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Abstract
An algorithm is presented for the calculation of the diffusiophoretic mobility of a colloidal particle on the basis of the modified  
Poisson-Boltzmann equation taking into account the ion size effects through the Carnahan-Starling activity coefficients of 
electrolyte ions. The obtained mobility expression is applicable when the particle size is much larger than the Debye length  
so that the particle surface can be regarded as planar.
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Introduction

Diffusiophoresis is a motion of colloidal particles in a 
concentration gradient of electrolytes. That is, the particle 
moves toward regions of higher or lower electrolyte con-
centrations depending on the particle zeta potential and the 
relative ionic mobilities. It is thus possible to evaluate the 
particle zeta potential from the relation between the par-
ticle diffusiophoretic mobility and the zeta potential as in 
the case of electrophoresis, which is a motion of colloidal 
particles in an externally applied electric field. The govern-
ing equations for diffusiophoresis are the same as those for 
electrophoresis with the only difference being the boundary 
conditions for the ionic electrochemical potentials. There 
are many theoretical studies on diffusiophoresis of different 
types of particles such as rigid particles [1–14], liquid drops 
[15–17], and soft particles [18–23].

The theory of the diffusiophoresis of colloidal particles in an 
electrolyte solution is usually based on the Poisson-Boltzmann 
equation for the electric potential distribution around the parti-
cles [1–23]. The standard Poisson-Boltzmann equation, how-
ever, assumes that electrolyte ions are point charges by neglect-
ing the effects of ionic size. There are many theoretical studies 
on the modified Poisson-Boltzmann equation, which considers 
the effect of ionic size by introducing the activity coefficients 

of electrolyte ions (see, e.g., Refs [24–31]). López-García et al. 
[24, 25, 27] provided the numerical results of the electrophoretic 
mobility of a spherical particle in an electrolyte solution consid-
ering the ionic size effect. Hoshyargar et al. [26], in particular, 
demonstrated a significant effect of finite ion size on diffusioos-
mosis, which is an electrokinetic phenomenon closely related 
to diffusiophoresis. In a previous paper [29], on the basis of the 
equation for the ionic activity coefficients given by Carnahan 
and Starling [32], which is the most accurate among existing 
theories, we presented a simple algorithm for the calculation of 
an approximate electrophoretic mobility of a charged spherical 
colloidal particle in an electrolyte solution.

In the present paper, we derive an algorithm for the cal-
culation of the diffusiophoretic velocity of a large colloidal 
particle in an electrolyte solution based on the modified 
Poisson-Boltzmann equation [28, 29]. The obtained expres-
sion is applicable when the particle size is much larger than 
the Debye length so that the particle surface can be regarded 
as planar.

Modified Poisson‑Boltzmann equation

Consider a large particle carrying zeta potential ζ in an aque-
ous liquid of viscosity η and relative permittivity εr con-
taining a symmetrical electrolyte. The electrolyte is of the 
Z:Z symmetrical type with valence Z but may have differ-
ent ionic drag coefficients λ+ and λ− for cations and anions, 
respectively. We treat the case where the particle size is large 
enough to regard the particle surface as a planar surface. 
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We take an x-axis to be perpendicular to the particle surface 
with its origin on it and a z-axis to be parallel to the particle 
surface (Fig. 1).

Consider first the equilibrium situation where there is no 
electrolyte concentration gradient. Let n+(x) and n−(x), which 
depend on only x, be the concentrations (number densities) of 
electrolyte cations and anions, respectively, and n∞ be their 
concentration beyond the electrical double layer around the 
particle, where n+(∞) = n−(∞) = n∞. The equilibrium electric 
potential ψ(x) and the space charge density ρel(x), which also 
depend only on x, obey the Poisson equation:

with

where εo is the permittivity of a vacuum and e is the elemen-
tary electric charge. We take into account steric interactions 
among ions of the finite size by introducing an ionic activ-
ity coefficient. We assume that the activity coefficients of 
cations and anions have the same value γ(x). The electro-
chemical potential μ+(x) of cations and that of anions μ−(x) 
are thus given by

where k is Boltzmann’s constant and T is the absolute tem-
perature. The electrochemical potentials μ±(x) must take 
the same value as those in the bulk solution phase (where 
ψ(∞) = 0), viz.,

(1)
d2�

dx2
= −

�el(x)

�r�o

(2)�el(x) = Ze
{
n+(x) − n−(x)

}

(3)�±(x) = �o
±
± Ze�(x) + kT ln[�(x)n±(x)]

with �∞ = �(∞) . By equating �±(x) = �±(∞) , we obtain

where

is the scaled electric potential. Thus, Eq. (2) gives

so that Eq. (1) becomes the following modified Poisson-
Boltzmann equation:

where

is the Debye-Hückel parameter and 1/κ is the Debye length. 
When γ(x) = 1, Eq. (8) tends back to the standard Poisson-
Boltzmann equation without taking into account the ion size 
effect, viz.,

(4)�±(∞) = �o
±
+ kT ln(�∞n∞)

(5)n±(x) =
�∞n∞

�(x)
e∓y(x)

(6)y(x) =
Ze�(x)

kT

(7)�el(x) = −
2�∞

�(x)
Zen∞ sinh y(x)

(8)
d2y

dx2
= �2

�∞

�(x)
sinh y(x)

(9)� =

√
2Z2e2n∞

�r�okT

(10)
d2y

dx2
= �2 sinh y(x)

Fig. 1  Diffusiophoresis of a 
large colloidal particle moving 
with a diffusiophoretic velocity 
U in an electrolyte concentra-
tion gradient ∇n∞ or the corre-
sponding vector α. U is parallel 
to ∇n∞ and α 
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We now assume that cations and anions have the same 
radius a. This assumption is particularly valid for diffusio-
phoresis in a KCl solution, in which the hydrated radii of the 
anions and cations can be considered equal to 0.33 nm. For 
details, the readers should refer to the work by Ganjizade 
et al. [33, 34]. We introduce the volume fraction ϕ+(x) of 
cations and that of anions ϕ−(x) at position x. Then, we have

The total ion volume fraction ϕ(x) at position x is thus 
given by

Let the total ion volume fraction in the bulk solution 
phase be ϕB ≡ ϕ(∞). Then from Eq. (12), we obtain

so that Eq. (12) becomes

By substituting Eq. (5) into Eq. (14), we obtain

The modified Poisson-Boltzmann Eq. (8) becomes by 
using Eq. (15)

Now we employ the expressions for γ(x) derived by Car-
nahan and Starling [32], viz.,

and

Then, Eq. (15) becomes

which is a transcendental equation for ϕ(x) for given values 
of ϕB and y(x). Since ϕ(x) thus obtained is a function of y(x), 
we rewrite ϕ(x) as ϕ(y).

(11)�±(x) =
(
4

3
�a3

)
n±(x)

(12)�(x) = �+(x) + �−(x) =
(
4

3
�a3

)
{n+(x) + n−(x)}

(13)�B =

(
4

3
�a3

)
⋅ 2n∞

(14)�(x) =
�B

{
n+(x) + n−(x)

}
2n∞

(15)�(x) = �B

�∞

�(x)
coshy(x)

(16)
d2y

dx2
= �2

�(x)

�B

tanh y(x)

(17)�(x) = exp

[
�(x)

{
8 − 9�(x) + 3�2(x)

}

{1 − �(x)}3

]

(18)�∞ = exp

[
�B(8 − 9�B + 3�2

B
)

(1 − �B)
3

]

(19)

�(x) = �Bexp

[
−

(
�(x){8 − 9�(x) + 3�(x)}

{1 − �(x)}3
−

�B

(
8 − 9�B + 3�2

B

)

(1 − �B)
3

)]
coshy(x)

Equation  (16) is subject to the following boundary 
conditions:

where 
∼

�  is the scaled zeta potential defined by

Electrokinetic equations

Now consider the case where the electrolyte concentration 
gradient ∇n∞ (0, 0, dn∞/dz) is applied so that n∞ becomes a 
function of z and the particle is moving with a diffusiophoretic 
velocity U. We treat the case where the applied electrolyte 
concentration gradient ∇n∞(0, 0, dn∞/dz), the diffusiophoretic 
velocity U(0, 0, U), and thus the liquid flow u(r) are parallel to 
the z-axis, as shown in Fig. 1. We introduce a constant vector 
α(0, 0, α) proportional to ∇n, viz.,

We assume that the liquid velocity u(r) = (0, 0, u(x, z)) at 
position r satisfies the following Navier–Stokes equation:

where p(r) is the pressure. The boundary conditions for u(r) 
are

The boundary condition for the electric potential ψ(r) far 
from the particle at x → ∞ can be derived as follows. The ionic 
flows  caused by ∇n∞ induce a macroscopic electric field, i.e., 
the diffusion potential field E(0, 0, E), which nullifies the net 
electric current and hence ψ(r) tends to − Ez as x → ∞. The 
electric current density i(r) at position r is given by

with

where are the velocities of cations and anions, respectively. 
From the condition that i(r) must be zero beyond the electri-
cal double layer around the particle (x → ∞), we find that

(20)y(x) → 0 as x → ∞

(21)y(0) =
∼

�

(22)
∼

�=
Ze�

kT

(23)� =
kT

Ze
∇ln(n∞)

(24)�Δu(r) − ∇p(r) − �el(r)∇�(r) = 0

(25)u(r) = 0 at x = 0

(26)u(r) = −U as x → ∞

(27)i(r) = Ze
{
n+(r)v+(r) − n−(r)v−(r)

}

(28)v±(r) = u(r) −
1

�±
∇�±(r)
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and

where β is defined by

and α is the z-component of α given by (see Eq. (23))

Following Prieve [2], from the x-component of Eq. (24), 
we obtain

with

where y′ is an integral variable. Substituting Eq. (34) back 
into Eq. (24) and solving its z-component, we finally obtain 
the following expression for the scaled diffusiophoretic 
mobility U*:

where we have defined U* as

Results and discussion

The principal result of the present paper is Eq. (35) for the 
diffusiophoretic mobility U* of a large colloidal particle in an 
electrolyte solution based on the modified Poisson-Boltzmann 
equation (Eq. (16)) by taking into account the ion size effect 
through the Carnahan-Starling activity coefficient [32]. In the 
limiting case of ϕB → 0, Eq. (35) tends to the following elec-
trophoretic mobility expression based on the standard Poisson-
Boltzmann approach [1–3]:

Figure 2 shows some examples of the exact results (solid 
lines) of the calculation of the scaled diffusiophoretic mobility 

(29)�(r) → −��z as x → ∞

(30)E = ��

(31)� =
1∕�+ − 1∕�−

1∕�+ + 1∕�−
= −

�+ − �−

�+ + �−

(32)� =
kT

Ze

dln(n∞)

dz

(33)p(x, z) − p(∞, z) = 2n∞(z)kTM(y)

(34)M(y) = ∫
y

0

�(y�)

�B

tanh y�dy�

(35)U∗ =
1

2∫
∼

�

0

�
∫

y

0

√
M(y�)dy�

�
dy√
M(y)

+ �
∼

�

(36)U∗ =
�Ze

�r�okT�
U

(37)U∗ = 4ln

⎡⎢⎢⎣
cosh

⎛⎜⎜⎝

∼

�

4

⎞⎟⎟⎠

⎤⎥⎥⎦
+ �

∼

�

U* in a KCl solution (β =  − 0.02) obtained via Eq. (35) as 
a function of the scale zeta potential 

∼

�  for several values of 
the total ion volume fraction ϕB. It is seen that the ionic size 
effect gives rise to an increase in the magnitude of U*. This 
is because the ionic size effect leads to a decrease in the ionic 
shielding effect so that the magnitude of U* increases. Figure 2 
also shows results (dotted lines) obtained via an approximate 
expression for U* given by

with

Equation (38) can be derived from the following approxi-
mate form valid at low values of ϕ and low to moderate values 
of y(x) for the Carnahan-Starling activity coefficient (Eq. 17) 
[28, 29]:

or equivalently (see Eq. (15))

(38)U∗ =
1

2∫
∼

�

0

�
∫

y

0

√
lnH(y�)dy�

�
dy√
lnH(y)

+ �
∼

�

(39)H(y) = 1 + Bsinh2(y∕2)

(40)B =
16�B

1 + 8�B

(41)�(x) = �∞H(y)

Fig. 2  Scaled diffusiophoretic mobility U* in a KCl solution (β =  − 0.02) 
as a function of the scaled zeta potential 

∼

� for several values of the total 
ion volume fraction ϕB. Solid curves represent exact results calculated 
with Eq. (35), which is based on the modified Poisson-Boltzmann equa-
tion (Eq. 16)). The curve with ϕB = 0 corresponds to the result obtained 
via the standard Poisson-Boltzmann equation (Eq.  10). Dotted curves 
represent approximate results calculated with Eq. (38)
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which is the first-order approximation for ϕ(x) obtained by 
expanding Eq. (19) in a power series of ϕ(x) and ϕB.

The approximate results (dotted lines) agree well with the 
exact results (solid lines). The maximum error in Fig. 2 is 
found to be about 6%.

Conclusion

We have derived an expression (35) for the diffusiophoretic 
mobility U* of a large colloidal particle in a symmetri-
cal electrolyte solution based on the modified Poisson-
Boltzmann equation (Eq. (8) or Eq. (16)), which takes into 
account the effects of ionic size on the basis of ionic activ-
ity coefficient given by Carnahan and Starling [32]. The 
obtained expression is applicable when the particle size is 
much larger than Debye length 1/κ. It has been shown that 
U* increases with increasing total ionic volume fraction 
ϕB. We have also derived an approximate expression for U* 
(Eq. (38)), which is in good agreement with the exact results 
(Eq. (35)).
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