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Abstract
The general expression is derived for the diffusiophoretic velocity of a large spherical colloidal particle of radius a in a con-
centration gradient of general electrolytes of Debye-Hückel parameter κ. On the basis of this expression, simple approximate 
analytic expressions for the diffusiophoretic velocity correct to the order of (1/κa)0 are derived, which can be applied for 
large particles with κa ≥ 50 at arbitrary values of the particle zeta potential with negligible errors.
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Abbreviations
a	� Particle radius
a	� Electrolyte concentration gradient vector
β	� Parameter relating to the diffusion potential field 

defined by Eq. (25)
∇ni	� Concentration gradient of the i th ionic species
e	� Elementary electric charge
εo	� Permittivity of a vacuum
εr	� Relative permittivity of an electrolyte solution
ϕi(r)	� Function relating to the electrochemical potential 

of the i th ionic species
h(r)	� Function relating to the liquid flow velocity u(r)
η	� Viscosity of an electrolyte solution
i	� Electric current density
k	� Boltzmann’s constant
� 	� Debye-Hückel parameter
λi	� Drag coefficient of the i th ionic species
mi	� Scaled drag coefficient of the i th ionic species
μi(r)	� Electrochemical potential of the i th ionic species 

at position r
ni(r)	� Concentration (number density) of the i th ionic 

species at position r
ni
∞	� Bulk concentration (number density) of i th ionic 

species in the absence of the applied electrolyte 
concentration gradient

p(r)	� Pressure at position r

ρel(r)	� Space charge density at position r
T	� Absolute temperature
u	� Liquid flow velocity
U	� Diffusiophoretic velocity
U	� Magnitude with sign of U
U*	� Scaled diffusiophoretic mobility
vi(r)	� Velocity of the i th ionic species at position r
y	� Scaled equilibrium electric potential
ψ(r)	� Electric potential at position r
ψ(0)(r)	� Equilibrium electric potential at position r
zi	� Valence of i th ionic species
ζ	� Zeta potential
∼

�  	� Scaled zeta potential

Introduction

Our understanding of diffusiophoresis, that is, the motion 
of charged colloidal particles in an electrolyte concentration 
gradient, has been advanced by a lot of theoretical studies 
[1–24]. In particular, the readers should refer to a review 
article by Keh [8]. Experimentally observed diffusiophoretic 
mobility of latex particles was in good agreement theoretical 
results [25]. In a previous paper [24], we derived a general 
expression for the diffusiophoretic mobility of a spherical 
particle of radius a in a solution of symmetrical electrolytes 
of Debye-Hückel parameter κ. On the basis of this general 
expression, we obtained an approximate diffusiophoretic 
velocity expression correct to the order of 1/κa, which is 
found to be applicable for κa ≥ 20 at arbitrary values of the 
particle zeta potential. The obtained expression takes a much 
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simpler form than those previously obtained. The leading-
order term of the expression is correct to the order of (1/κa)0, 
which is applicable for κa ≥ 50 with negligible errors. In the 
present paper, we extend the previous theory for the case 
of symmetrical electrolytes to the diffusiophoresis of large 
spherical particles in a solution of general electrolytes and 
obtain approximate diffusiophoretic velocity expressions 
correct to the order of (1/κa)0. Our theory is based on the 
standard Poisson-Boltzmann theory on the electrical diffuse 
double layer around a colloidal particle. A comprehensive 
review of recent advances in the theory of diffuse double 
layer accounting for the effects of structural details of the 
ions and the solvent was given by Bohinc et al. [26]. The 
analytic expressions for the diffusiophoretic velocity of 
colloidal particles derived in the present paper can thus be 
applied to the case where the above effects may be neglected.

Theory

Consider a spherical particle of radius a moving with diffu-
siophoretic velocity U in an aqueous liquid of viscosity η and 
relative permittivity εr containing a general electrolyte under 
a constant applied gradient of electrolyte concentration. We 
suppose that the electrolyte consists of N ionic species with 
valence zi and drag coefficient λi (i = 1, 2, …, N). Let n∞

i
 be 

the bulk concentration (number density) of the i th ionic 
species in the absence of the applied electrolyte concentra-
tion gradient. The electroneutrality condition is given by ∑N

i=1
zin

∞
i
= 0 . Let ni(r) be the concentration (number den-

sity) of the i th ionic species at position r. The concentration 
gradient for the i th ionic species is expressed as ∇ni in the 
region beyond the electrical double layer around the parti-
cle. We treat the case where all the ionic species have the 
same relative concentration gradient ∇ni / n∞i  and introduce 
a constant vector a proportional to ∇noi:

where e is the elementary electric charge, k is the Boltz-
mann constant, and T is the absolute temperature. The origin 
of the spherical polar coordinate system (r, θ, ϕ) is held fixed 
at the center of the particle and the polar axis (θ = 0) is put 
parallel to a. For a spherical particle, U is parallel to a. We 
treat the case where the following conditions are satisfied: 
(i) The electrolyte concentration gradient field a is weak so 
that U is linear in a, where a =|a| and U is the magnitude 
with sign of U (positive (negative) values of U correspond to 
migration toward higher (lower) electrolyte concentration). 
(ii) In the absence of a, the particle has a uniform surface 
potential, which is regarded as the particle zeta potential 
z at r = a, where r =|r|. (iii) The Reynolds number of the 

(1)� =
kT

en∞
1

∇n1 =
kT

en∞
2

∇n2 = ⋯ =
kT

en∞
N

∇nN

liquid flow is small enough to ignore inertial terms in the 
Navier–Stokes equation and the liquid can be regarded as 
incompressible. (iv) Electrolyte ions cannot penetrate the 
particle surface. (v) The liquid flow velocity relative to the 
particle is zero at the particle surface.

The Navier-Stoke equation for a steady incompressible 
liquid flow velocity u(r) = (ur(r), uθ(r), 0) at low Reynolds 
numbers and the continuity equation for u(r) are given by

where p(r) is the pressure, ψ(r) is the electric potential, 
and ρel(r) is the charge density given by

The velocity vi(r) = (vir(r), viθ(r), 0) of the i th ionic spe-
cies, which is given by

satisfies the following continuity condition:

where

is the electrochemical potential of the i th ionic species 
and �i

o
 is a constant terms of μi(r).

The deviations of ni(r), ψ(r), μi(r), and ρel(r) from their 
equilibrium values are small for a weak field a, so that we 
may write

where the quantities with superscript (0) refer to those at 
equilibrium in the absence of a.

We assume that the equilibrium concentration n(0)
i
(r) 

obeys the Boltzmann distribution and the equilibrium elec-
tric potential y(0)(r) satisfies the Poisson-Boltzmann equa-
tion, viz.,

(2)�Δu(r) − ∇p(r) − �el(r)∇�(r) = 0

(3)∇ ⋅ u(r) = 0

(4)�el(r) =

N∑
i=1

zieni(r)

(5)vi(r) = u(r) −
1

�i
∇�i(r)

(6)∇ ⋅ (nivi(r)) = 0

(7)�i(r) = �i
o
+ zie�(r) + kTlnni(r)

(8)ni(r) = n
(0)

i
(r) + �ni(r)

(9)�(r) = � (0)(r) + ��(r)

(10)�i(r) = �
(0)

i
+ ��i(r)

(11)�el(r) = �
(0)

el
(r) + ��el(r)
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with

where y(r) is the scaled equilibrium electric potential, κ 
is the Debye-Hückel parameter, and εo is the permittivity 
of a vacuum.

The boundary conditions for ni
(0)(r), ψ(0)(r),u(r), and 

δni(r) are given by

The ionic flows vi(r) induce the diffusion potential field, 
which nullifies the net electric current. The electric current 
density i(r) is given by

By substituting Eqs. (5), (8), and (10) into Eq. (22) and 
neglecting the products of the small quantities u, δni, and 
δμi, we obtain

which must be zero beyond the particle double layer. We 
thus find that (see Appendix)

with

(12)n
(0)

i
(r) = n∞

i
(r)e−ziy(r)

(13)Δy(r) = −�2

∑N

i=1
z
i
n∞
i
e−ziy(r)

∑N

i=1
z2
i
n∞
i

(14)y(r) =
e� (0)(r)

kT

(15)� =

�∑N

i=1
z2
i
e2n∞

i

�r�okT

(16)n
(0)

i
(r) → n∞

i
as r → ∞

(17)� (0)(r) → 0 as r → ∞

(18)� (0)(a) = �

(19)u(r) → −U as r → ∞

(20)u(r) = 0 at r = a

(21)�ni(r) →
||∇ni||rcos� =

en∞
i

kT
�rcos� as r → ∞

(22)i(r) =

N∑
i=1

zieni(r)vi(r)

(23)i(r) = �
(0)

el
(r)u(r) −

N∑
i=1

zie

�i
n
(0)

i
(r)∇δ�i(r)

(24)δ�(r) → −��rcos� as r → ∞

where

is the scaled drag coefficient of i th ionic species. It fol-
lows from Eqs. (21) and (24) that the boundary condition 
for δμi(r) is given by

Finally, the boundary condition for vi(r) is given by

which follows from the condition (iv). In addition, we 
have the constraint that the net force acting on the particle 
must be zero.

By symmetry, we may write

where ϕi(r) and h(r) are functions of r. By substituting 
Eqs. (29) and (30) into Eqs. (2)–(6), the following equations 
for ϕi(r) and h(r) are obtained:

with

The boundary conditions, Eqs. (19), (20), (27), and (28) 
reduce to

(25)� =

∑N

i=1

zin
∞
i

�i

∑N

i=1

z2
i
n∞
i

�i

=

∑N

i=1

n∞
i

zimi∑N

i=1

n∞
i

mi

(26)mi =
2�r�okT

3�z2
i
e2

�i

(27)

��i(r) = zie��(r) + kT
�ni(r)

n∞
i

→ zie

(
1

zi
− �

)
�rcos� as r → ∞

(28)vir(r) = 0 at r = a

(29)��i(r) = −zie��i(r)cos�

(30)u(r) =
(
−
2

r
h(r)� cos �,

1

r

d

dr
[rh(r)]� sin �, 0

)

(31)L�i(r) = gi(r)

(32)L(Lh(r)) = G(r)

(33)L =
d2

dr2
+

2

r

d

dr
−

2

r2

(34)gi(r) =
dy

dr

(
zi
d�i

dr
−

2�i

e

h

r

)

(35)G(r) = −
e

�r

dy

dr

N∑
i=1

z2
i
n∞
i
e−ziy�i(r)

(36)
d�i

dr
= 0 at r = a
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Equations (31) and (32) subject to Eqs. (36)–(39) can be 
solved to give

and

By using Eq. (39), the magnitude (with sign) U of the 
diffusiophoretic velocity U is given by

From Eqs. (41) and (42), we find that

We note that the fundamental electrokinetic equations for 
the electrophoresis and diffusiophoresis problems are the 
same except for the boundary condition for ϕi(r) for r → ∞. 
Indeed, Eq. (43) is obtained from the expression for the elec-
trophoretic velocity of a spherical particle in an applied elec-
tric field E [27–29] by replacing E with α. Thus, by apply-
ing the same approximation method as in Ref. [28], we can 
derive similar approximate formulas for the diffusiophoretic 
velocity U correct to order (1/κa)0 with the same accuracy 
as those derived for the electrophoresis problem [28]. We 
define the scaled diffusiophoretic mobility U* as

We give the results applicable for large particles with 
κa ≥ 50 at arbitrary values of ζ as follows.

(37)�i(r) →

(
−
1

zi
+ �

)
r as r → ∞

(38)h =
dh

dr
= 0 at r = a

(39)h(r) →
U

2�
r + O

(
1

r

)
as r → ∞

(40)

�i(r) =

(
−
1

zi
+ �

)(
r +

a3

2r2

)
−

1

3

(
r +

a3

2r2

)
∫

∞

a

gi(r)dr

+
1

3∫
r

a

(
r −

x3

r2

)
gi(x)dx

(41)h(r) = −

(
r3

30
−

a2r

18
+

a5

45r2

)
∫

∞

a

G(x)dx +

(
r

9a
−

1

6
+

a2

18r2

)
∫

∞

a

x
3
G(x)dx − ∫

r

a

(
−
r3

30
+

rx2

6
−

x3

6
+

x5

30r2

)
G(x)dx

(42)U = 2� lim
r→∞

h(r)

r

(43)U =
�a2

9 ∫
∞

a

(
1 −

3r2

a2
+

2r3

a3

)
G(r)dr

(44)U∗ =
3�e

2�r�okT

U

�

with

and

where 
∼

�  is the scale zeta potential and sgn(ζ) is + 1(-1) 
if ζ > 0 (ζ < 0).

Results and discussion

We have derived the general expression (45) for the scaled 
diffusiophoretic mobility U*. We give below explicit expres-
sions for U* for the case of binary electrolytes.

(i) z+:z- binary electrolytes (z+ > 0 and z- < 0)

with

(45)U∗ = −
1

2a

∑N

i=1
zin

∞
i
�i(a)∫

∼

�

0

{∫
y

0

e−ziy
�

− 1

K
(
y
�
) dy

�

}
dy

K(y)

(46)

�i(a) = −
3

2

(
1

zi
− �

)
a + sgn(� )

�i(a)

�a
W∫

∼

�

0

e−ziy − 1

K(y)
dy

+ sgn(� )
3zimi

4�a
W∫

∼

�

0

[
(e−ziy − 1)

∑N

i=1
zin

∞
i
�i(a)∫

y

∼

�{
∫

y�

0

e−zjy
� �

− 1

K(y
� �
)

dy��

}
dy�

K(y
�
)

]
dy

K(y)

(47)
∼

�=
e�

kT

(48)W =

√
1

2

∑N

i=1
z2
i
n∞
i
, K(y) =

√∑N

i=1
n∞
i
(e−ziy − 1)

(49)

U∗ = −
1

2a∫
∼
�

0

⎧⎪⎨⎪⎩
∫

y

0

�+(a)
�
e−z+y

�
− 1

�
− �−(a)

�
e−z−y

�
− 1

�

M(y
�
)

dy�

⎫⎪⎬⎪⎭

dy

M(y)

(50)M(y) =

√
(e−z+y − 1)∕z+ − (e−z−y − 1)∕z−

(51)

𝜙+(a)

a
= −

3

2

(
1

z+
− 𝛽

)
,
𝜙−(a)

a
= −

3

2

(
1

z−
− 𝛽

)
1

(1 + F)
for

∼

𝜁> 0

(52)

𝜙+(a)

a
= −

3

2

(
1

z+
− 𝛽

)
1

(1 + F)
,
𝜙−(a)

a
= −

3

2

(
1

z−
− 𝛽

)
for

∼

𝜁< 0
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(ii) z:z symmetrical electrolytes (z+ = -z- = z > 0)

with

Note that Eqs. (56) and (57) differ from Eq. (54) in Ref. 
[23] by a factor of 1/z2, because of the different definitions 
of U* and a.

In the limit of κa → ∞, Eqs. (56) and (57) reduce to

which agrees with previously derived well-known expres-
sion [1–3]

(iii) 2:1 electrolytes

(53)

F =
1

𝜅a

√
2

(
1 −

z+

z−

)(
1 + 3m−

)(
e−z−

∼

𝜁∕2 − 1

)
for

∼

𝜁> 0

(54)

F =
1

𝜅a

√
2

(
1 −

z−

z+

)(
1 + 3m+

)(
e−z+

∼

𝜁∕2 − 1

)
for

∼

𝜁< 0

(55)

� =
(z+∕z−)m+ − (z−∕z+)m−

z+m+ − z−m−

, m+ =
2�r�okT

3�z2+e
2
�+, m− =

2�r�okT

3�z2
−
e2

�−

(56)U∗ =
6

z2(m+ + m−)

{
m+ln

(
1 + e−z

∼

𝜁∕2

2

)
+

m−

(1 + F)
ln

(
1 + ez

∼

𝜁∕2

2

)}
for 𝜁 > 0

(57)U∗ =
6

z2(m+ + m−)

{
m+

(1 + F)
ln

(
1 + e−z

∼

𝜁∕2

2

)
+ m−ln

(
1 + ez

∼

𝜁∕2

2

)}
for 𝜁 > 0

(58)F =
2

𝜅a

(
1 + 3m−

)(
ez

∼

𝜁∕2 − 1

)
for

∼

𝜁> 0

(59)F =
2

𝜅a

(
1 + 3m+

)(
e−z

∼

𝜁∕2 − 1

)
for

∼

𝜁< 0

(60)m+ =
2�r�okT

3�z2e2
�+, m− =

2�r�okT

3�z2e2
�−

(61)U∗ =
3

2z2

⎧⎪⎨⎪⎩
4ln

⎛⎜⎜⎝
cosh

⎛⎜⎜⎝
z

∼

�

4

⎞⎟⎟⎠

⎞
⎟⎟⎠
−

�
m+ − m−

m+ + m−

�
z

∼

�

⎫⎪⎬⎪⎭

(62)

U
∗ = −

3

2

(
1

2
− 𝛽

) ∼

𝜁 +
3{3 + (1 − 2𝛽)F}

2(1 + F)
ln

(
1

2
+

1

2

√
2

3
e

∼

𝜁 +
1

3

)
for

∼

𝜁> 0

with

(iv) 1:2 electrolytes

with

(63)

U
∗ =

3

2
(1 + 𝛽)

∼

𝜁 +
3{3 + 2(1 + 𝛽)F}

2(1 + F)
ln

(
e−

∼

𝜁∕2

2
+

1

2

√
1

3
e−

∼

𝜁 +
2

3

)
for

∼

𝜁< 0

(64)F =

√
6

𝜅a

�
1 + 3m−

��
e
∼

𝜁∕2 − 1

�
for

∼

𝜁> 0

(65)F =

√
3

𝜅a

�
1 + 3m+

��
e−

∼

𝜁 − 1

�
for

∼

𝜁< 0

(66)

� = −
4m+ − m−

2
(
2m+ + m−

) , m+ =
�r�okT

6�e2
�+, m− =

2�r�okT

3�e2
�−,

(67)

U
∗ = −

3

2
(1 − 𝛽)

∼

𝜁 +
3{3 + 2(1 − 𝛽)F}

2(1 + F)
ln

(
e

∼

𝜁∕2

2
+

1

2

√
1

3
e

∼

𝜁 +
2

3

)
for

∼

𝜁> 0

(68)

U
∗ =

3

2

(
1

2
+ 𝛽

) ∼

𝜁 +
3{3 + (1 + 2𝛽)F}

2(1 + F)
ln

(
1

2
+

1

2

√
2

3
e−

∼

𝜁 +
1

3

)
for

∼

𝜁< 0

(69)F =

√
3

𝜅a

�
1 + 3m−

��
e
∼

𝜁 − 1

�
for

∼

𝜁> 0

(70)F =

√
6

𝜅a

�
1 + 3m+

��
e−

∼

𝜁∕2 − 1

�
for

∼

𝜁< 0
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Note that F corresponds to Dukhin’s number.
Figure 1 shows examples of the results of the calculation 

of the reduced diffusiophoretic velocity U* of a  charged 
spherical particle of radius a calculated with Eqs. (56) 
and (57) as a function of the particle zeta potential ζ for 
m+ = 0.176 and m- = 0.169, which are, respectively, the val-
ues of m+ for K+ ions and m- for Cl− ions in an aqueous KCl 
solution at 25 °C. Figures 2, 3, respectively, show the results 
for MgCl2 with m+ = 0.122 and m- = 0.169 at 25 °C and 
those for LaCl3 with m+ = 0.0618 and m- = 0.169 at 25 °C. It 
is seen that there are maxima in the mobility curves plotted 
as a function of the particle zeta potential ζ. This is caused 
by the relaxation effect, which becomes appreciable for 
higher zeta potential values as in the electrophoresis prob-
lem. We also note that U* reaches a nonzero finite value as 
the magnitude of the zeta potential tends to infinity. This 
is a kind of counterion condensation effect, as in the case 
of electrophoresis [30, 31]. The limiting values for several 
types of electrolytes can be obtained from the above expres-
sions for U* with the result that.

(i) z:z symmetrical electrolytes

(71)

� = −
m+ − 4m−

2
(
m+ + 2m−

) , m+ =
2�r�okT

3�e2
�+, m− =

2�r�okT

6�e2
�−

(72)U∗
→ −

6m+

z2
(
m+ + m−

) ln2 as
∼

�→ +∞
(ii) 2:1 electrolytes

(73)U∗
→ −

6m−

z2
(
m+ + m−

) ln2 as
∼

�→ −∞

(74)U∗
→ −

3

4
(1 − 2�)ln6 as

∼

�→ +∞

Fig. 1   Scaled diffusiophoretic mobility U* of a spherical particle of 
radius a as a function of scaled zeta potential 

∼

�  for various values of �
a in an aqueous KCl solution at 25 °C. Calculated with Eqs. (56) and 
(57)

Fig. 2   Same as Fig. 1 but for MgCl2. Calculated with Eqs. (62) and 
(63)

Fig. 3   Same as Fig. 1 but LaCl3. Calculated with Eq. (49)
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(iii) 1:2 electrolytes

Concluding remarks

We have derived the general expression for the diffusio-
phoretic mobility U* of a spherical colloidal particle of 
radius a in a concentration gradient of general electrolyte 
(Eq. (43)). On the basis of this expression, we have derived 
simple approximate analytic expressions for U correct up to 
the order of (1/κa)0 (Eq. (45)) applicable for large particles 
with κa ≥ 50 at arbitrary zeta potential with negligible errors. 
Explicit expressions for U* for particles in z+:z-, z:z, 2:1, 
and 1:2 electrolyte solutions are given (Eqs. (49), (56), (57), 
(62), (63), (67), and (68)).

Appendix

Equation (24) can be derived from Eq. (23) as follows. Since 
beyond the particle double layer, �(0)

el
(r) →0 and n(0)

i
(r) → n∞

i
 , 

we obtain from Eq. (23)

From Eqs. (7) and (10), we have

By substituting Eq. (79) into Eq. (78) and using Eq. (21), 
we obtain Eq. (24). Here, it must be noted that unlike the 
electrophoresis problem, in the diffusiophoresis problem 
dni does not tend to zero but to a nonzero value given by 
Eq. (21).
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√
3

�
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∼

�→ −∞

(76)U∗
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√
3
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