waste, … [39–41], or using 
potential adsorption of agricultural waste materials (natural 
substances, by-products, agro-industrial wastes, or lignocel-
lulosic wastes) [42]. Plant extract is the first choice due to its 
popularity, diversity, ease of regeneration, and environmen-
tally friendly [43–45]. To enhance the adsorption efficiency 
of metal ions, there had been some studies of doping ZnO by 
some metals as Ag [46], Ga [47], modified surface ZnO by 
hybrid membranes [48], …. But doping ZnO by Cu (green 
synthesis or traditional synthesis method) has not been 
announced yet. In this study, Cu-doped ZnO nanomaterial 
was green synthesized by sol–gel method with precursors 
are only zinc acetate dihydrate (and copper (II) nitrate trihy-
drate) and aqueous extract of Piper chaudocanum L. leaves. 
P. chaudocanum L. is a medicinal in traditional Vietnamese 
medicine, which grows a lot in the Vietnam and some other 
Asian countries. Prepared Cu-doped ZnO was characterized 
and evaluated the Cu (II) adsorption from aqueous solution.

Materials and methods

Materials

Zinc acetate dehydrate (Zn(CH3COO)2.2H2O, > 98%), 
copper (II) nitrate trihydrate (Cu(NO3)2.3H2O, > 99.5%), 
hydrochloric acid (HCl, 37%), sodium hydroxide pellets 
(NaOH, > 99%), and the stock solution 1000 ppm of Cu (II) 
were purchased from Merck company (Germany). All the 

chemicals were analytical grade and were used as received 
without further purification. All working solution was pre-
pared with double distilled water.

Green synthesis and characterization of Cu‑doped 
ZnO NPs

Piper chaudocanum L. leaves were thoroughly washed, 
dried, and then grinded into powder. Ten grams of the pow-
der was ultrasound extracted by 100 mL of distilled water at 
60 °C for 1 h. The extract was cooled, filtered, centrifuged, 
and then stored at 4 °C for further experiments. Completely 
dissolve mixture of zinc acetate and copper (II) nitrate 
(molar ratio 99:1; 95:5 and 90:10 respectively) was com-
pletely dissolved in 30 mL of distilled water, and 15 mL of 
extract was added drop by drop into the mixture solution at 
70 °C under vigorous stirring, then heated at 80–90 °C to 
form a gel (approximately for 3 h), which was subsequently 
kept in an oven at 105 °C to obtain xerogel. Then, the xero-
gel was grounded into powders and then calcined at 450 °C 
for 1 h to get materials and denoted ZSCu1, ZSCu5, and 
ZSCu10, respectively. The same procedure was performed 
with the reaction between a solution of zinc acetate and 
oxalic acid (instead of the extract) [32]; the obtained prod-
uct is denoted by ZnO.

The sample was characterized by X-ray diffractom-
eter (Max 18XCE, Japan) equipped with CuKα radiation 
(λ = 0.15406 nm), scanning rate of 0.02° s−1 and 2θ ranges 
from 20 to 65°. Elemental analysis of samples was measured 
using Energy-dispersive X-ray spectroscopy (JSM-7900F). 
SEM images were obtained by scanning electron micro-
scope (Leo 1430VP) at an accelerating voltage of 200 kV. 
Surface areas and porosity analysis were also performed 
the Brunauer–Emmett–Teller (BET) model (TriStar 3000 
V6.07) with nitrogen gas at 77 K.

Determining the point of zero charge (pHpzc), the 0.1 M 
NaCl solutions were prepared with an initial pH (pHi) rang-
ing from 3 to 11, and pH adjustment was performed with 
0.1 M HCl and 0.1 M NaOH solutions. Five milligrams of 
sample was added to 10 mL of the NaCl solution prepared 
above. The mixture was shaken well for 1 h and then allows 
to stand at room temperature for 48 h before being filtered 
and the pH measured again. The point zero charge was 
obtained from the plot of ∆pH (change in pH) vs. initial pH.

Adsorption experiments

The adsorption experiments were investigated under a 
varying pH (4, 5, 6, and 7), time (10, 30, 50, 90, 120, and 
180 min), adsorbent dosage (0.2, 0.5, and 1.0 g/L), and  
initial Cu (II) concentration (10, 20, and 30 ppm). In each 
test, a fixed amount of samples was added to a 10 mL Cu (II) 
solution of known concentration and pH which was contained 
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in a 15-mL falcon tube, followed by shaking for a time. And 
then, the solutions were centrifuged for 10 min at 5000 rpm, 
and the supernatant solution was taken out to analyze the 
remaining concentrations of Cu (II) ions by flame atomic 
absorption spectrometry (F-AAS). The adsorption experi-
ments were executed in triplicates to calculate the average 
results. The adsorption capacity (q, mg/g) and adsorption 
efficiency (H, %) were calculated according to the formula:

where V (L) is the volume of the solution, m (g) is the mass 
of the adsorbent, and C0 and Ce (mg/L) are the initial con-
centration and the concentration at adsorption equilibrium 
of Cu (II) ions.

(1)q =
(Co − Ce)V

m

(2)H% =
(Co − Ce)

Co

× 100%

The experimental results obtained were analyzed by some 
adsorption isotherm, adsorption kinetic, and adsorption ther-
modynamic models.

Results and discussion

Characterization

Structural and elemental characterizations

The crystal structure and phase purity of as-prepared sam-
ples were explored by XRD and are presented in Fig. 1a. 
The XRD patterns of the ZSCu1 sample show clear char-
acteristic diffraction peaks of ZnO material at 2θ around 
31.7°, 34.4°, 36.2°, 47.5°, 56.6°, 62.8°, 67.9°, and 69.1° 
corresponding to the Miller plane (1 0 0), (0 0 2), (1 0 1), 
(1 0 2), (1 1 0), (1 0 3), (1 1 2), and (2 0 1) respectively 

a

c d

b

Fig. 1   XRD patterns of synthesized samples (a) and EDX spectra of ZSCu1 (b), ZSCu5 (c), and ZSCu10 (d)
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(JCPDS card no. 00–036-1451) [49]. Thus, the crystal 
structure of the ZSCu1 sample belongs to the hexagonal 
wurtzite structure. There are no peaks concerning to the 
impurity phase. It is observed that the diffraction peak 
positions of the ZSCu1 sample shift slightly toward a low 
angle, as seen in the inset of Fig. 1. The shifting of diffrac-
tion pattern observed in the ZSCu1 sample approves for 
the modification of the crystal structure of ZnO, meaning 
the formation of Zn1-xCuxO solid solution for the ZSCu1 
sample. The other samples show a complete coincidence of 
the Bragg peak positions of ZnO and ZSCu5 and ZSCu10 
samples, but a change in the intensity of the diffraction 
profiles (0 0 2) and (1 1 1) is clearly observed. It means 
that the prepared ZSCu5 and ZSCu10 are formed into the 
ZnO/CuO nanocomposites instead of the Zn1-xCuxO solid 
solution [50]. The particle size is calculated by using the 
Debye–Scherrer equation; the values are about 34, 32, 
27, and 29 nm for ZnO, ZSCu1, ZSCu5, and ZSCu10, 
respectively.

The element molar ratios in prepared samples are cal-
culated based on the EDX spectra (Fig. 1b, c, d). Within 
the detection limit of the device, only characteristic peaks 
of Zn, Cu, and O appear; no other peaks of other ele-
ments can be detected. The Zn/Cu ratio from the EDX 
spectrum is about 70.04/0.71, 57.83/2.83, and 44.63/4.85 
corresponding to the Cu content in the sample ZSCu1, 
ZSCu5, and ZSCu10 is 1.00%, 4.67%, and 9.80%, respec-
tively. This experimental Cu content is equivalent to the 
design value.

Surface characterizations

The morphology and the surface feature of prepared sam-
ples are assessed by SEM (Fig. 2), BET (Fig. 3a), and pHpzc 
(Fig. 3b). The ZnO nanoparticles are monodisperse, fairly 
homogeneous, and rather loosely bound (Fig. 2a). But, in 
the Cu-doped ZnO materials (Fig. 2b, c, d), the particles are 

Fig. 2   SEM image of prepared materials: (a) ZnO, (b) ZSCu1, (c) ZSCu5, (d) ZSCu10
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bigger size and agglomerated into a block, including pyrami-
dal and smaller blocks that undefined shape. The higher the 
Cu content, the pyramidal blocks tent to be longer and nar-
rower in width. This agglomeration can increase the poros-
ity of the system, which also becomes available adsorption 
sites and enhances the available adsorption capacity. The 
morphology analysis is consistent with the results obtained 
from the BET analyses [51] and the following adsorption 
experimental results.

Figure 3a shows the N2 adsorption/desorption isotherms 
for the prepared ZnO and ZSCu10; the isotherm linear 
plots were of type V, which indicated the ZnO and ZSCu10 
particles are both meso-porous a structure [52]. The BET 
surface area (m2/g), pore volumes (cm3/g), and pore diam-
eter (nm) are found to be about 8.58, 0.048, and 28.90 for 
ZnO and 11.05, 0.057, and 33.74 for ZSCu10. The doping 
of ZnO by Cu leads to the change in the structure of ZnO 
[53], and the P. chaudocanum L. leaves extract with complex 
organic ingredients (phenolic, flavonoid groups, …) not only 
acted as a complexing agent with metal ions but also acted 
as a surfactant. These mechanisms had contributed to the 
reduced agglomeration of initial ZnO blocks, making them 
more porous, and specific surface area increased [54].

The pHpzc is an important characteristic of adsorbents. 
Figure 3b shows that the point zero charge of ZSCu10 is 
8.8. It means that the surface charge of ZSCu10 is posi-
tive and vice versa at a solution pH less than 8.8. As pH 
increases, the surface positive charge is decreased, while 
the surface negative charge shows an opposite trend. This 
result is similar to ZnO which was synthesized by extract of 
Saccharomyces cerevisiae [40].

Adsorption studies

The effect of factors on adsorption is first studied as the 
solution pH: 5 mg ZSCu5 is added to 10 mL of 20 ppm Cu 
(II) solution pH from 3 to 7, shaken for 3 h at 22 °C. The 
experimental results are shown in Fig. 4a. As pH increases, 
the removal of Cu (II) from the solution is increased. This 
result is consistent with the results of determining the 
pHpzc of the material: the surface charge of the adsorbent 
decreases gradually, changing from positive to negative as 
the pH increases, so that, at low pH, very few Cu (II) ions 
(positively charged) can be adsorbed because of electrostatic 
repulsion, and ZnO is partially dissolved. As the pH val-
ues increased, the electrostatic repulsion decreases, so the 
adsorption of Cu (II) ion into the adsorbent surface increases 
and reached maximum at pH 7.0. In this study, pH > 7 is not 
considered because of the formation of hydroxyl of the Cu 
(II). For this reason, the optimum pH is selected to be 7.0 
for further experiments.

Next, the influence of doped Cu into ZnO materials and 
adsorption time is investigated: The adsorption experiment 
was conducted with 20 ppm Cu (II) solution, pH = 7, adsor-
bent dosage of 0.5 g/L at the time of 10, 30, 60, 90, 120, and 
180 min at 22 °C. The experimental results are shown in 
Fig. 4b. In general, as adsorption time increases, the doped 
Cu content increases and Cu (II) adsorption increases: the 
time to reach adsorption equilibrium is about 120–180 min; 
after 3 h of adsorption, the Cu (II) ion removal from solu-
tion by 0.5 g/L ZnO, ZSCu1, ZSCu5, and ZSCu10 is 91.7% 
to 93.6%, 94.7%, and 95.8%, respectively. According to the 
XRD analysis results, the increase of Cu content leads to the 
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Fig. 3   (a) Nitrogen adsorption isotherm of ZnO and ZSCu10 and (b) the change of pH for determining the pHpzc of ZSCu10
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formation of ZnO/CuO composite, so it enhances the for-
mation of congruent ion pair Cu2+/Cu2+ between the adsor-
bent and adsorbate, thus increasing the adsorption. For this 
reason, the ZSCu10 was selected for further experiments: 
the influence of initial Cu (II) concentration (from 10 to 
30 ppm) and the adsorbent dosage (from 0.2 to 1.0 g/L) to 
the adsorption at 22 °C. The experimental results are shown 
in Fig. 4c, d. Adsorption increases as adsorbent dosage 
increases and initial Cu (II) concentration decreases. At the 
higher adsorbent dose or smaller initial adsorbate concentra-
tion, the greater the number of sites available for adsorption, 
the more favorable the adsorption [27]; at 1.0 g/L ZSCu10 
or 10 ppm Cu (II), the adsorption efficiency reached about 
99%. The effect of temperature to the adsorption was tested 
by the adsorption 20 ppm Cu (II) by 0.5 g/L ZSCu10 at 
35 °C (Fig. 4d). As a result, as the temperature increased, 
the adsorption efficiency decreased. This result shows that 
the nature of the process is physical adsorption. Those 

results are used for research adsorption isotherm, adsorp-
tion kinetic, and adsorption thermodynamic.

The morphology of ZSCu10 after Cu (II) ion adsorption 
is shown in Fig. 5. After the adsorption process at a tempera-
ture of 22 °C (Fig. 5a), it is easy to see that the grain bounda-
ries between the particles in the block have been blurred, 
the surface of the blocks seems to have a fuzzy coating, 
and the image is not as sharp as the image before adsorp-
tion (Fig. 2d). With the ZSCu10 samples adsorbed at 35 °C 
(Fig. 5b), the original structural blocks are clearly broken. It 
due to the simultaneous effects of adsorption, temperature, 
and thermal motion between particles in the system. This 
also shows that the bond between ZnO/CuO nanocompos-
ites particles is less stable, easily broken, and the aggregate 
particles are porous, better adsorbents than monodisperse.

The FTIR spectra of ZSCu10 NPs before and after 
adsorption Cu (II) from the water solution are shown in 
Fig. 6. All of them consist of a clearly peak in the region of 
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Fig. 4   Copper removal efficiency by pH (a), time and doped Cu content (b), time and initial Cu (II) concentration (c), and time, temperature, and 
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under 500 cm−1 is assigned the stretching vibration of metal-
O (Zn–O and Cu–O) bond. The FTIR spectra of ZSCu10 
before the adsorption reveal the presence of –OH stretching 
vibrations at broad peaks around 3380 cm−1, some shoulder 
peaks near 2300 cm−1 assigned to the C-N stretching vibra-
tion [55], and a peak at 1641 cm−1 is assigned the stretching 
vibrations of C = O bond; the peaks at 1438 cm−1 can be 
attributed to C–C in aromatic ring [56] or the C-H bend-
ing vibrations of aldehyde or ketonic functionality [57]; the 
peak at 1374 cm−1 and 1020 cm−1 is assigned the symmetric 
stretching of carboxylate and the stretching vibrations of 

-C-O bond in the phenolic groups or carboxylic groups [58]; 
and other peaks at 1112, 881, and 837 cm−1 are assigned to 
various aromatic functionalities [57] or the Zn-OH peaks at 
881 and 837 cm−1. This is due to the oxidation of reactive 
carbonaceous material during calcinations and the adsorp-
tion of water over the surface of the calcined ZnO NPs. But, 
after the adsorption Cu (II) from the water solution, some 
peaks disappeared as at 3380, 1641, and 1374 cm−1, or peak 
intensity decreased markedly as at 1438, 1112, 1020, 881, 
and 837 cm−1 are all characteristic for O–H, -C-O, -C = O or 
aromatic functional. It indicated that the formation the bond 

Fig. 5   SEM image of ZSCu10 after the adsorption process at 22 °C (a) and 35 °C (b)

Fig. 6   FTIR spectrum of 
ZSCu10 NPs before and after 
adsorption Cu (II)
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of O-Cu2+ or/and Cu2+ with aromatic ring. From the result 
of adsorption decreased as temperature increased, it shows 
that the type of this bond can be electrostatic attraction 
between electron-rich agent and positive Cu2+ion, a physi-
cal bond, not the chemical bond that is covalent bond type 
of electron donor–acceptor between the electron-paired pair 
of the electron-rich agent with an empty orbital of Cu2+ ion.

Adsorption isotherm

The experimental data were fitted using Langmuir, Freundlich, 
and Temkin isotherm according to the Eqs. (3), (4), and (5) 
and are listed below [59]:

(3)
Ce

qe
=

1

KL.qmax

+
Ce

qmax

(4)Lg(qe) = lg(KF) +
1

n
lg(Ce)

where KL (L/mg), KF (L/mg) and KT (L/mg) are the adsorp-
tion constant for Langmuir, Freundlich, and Temkin iso-
therm model, respectively, 1/n implies the degree of non-
linearity between solution concentration and adsorption in 
Freundlich equation, and B1 is related to the heat of adsorp-
tion in Temkin equation. The linear fitting of adsorption iso-
therm models and the regression coefficient (R2) value are 
presented in Fig. 7. If R2 > > 1 or R2 < 0, the adsorption is 
undesirable or irreversible, and the common adsorption state 
is R2 is between 0 and 1. The agreement between theory and 
experiment is obtained when R2 approaches 1. In general, 
the correlation of Langmuir isotherm is higher than Freun-
dlich and Temkin isotherm, with indicated that the Cu (II) 
ion adsorption is desirable and well matched with Langmuir 
model. This result suggests a monolayer adsorption of Cu 
(II) ion on the homogeneous surface of ZSCu10 [39]. As the 
initial Cu (II) concentration increases, the adsorbent dos-
age decreases, the coefficient decreases. It means that, the 

(5)qe = BlgKT + BlgCe
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smaller the adsorbate concentration, the larger the adsorbent 
surface area, the more favorable the monolayer adsorption. 
Similar results were also obtained from Cu (II) ion adsorp-
tion studies [5, 7, 8].

However, there are some special cases: as the initial 
Cu (II) concentration increases (to 30 ppm), the adsor-
bent dosage decreases (to 0.2 g/L), and the temperature 
increases (to 35 °C), experimental data is more consistent 
with Temkin model than that with the Langmuir model 
(R2

Temkin > R2
Langmuir). When the initial Cu (II) concentra-

tion increases and the adsorbent dosage decreases, the mon-
olayer adsorption according to the Langmuir model occurs 
as competitive adsorption, which according to the Temkin 
model, adsorption characteristic being a uniform distribu-
tion of binding energies, up to a maximum binding energy 
[60], the surface coverage of the adsorbent increases with a 
decrease in the heat of adsorption.

Adsorption kinetic

The experimental data were fitted using pseudo-first-order, 
pseudo-second-order, and intra-particle diffusion models 
according to the Eqs. (6), (7), and (8) and are listed below 
[18]:

where k1 (g/mg min), k2 (g/mg min), and kid (mg/g min0.5) are 
the rate constants of the pseudo-first-order, pseudo-second-
order, and intra-particle diffusion models, respectively; c 

(6)lg(qe − qt) = lgqe − k1.t

(7)
t

qt
=

1

k2q
2
e

+
t
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Fig. 8   Kinetic models for the adsorption of Cu (II) ions on ZSCu10 surface at pH 7
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(mg/g) is the intercept of the intra-particle diffusion model, 
qe = q180.

The linear fitting of adsorption kinetic models, the equa-
tions, and the regression coefficient (R2) value are presented 
in Fig. 8. According to obtained results, although the R2 of 
the pseudo-first-order model and intra-particle diffusion model 
(tend = 180 min) are all quite high, 0.859 to 0.996, the coef-
ficient of pseudo-second-order model is highest. The sorp-
tion phenomenon of Cu (II) by ZSCu10 adsorbent follows the 
pseudo-second-order kinetics. The fitting is consistent with 
experimental results that both adsorbate and adsorbent con-
centrations are involved in the rate-limiting step. It means that 
the adsorption may include chemisorption, between the Cu 
(II) ions and ZSCu10 has occurred sharing or exchange of 
electrons, forming valence forces [61].

Adsorption thermodynamic

The adsorption equilibrium constant KC, the enthalpy (ΔH), 
entropy (ΔS), and the Gibbs free energy of adsorption (ΔG) 
can be determined by the following equations [17]:

where Cads,e (mg/L) is the Cu (II) ion concentration on the 
adsorbent at equilibrium (Cads,e = Co − Ce), R (8314 J/mol 
K) is the universal gas constant, T (Kelvin) is the absolute 
temperature.

The results obtained KC,295 = 20.467, KC,308 = 8.333, 
ΔH = − 3.97  kJ/mol, ΔG295 = − 7.404  kJ/mol, and 
ΔG308 = − 5429 kJ/mol indicate the spontaneous nature the 
adsorption of Cu (II) onto the ZSCu10 surface (ΔG < 0), 
and the absorption is more favorable at lower tempera-
tures. The negative value of ΔH and the positive value of 
ΔS reveal that the Cu (II) adsorption onto the ZSCu10 is an 
exothermic process and takes place randomness at the solid-
solution interface. The absorption is dominated by physical 
adsorption.

Conclusions

The Cu-doped ZnO was synthesized by sol–gel method 
using P. chaudocanum L. leaves extract as a green precur-
sor to replace conventional precursors. It slightly reduced the 

(9)Kc =
Cads,e

Ce

(10)ln
KT2

KT1

=
ΔH

R

(

1

T1
−

1

T2

)

(11)ΔG = −RTlnKc = ΔH = TΔS

particle size (from 34 nm of ZnO down to 27 nm ZCSu5) 
and increased the BET surface area (from 8.58 m2/g of ZnO 
to 11.05 m2/g of ZSCu10). They led to the adsorption effi-
ciency of 20 ppm Cu (II) ion onto the surface of 0.5 g/L 
adsorbent at 22 °C increased from 91.7% (ZnO) to 95.8% 
(ZSCu10). The adsorption of Cu (II) onto ZSCu10 surface 
was investigated in detail; the influencing factors were as fol-
lows: pH of solution (4 to 7), initial concentration of Cu (II) 
ion (10 to 30 ppm), and adsorbent dosage (0.2 to 1.0 g/L), 
with different temperature values. The Cu (II) ions adsorp-
tion efficiency increased as the dose of adsorbent increases 
and the initial concentration of adsorbate decreases, at 1.0 g/l 
ZSCu10 or 10 ppm Cu (II) reached about 99%. Adsorption 
process was physical adsorption, spontaneous, and exother-
mic, followed by the Langmuir isotherm model and pseudo-
second-order kinetic model.
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