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Abstract
A simple approximate analytic expression is obtained for the diffusiophoretic mobility of a mercury drop with a thin electrical 
double layer and a zeta potential of arbitrary values in an electrolyte solution. The electrolyte is of the symmetrical type but 
may have different ionic drag coefficients for cations and anions. The obtained mobility expression involves Dukhin’s number 
for mercury drops, which is different from the usual Dukhin’s number for rigid particles. It is shown that the diffusiophoretic 
mobility plotted as a function of the drop zeta potential exhibits maxima due to the relaxation effect. It is also shown that in 
the limit of very high zeta potential, the diffusiophoretic mobility of a mercury drop tends to a non-zero limiting value. This 
limiting mobility value is found to be the same as that for a rigid sphere. That is, a liquid drop behaves like a rigid particle 
in this limit (solidification effect).
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Introduction

Electrokinetic phenomena in a suspension of mercury drops 
are quite different from those of rigid particles [1]. In par-
ticular, the electrophoretic mobility of a mercury drop of 
radius a surrounded by a thin electrical double layer in an 
electrolyte solution is considerably larger than that of a rigid 
particle of the same radius a and zeta potential by the order 
of κa (1/κ being the double layer thickness). The large mobil-
ity of mercury drops arises from their finite viscosity, which 
gives rise to a tangential frictional force acting on the surface 
smaller than that for rigid particles. The tangential compo-
nent of the liquid flow velocity must be zero on the surface 
of a rigid particle but does not vanish on the drop surface. 
The tangential flow component decays from the electropho-
retic velocity value U (just outside the double layer) to zero 
(at the drop surface) over the double-layer thickness 1/κ. The 
tangential frictional force on the surface is then of order of 
ηU/κ−1. For a mercury drop, on the other hand, the tangential 
flow component becomes zero at a certain point inside the 
drop, which is located at a distance of the order of a from 
the drop surface, i.e., decays over distances of order a. The 

tangential frictional force on the drop surface is then of order 
ηdU/a and hence the order of the ratio of the mobility of a 
mercury drop to that of a rigid particle becomes O(ηκa/ηd) 
≈ O(κa). It should also be noticed that mercury drops are 
different from dielectric liquid drops in that mercury drops 
behave like an ideally polarizable conductor and the drop 
surface is always equipotential during electrophoresis. The 
tangential component of the Maxwell stress tensor is thus 
zero on the mercury drop surface.

For the case of diffusiophoresis, which is the motion of a 
particle in an applied electrolyte concentration gradient (for 
example, see Refs. [2–17] for rigid particles, Refs. [11–21] 
for liquid drops, and Refs. [22–27] for soft particles), the 
same phenomenon due to the relaxation effect should be 
observed. In a previous paper [21], we derived an approxi-
mate analytic expression for the diffusiophoretic mobility 
of a mercury drop and indeed it exceeds that of a rigid par-
ticle by the order of κa. The expression derived in previ-
ous paper [21], however, can be applied for weakly charged 
mercury drops, since it neglects the relaxation effect, which 
becomes appreciable for higher zeta potential values. In the 
present paper, we treat mercury drops with thin electrical 
double layers (i.e., large κa) and zeta potential of arbitrary 
values, taking into account the relaxation effect and derive 
an approximate analytic mobility expression. *	 Hiroyuki Ohshima 
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Theory

Consider a spherical mercury drop of radius a, viscosity 
ηd, and zeta potential ζ, moving with a diffusiophoretic 
velocity U in an aqueous liquid of viscosity η and relative 
permittivity εr containing a symmetrical electrolyte under 
a constant applied gradient of electrolyte concentration 
∇n. The electrolyte is of the z:z symmetrical type with 
valence z but may have different ionic drag coefficients λ+ 
and λ- for cations and anions, respectively. Let n∞ be the 
bulk concentration of electrolytes in the absence of the 
applied electrolyte concentration gradient. We introduce 
a constant vector α proportional to ∇n, viz.,

where k is the Boltzmann constant, T is the absolute tempera-
ture, and e is the elementary electric charge. The symbol “e”  
refers to the elementary electric charge in Eqs. (1), (8), (10), 
(14), and (15). In other places “e” is the exponential constant.

The origin of the spherical polar coordinate system (r, θ, φ) 
is held fixed at the center of the mercury drop and the polar axis  
(θ = 0) is put parallel to α. For a spherical particle, U is parallel  
to α. The concentration gradient field α is assumed to be weak 
so that U is linear in α. The main assumptions are as follows. 
(i) The Reynolds number of the liquid flow is small enough 
to ignore inertial terms in the Navier–Stokes equation and the 
liquid can be regarded as incompressible. (ii) The equilibrium  
electric potential in the absence of the field α satisfies the 
Poisson-Boltzmann equation. (iii) No electrolyte ions can  
penetrate the drop surface. (iv) The drop surface remains  
spherical during diffusiophoresis. (v) The mercury drop behaves 
like an ideally polarizable conductor and the drop surface is  
always equipotential during diffusiophoresis.

We have previously shown that the general expression 
for the diffusiophoretic velocity U of a colloidal particle 
in an electrolyte concentration gradient field α is obtained 
from the expression for its electrophoretic velocity UE in 
an applied electric field E by replacing E with α. Indeed, 
the fundamental equations take the same form for these 
two velocities [15, 16, 21]. The only difference is the 
far-field boundary condition for the deviations δμ±(r) of 
the ionic electrochemical potentials μ±(r) caused by α, 
where μ+(r) and μ-(r) are, respectively, the electrochemi-
cal potentials of cations and anions. The diffusiophoretic 
velocity U of a mercury drop can thus be derived from the 
corresponding expression for the electrophoretic mobility 
[1, 21] with the result that:
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where r =|r| is the radial distance from the drop center, m+ 
and m- are, respectively, the scaled ionic drag coefficients of 
cations and anions, ψ(0)(r) is the equilibrium electric potential  
at position r outside the mercury drop in the absence of the 
field α, y(r) is its scaled quantity, and εo is the permittivity 
of a vacuum. The functions h(r) and ϕ±(r) are, respectively, 
related to the liquid fluid velocity u(r) outside the drop 
(r > a) and the deviations δμ±(r) of the ionic electrochemi-
cal potentials μ±(r) due to α as

and

where α =|α|. We now introduce the diffusiophoretic mobility 
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On the basis of the same approximation method as used 
for deriving the electrophoretic mobility of a mercury drop 
[1], we finally obtain the following expression for U*, which 
is correct to the order O((1/κa)0) and thus applicable for 
large κa (κa ≥ 30):

with

where 
∼

�  is the scaled zeta potential, κ is the Debye-Hückel 
parameter and D is Dukhin’s number for liquid drops [1].

Results and discussion

Equation (13) is the required large κa approximate expres-
sion for the diffusiophoretic mobility U* of a spherical mer-
cury drop of radius a in an electrolyte concentration gradient 
field α. Equation (14), which is applicable for arbitrary zeta 
potentials, takes into account the relaxation effect though 
Dukhin’s parameter D defined by Eq. (16),

Figure 1 shows some examples of the results of the calculation 
via Eq. (13) for U* of a mercury drop in an aqueous KCl solution 
at 25 ℃ m+ = 0.176,m− = 0.169, � = −0.02, � = 0.89 mPa⋅s . 
In Fig. 1, U* is plotted as a function of �̃  for various values of 
κa, showing how strongly U* depends on κa. It is seen that U* 
exhibits two maxima due to the relaxation effect as in the case of 
electrophoresis [1]. The values of ̃�  at which U* exhibit maxima 
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are ̃�  ≈ ±3.5, i.e., � ≈ ±88 mV, which are easily experimentally 
accessible.

Figure 1 compares the results of U* for a mercury drop 
and those or a rigid sphere, showing a remarkable difference 
between mercury drops (solid lines) and rigid particles (dashed 
lines) in that the diffusiophoretic mobility of mercury drops 
much exceeds that of rigid particles for large κa as in the case 
of electrophoresis [1]. The large κa approximate expression for 
a rigid sphere is given by [15, 16]

with
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Fig. 1   Scaled diffusiophoretic mobility U*  of a spherical mercury 
drop of radius a, viscosity ηd = 1.525mPa·s, and zeta potential z in  
an aqueous KCl solution at 25℃ (m+  = 0.176, m- = 0.169,  β= -0.02, 
η = 0.89mPa·s) as a function of the scaled zeta potential at several values 
of κa in comparison with that for a rigid sphere (ηd  → ∞ ) of radius a. 
Calculated via Eq. (13)   for a mercury drop (solid lines) and via Eqs. 
(17) and (18)   for a rigid sphere (dashed lines). Dotted lines represent 
results calculated via the low zeta potential approximation Eq. (24)
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where F is Dukhin’s number for rigid particles. By compar-
ing Eq. (13), (17) and (18), we find that

That is, the diffusiophoretic mobility of a mercury drop 
is considerably larger than that of a rigid sphere for large 
κa, as is seen in Fig. 1.

As is also seen in Fig. 1 , in the limit of very high ζ, 
Eq.  (13) for U* of a liquid drop (solid lines in Fig. 1) 
and Eqs. (17) and (18) for a rigid sphere (dashed lines in 
Fig. 1) tend to the same limiting value given by

Namely, in the limit of very high zeta potential ζ, a liq-
uid drop behaves like a rigid particle. This solidification 
effect at high ζ occurs generally for electrokinetic phenom-
ena including electrophoresis of mercury drops [1].

Finally, we compare the present result Eq. (13) and a 
low-zeta-potential mobility expression correct to the order 
of ζ2 [21], which is given by

with

and
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In the limit of large κa, Eq. (24) tends to

which agrees with the low zeta potential limiting form 
of Eq. (13). As is seen in Fig. 1 , the results obtained by 
Eq. (24) (dotted lines) agrees quite well with the results by 
Eq. (13) (solid lines) for | 

∼

� |≤ 2, implying that Eq. (24) is a 
good approximation for | 

∼

� |≤ 2 with negligible errors.

Concluding remarks

We have derived a simple approximate analytic expression, 
Eq. (13), for the diffusiophoretic mobility U* of a mercury 
drop applicable for arbitrary zeta potential values and large 
κa. Equation (13) takes into account the relaxation effect 
through Dukhin’s number D. It is shown that the diffusio-
phoretic mobility U* plotted as a function of the drop zeta 
potential exhibits maxima due to the relaxation effect. It is 
also shown that in the limit of very high zeta potential, the 
diffusiophoretic mobility of a mercury drop tends to a non-
zero limiting value given by Eqs. (22) and (23). This limit-
ing mobility value is found to be the same as that for a rigid 
sphere as in the case of electrophoresis (solidification effect).
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