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Abstract
The general expression is derived for the diffusiophoretic velocity of a spherical soft particle (that is, a spherical hard particle 
consisting of the particle core covered with an ion-penetrable surface layer of polyelectrolytes) in an electrolyte concentration 
gradient. For a weakly charged soft particle, the obtained general expression for the diffusiophoretic velocity is shown to 
reproduce the results derived by Huang and Keh (J Phys Chem B (2012) 116: 7575–7589). A simple approximate analytic 
expression is obtained for the diffusiophoretic velocity applicable for the case where the particle core radius and the thickness 
of the polyelectrolyte layer are much larger than the Debye length and the Brinkman screening length.

Keywords Diffusiophoretic velocity · Diffusiophoresis · Soft particle

Introduction

Diffusiophoresis, that is, the motion of charged colloidal 
particles in an electrolyte concentration gradient, is one of 
the electrokinetic phenomena in suspensions of colloidal 
particles and has been experimentally observed (e.g., Refs. 
[1, 2]). There are a lot of theoretical studies on diffusio-
phoresis of hard and soft particles, the latter of which are 
hard particles covered with an ion-penetrable surface layer 
of polyelectrolytes [2–28]. In particular, the readers should 
refer to a review article covering both hard and soft parti-
cles by Keh [11]. In previous papers [27, 28], we derived 
general expressions for the diffusiophoretic mobility of a 
spherical hard particle and obtained approximate diffu-
siophoretic velocity expressions. In the present paper, we 
derive the general expression for the diffusiophoretic veloc-
ity of a spherical soft particle and its approximate formula 
applicable for a weakly charged spherical soft particle. We 
then derive a simple approximate analytic expression for the 
diffusiophoretic velocity applicable for the case where the 
particle core radius and the thickness of the polyelectrolyte 
layer are much larger than the Debye length and the Brink-
man screening length.

Theory

Consider a spherical soft particle, moving with diffusio-
phoretic velocity U in an aqueous liquid of viscosity η and 
relative permittivity εr containing a symmetrical electrolyte 
under a constant applied gradient of electrolyte concentra-
tion ∇n. The soft particle consists of a spherical hard core 
of radius a covered with an ion-penetrable surface layer of 
polyelectrolytes of thickness b–a so that the particle has an 
inner radius a and an outer radius b (Fig. 1). The electrolyte  
is of the z:z symmetrical type with valence z but may have 
different ionic drag coefficients λ+ and λ− for cations and ani-
ons, respectively. Let n∞ be the bulk concentration of elec-
trolytes in the absence of the applied electrolyte concentra-
tion gradient. We treat the case where the particle core and 
the surface polyelectrolyte layer are uniformly charged in the 
absence of the applied field ∇n. We denote the surface charge 
density of the particle core by σ and the volume density of the  
fixed charges in the surface layer by ρfix. We assume that 
the surface layer can be described by the Brinkman-Debye-
Bueche model [29, 30]. In this model polymer segments in 
the surface layer are regarded as resistance centers, exerting 
frictional forces on the liquid flowing in the surface layer. 
The frictional force is characterized by the Brinkman param-
eter λ, which is defined � =

√

�∕� (see Eq. (10)), where γ is 
the frictional coefficient of each polymer segment times the 
polymer segment number of the per unit volume (that is, γ 
is the frictional coefficient per unit volume). We introduce a 
constant vector α proportional to ∇n, viz.
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where k is the Boltzmann constant, T is the absolute tem-
perature, and e is the elementary electric charge.

The origin of the spherical polar coordinate system (r, θ, 
ϕ) is held fixed at the center of the particle, and the polar 
axis (θ = 0) is put parallel to ∇n. For a spherical particle 
U is parallel to ∇n. The concentration gradient field ∇n is 
assumed to be weak so that U is linear in ∇n. The main 
assumptions are as follows. (i) The Reynolds number of 
the liquid flow is small enough to ignore inertial terms in 
the Navier–Stokes equation, and the liquid can be regarded 
as incompressible. (ii) The equilibrium electric potential in 
the absence of the field α satisfies the Poisson-Boltzmann 
equation. (iii) No electrolyte ions can penetrate the particle 
core surface.

In a previous paper [27], we have shown that the general 
expression for the diffusiophoretic velocity U of a colloi-
dal particle in an electrolyte concentration gradient field 
α is obtained from the expression for its electrophoretic 
velocity UE in an applied electric field E by replacing E 
with α. Indeed, the fundamental equations take the same 
form for these two velocities [31–34]. The only difference 
is the far-field boundary condition for the deviation ϕ±(r) 
of the electrochemical potential of ions. The diffusiopho-
retic velocity U of a spherical soft particle can thus be 

(1)� =
kT

zen∞
∇n

derived from the corresponding expression for the electro-
phoretic mobility [33, 34] with the result that:
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Fig. 1  Spherical soft particle consisting of the particle core of radius 
a covered with an ion-penetrable surface layer of polyelectrolytes of 
thickness b–a so that the particle has an inner radius a and an outer 
radius b. The particle moves with diffusiophoretic velocity U in an 
electrolyte concentration gradient ∇n or the corresponding vector 
field α. U is parallel to ∇n and α 
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where r =|r| is the radial distance from the particle core 
center, λ is the Brinkman parameter, the reciprocal of which 
1/λ is the Brinkman screening length, ψ(0)(r) is the equilib-
rium electric potential at position r in the absence of the field 
α, y(r) is its scaled quantity, and h(r), which relates to the 
radial function of the liquid fluid velocity, satisfies

subject to suitable boundary conditions, and L is defined by

Results and discussion

Equation (2) is the required general expression for the dif-
fusiophoretic velocity U of a spherical particle of radius a in 
an electrolyte concentration gradient field α. In the limit of 
λ → ∞ or a → b, Eq. (2) tends to the result for a hard spheri-
cal particle [27].

For a weakly charged soft particle, G(r) is given by:

with
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where

is the Debye-Hückel parameter and εo is the permittivity of 
a vacuum. Equations (17)–(18) are obtained by solving the 
linearized Poisson-Boltzmann equation [10].

Equation (2) as combined with Eqs. (16)–(18) for G(r) 
and y(0)(r) gives an approximate expression for U correct to 
the order of σ2, ρfix

2, and σρfix, which is found to reproduce 
the result obtained by Huang and Keh [10].

We now introduce the diffusiophoretic mobility U* 
defined by

We derive a simple approximate expression for U* with-
out involving numerical integrations for the case where κa» 
1 and λa» 1,κ(b − a)»1, and λ(b − a)»1. This condition is 
satisfied for most practical cases, since the size of typical 
soft particles such as biological cells is of the order of μm, 
and their surfaces are covered by a polyelectrolyte layer of 
the thickness of the order of 10 nm, while 1/λ and 1/κ under 
the physiological condition are of the order of 1 nm [35, 36]. 
In such a case, where the contribution of σ (which is pro-
portional to e−κ(b − a)) can be neglected, Eq. (2) as combined 
with Eqs. (16)–(18) further yields

with

where ψDON is the low-potential form of the Donnan poten-
tial in the surface polyelectrolyte layer, and yDON is its scaled 
quantity [31–34].

In the limit of κ → ∞, U* tends to a non-zero constant 
value independent of the electrolyte concentration, viz.,
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which is a characteristic of the electrokinetics of soft parti-
cles, as in the case of electrophoresis [31–34].

For the case of b–a « a (thin surface polyelectrolyte 
layer), Eq. (21) tends to

which, for λ → ∞, reduces to the result for a spherical hard 
particle [2–4], viz.,

where

where ψ0 (=ψDON/2) is the low-potential form of the surface 
potential of the soft spherical particle, i.e., the potential at 
the front edge of the surface polyelectrolyte layer at r = b, 
and y0 is its scaled quantity.

In the opposite limit of a → 0, Eq. (21) tends to the 
result for a spherical polyelectrolyte of radius b, viz.,
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Figure 2 shows some examples of the results of the cal-
culation of U* of a soft particle in an aqueous KCl solu-
tion (β =  − 0.02) as a function of yDON  and κ/λ at a/b=0.5, 
showing how U* strongly depends on λ/κ.

Concluding remarks

Equation (2) is the general expression for the diffusiopho-
retic velocity of a soft particle applicable for any values of 
κa, λa, σ, ρfix. For the case of a weakly charged sot particle, 
in particular, Eq. (2) as combined with Eqs. (16)–(18), 
which is correct to the order of σ2 and ρfix

2, and σρfix,  is 
found to reproduce the results obtained by Huang and 
Keh [10]. In addition, we have derived a simple analytic 
expression, which does not involve numerical integrations, 
for the diffusiophoretic mobility for the case where the 
particle core radius a and the thickness of the polyelectro-
lyte layer b–a are much larger than the Debye length 1/ κ 
and the Brinkman screening length 1/λ.
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