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Abstract
The article dealt with an analytic study on the electroosmotic flow and mass transport of an electro neutral solute through 
polyelectrolyte layer (PEL)-coated canonical nanopore under the imposed alternative current electric field for Maxwell fluids. 
The PEL of uniform thickness contains positive charge density, while surface potential of nanopore is negatively charged. 
The permittivities of the electrolyte solution and PEL are assumed to be different which creates the ion-partitioning effects. 
The Born formula is incorporated to account the ion-partitioning effects. For low surface charge, the distribution of the 
ionic species are governed by the modified Boltzmann distribution and using the Debye–Hückel approximation, linearized 
Poisson–Boltzmann equation gives the distribution of induce potential inside and outside of the PEL. The modified Cauchy 
momentum equation with the Maxwell constitutive equation is used for the fluid flow distribution interior and exterior of the 
PEL. The analytic solutions for the distribution of induced potential and axial velocity are established using modified Bes-
sel function for the Maxwell fluid. The importance of the bulk ionic concentration, oscillating Reynolds number, PEL fixed 
charge density, relaxation time, permittivity ratio between PEL and electrolyte solution and softness parameter is studied 
in this investigation. The convection–diffusion equation is considered to transport of neutral solute between two reservoirs, 
connected with nanopore. An analytic solution for the distribution of solute concentration is also presented. The effects of 
the flow characteristics on volumetric flow rate, average mass transport, and neutralization factor are described in this study.

Keywords Ion-partitioning effect · Maxwell fluids · Solute transport · Modified Cauchy momentum equation · Oscillating 
Reynolds number

Introduction

Micro- and nanofluidic devices have attracted considerable 
attention due to its versatile application like drug diagnos-
tic [1, 2], separation of bio-macromolecules [3–5], DNA 
sequencing [6], and desalination of seawater [7] and environ-
mental monitoring sensors [8] to name a few. These devices 
became growing more importance microelectromechanical 
system (MEMS), Lab-on-a-chip, etc., and it is designed as 
microchannels, micromixers, micropumps, nanopore, and 

microreaction chambers. When electrolyte solution comes 
in contact with charged nanopore wall, electric double layer 
(EDL) forms at the wall surface due to the redistribution of 
counter-ions and co-ions in the electrolyte medium. Many 
important features were experimentally observed in nano-
fluidic devices when characteristic height is comparable to 
the EDL thickness. Electroosmotic flow (EOF) is the bulk 
liquid motion under the application of external electric field 
[9]. These devices use the electrokinetic effects such as 
electroosomsis to transport electro-neutral solute through 
the soft polyelectrolyte-coated nanopore. When wall sur-
face of the nanopore is covered with soft polymeric mate-
rial named as soft nanopore where the polyelectrolyte layer 
(PEL) is sandwiched between the rigid nanopore wall and 
bulk electrolyte medium. Due to several advantages of EOF 
such as plug-like velocity profile, negligible axial disper-
sion and better flow control, many research group studied 
in different aspect of EOF under the applied electric field. 
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A large volume of experimental, theoretical, and computa-
tional studies conducted for steady EOF and solute transport 
and mixing phenomena on the Newtonian fluid for differ-
ent geometrical shape such as rectangular microchannel 
[10], cylindrical capillary [11], semi-circular microchan-
nel [12], annulus [13], T-shape of microchannel [14], and 
surface-modulated microchannel [15] with heterogeneous 
surface potential. Relatively large DC electric field strength 
is required for such type of steady-state EOF which might 
not be always undesirable in many practical situation. By 
applying DC electric field in a microfluidic system, some-
times it may form gas bubbles. This may block the flow 
passage which may be suppressed under AC electric field. 
As a result, time-dependent EOF has become major grow-
ing attraction as an alternative mechanism for micro-fluidics 
transport. Dutta and Beskok [16] studied the time periodic 
EOF in two-dimensional rectangular microchannel and 
established the analytic solution for flow field under AC 
electric field. The control of time periodic flow rate under 
the pulsating electric fields through a circular microchannel 
has been studied by Chakraborty and Ray [17]. Jian et al. 
[18] analyzed the time periodic EOF through a cylindrical 
microannulus considering different zeta potentials in inner 
and outer cylinder using linear Poisson–Boltzmann equation 
for induced potential and Navier–Stokes equation for flow 
field. Huang and Lai [19] studied theoretically the enhance-
ment of mass transport and species separation phenomena 
under an oscillatory EOF in a microchannel.

Polyelectrolyte-coated nanopore, nanometer size pore, or 
polyelectrolyte layer has motivated a great attraction among 
many research community for regulating ion transport and 
sensing single bio-polymers phenomena. EOF through a 
PEL-grafted nanochannel under the AC electric field has 
been investigated by Li et al. [20] using Debye–Hückel 
approximation. A theoretical studies on the ion transport 
phenomena through a poly electrolyte modified nanopore 
have been performed by Yeh et al. [21] using a continuum-
based model. An analytic solution for transient EOF through 
the polyelectrolyte grafted nanochannel is derived by Li 
et al. [22] using Debye–Hückel approximation for Jeffrey  
fluid under the AC electric field. Chen and Das [23] inves-
tigated the electroosmotic transport through the pH- 
regulated polyelectrolyte-grafted nanochannel. Previously, it is  
considered that for low charging density in polyelectrolyte 
grafting which allows equal permittivity ratio between the 
electrolyte solution and PEL. Generally, the permittivity in 
the polyelectrolyte molecules is substantially less than the 
surrounding electrolyte solution, and hence depending on 
the PEL charge density, a significant impact occurs on the 
functional permittivity inside the PEL which creates the ion-
partitioning effect. Physically, the Born energy [24], which 
transform the energy of an ion from bulk electrolyte solution 
to the PEL, determines the ion-partitioning effect. Poddar 

et al. [25] studied the Born energy effects on pressure gradi-
ent induced electrokinetic flow through a soft charged layer 
in narrow fluidic conduit. Ganjizade et al. [26] studied the 
ion-partitioning effect in a spherical soft particle in the pres-
ence of volumetric core charge density. Reshadi and Saidi 
[27] analyzed theoretically the electro-hydrodynamics char-
acteristic on combined electroosmotic and pressure-driven 
flow through polyelectrolyte-grafted nanotube considering 
steric effects. Maurya et al. [28] theoretically investigate the 
ion-partitioning effects on electrophoresis of a soft particle 
made up of a charged hydrophobic inner core surrounded 
with PEL.

Although most of authors studied the EOF for the New-
tonian fluids but saliva solution, blood sample, DNA sample 
which are used to analyse in BioMENS devices, cannot be 
treated as Newtonian fluids. Many microfluidic devices are 
also uses non-Newtonian bio-fluids to analyse the physiol-
ogy and medical applicant. The Cauchy momentum equa-
tion with a proper constitutive law are used to describe the 
fluid characteristics of these kind of fluids instead of the 
Navier–Stokes equation. Peralta et al. [29] studied theoreti-
cally the mass transport rate of an electro-neutral solute in 
EOF under the applied periodic electric field through an 
annular micro-annular region between two concentric cyl-
inders with asymmetric and symmetric zeta potentials for 
Maxwell fluids. Analytic solutions for transient EOF veloc-
ity between parallel plate micro channel and micro tube for 
Maxwell fluids have been derived by Li et al. [30]. Using 
the Debye–Hückel approximation in electric potential, Liu 
et al. [31] derived an analytic solution of the magneto-
hydrodynamical EOF velocity between two parallel plates 
for Maxwell fluid.

The aim of the study is to investigate theoretically the ion-
partitioning effects on electroosmotic flow and solute trans-
port phenomena of Maxwell fluid through the PEL-coated 
conical nanopore under the influence of the imposed AC 
electric field. The medium near the polyelectrolytes medium 
attached with electrolyte molecules of an aqueous solution. 
Being different permittivity between two medium, ion-
partitioning effect occurs which is determined by the Born 
formula. With considering the ion-partitioning effects, the 
linearized Poisson Boltzmann equation gives the distribution 
of the induced potential and the Cauchy momentum equation 
with Maxwell constitute equation provide the distribution 
of the flow pattern in the exterior and interior of the PEL. 
The analytic expression for the solutions for the distribution 
of the induced electric potential and axial fluid velocity are 
established in this study. The convection–diffusion equation 
is also solved analytically to study the transport behaviour of 
electro neutral solute. The comparison between the Newto-
nian and Maxwell fluids are also addressed in this study. The 
main objective in this paper is to analyse the influence of 
oscillating Reynolds number, the permittivity ratio between 
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two layers, relaxation time, PEL fixed charge density, ionic 
concentration, softness parameter on electrokinetic flow and 
solute transport phenomena in Maxwell fluid.

Mathematical model

We have studied the unsteady EOF of a generalized Maxwell 
fluids under the influence of an external applied AC electric 
field through PEL grafted nanopore of radius a (Fig. 1). The 
nanopore is filled with an aqueous binary symmetric elec-
trolyte of valence zi (i = 1, 2) of density � . The dielectric 
constant of the PEL and electrolyte medium are considered 
to be different and denoted as �p and �e respectively when �0 
is the vacuum permittivity. A PEL of uniform thickness d is 
embedded in the wall surface of the nanopore which is bear-
ing uniform negative surface potential �∗ . The PEL contains 
uniform volume charge density �fix which stem from ioni-
zation of PEL molecule where �fix = ZFN , where F is the 
Faraday constant, Z is the valence and N is the molar concen-
tration of the PEL ions. The EDL is formed at the interfaces 
between the electrolyte solution and the inner surface of the 
cylinder and EDL thickness ( �D ) is the reciprocal of the 
Debye layer thickness �(= 1∕�D =

√
Σi(zie)

2n0∕�0�ekBT  ). 
Here, kB is Boltzmann constant, T is absolute temparature, 
e is the elementary charge and n0 is the bulk ionic concen-
tration. When the permittivity of the polyelectrolyte ions 
is significantly less than that of the surrounding electrolyte 
medium, a substantial impact occurs on the effective permit-
tivity inside the PEL, depending upon the grafting charge 
density [32]. Due to different dielectric permittivity of the 
PEL and electrolyte medium, a partition effects of ions ΔWi 
[33] occur due to the change in self energy between these 
ions. The difference ionic concentration ni of the ith spe-
cies between the two medium can be related through the 

ion-partitioning coefficient fi as ni ∣r=a−d−= fini ∣r=a−d+ [26, 
32] The ion partition coefficient factor can be expressed as

The Born energy ΔWi determines the associated electrostatic 
free energy required to transfer an ion from the bulk solvent 
to the bulk of the PEL membrane, and it can be expressed 
as [33]

Here ri is the radius of the ith ionic species. The flow is 
considered as axisymmetric and fully developed through the 
cylindrical nanopore. In this study, we consider cylindrical 
coordinate systems (r, z) where r denotes the radial direction 
and z is the axial direction. The externally imposed oscillat-
ing electric field, Ez(t

∗) along the z-direction is assumed to 
be Ez(t

∗) = E0 sin�t
∗ where E0 is the magnitude, �(= 2�£) 

is the oscillating frequency of the applied electric field, £ is 
the frequency in kHz and t is the time. The flow is driven 
by an oscillatory electroosmotic force induced by electric 
double layer and time-dependent applied AC electric field.

Analytic expression for induced potential

The background salt is assumed to be KCl, for which the 
hydrated radii of the corresponding ionic species K+ , Cl− , 
H+ and OH− are respectively 3.30, 3.32, 2.82 and 3.0 Å 
[34]. For computational simplicity, it considered that the 
hydrated radius of the dissociated ions ri(= 3.3) Å are all 
equal which leads ΔWi = ΔW  for all i and corresponding 
partition coefficients in Eq. (1) of the binary symmetric 
electrolyte ions become the same, i.e., f1 = f2 = f  . The 

(1)fi = exp
(
−ΔWi∕kBT

)

(2)ΔWi =
(zie)

2

8�ri�0

(
1

�p
−

1

�e

)

Fig. 1  The schematic diagram 
of polyelectrolyte layer-coated 
canonical nanopore
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bulk ionic concentration of the ith ionic species is denoted 
by n0

i
 . Far away from the charged surface n0

i
 approaches 

to the bulk concentration n0 (i.e., n0+ = n0
−
= n0) . For low-

charge density, the ionic species are considered to fol-
low the equilibrium Boltzmann distribution [35] which 
remains valid if the frequency of the external electric field 
is not very high (e.g., less than 1 MHz) [36]. Then the 
distribution of the ionic species inside and outside of the 
PEL can be written as:

Under the thin Debye layer assumption, the distribution of 
electrolyte potential within and outside PEL is governed by 
the Poisson equation which relates the net charge density in 
EDL due to mobile ions and fixed charged within PEL and 
expressed as

Using the Debye–Hückel approximation for low surface 
charge i.e., 𝜙 < kBT∕e = 0.025 V and for symmetric binary 
electrolyte ( z+ = −z− = z ), the Poisson–Boltzmann equation 
for the induced potential distribution can be linearized and 
expressed inside and outside of the PEL in the following 
non-dimensional form as 

 Here, �r is the ratio of the relative dielectric permittivity of 
the PEL layer to the bulk electrolyte solution and is given 
by �r = �p∕�e . �e and �p represent the induced potential in 
electrolyte and PEL region, respectively. We have taken 
radius of the nanopore, a as a length scale. We scale poten-
tial �∗ , �∗ by thermal potential �0(= kBT∕e) , ionic concen-
tration n∗

i
 by bulk ionic concentration n0 and the Born energy 

ΔW  by kBT  . The scaled fixed charge density in PEL can 
be expressed as qfix = Ne2zZa2∕�0�ekBT  . The continuity of 
electrostatic potential and electric displacement are consid-
ered at the interface between the PEL and electrolyte region. 
The dimensionless boundary condition are given as follows

(3)n∗
i
=

⎧
⎪⎨⎪⎩

n0
i
exp

�
−zie𝜙

∗

kBT

�
0 ≤ r∗ < a − d∗

n0
i
exp

�
−zie𝜙

∗

kBT

�
exp

�
−

ΔW

kBT

�
a − d∗ ≤ r∗ ≤ a.

(4)

∇2Φ∗ =

⎧⎪⎨⎪⎩

−
Σzien

∗
i

𝜖0𝜖e
0 ≤ r∗ < a − d∗

−
Σzien

∗
i

𝜖0𝜖p
exp

�
−

ΔW

kBT

�
−

𝜌fix

𝜖0𝜖p
a − d∗ ≤ r∗ ≤ a.

(5a)
1

r

d

dr

(
r
d𝜙e

dr

)
= (𝜅a)2𝜙e 0 ≤ r < 1 − d

(5b)
1

r

d

dr

(
r
d�p

dr

)
=

1

�r

[
(�a)2 exp (−Δw)�p − qfix

]

1 − d ≤ r ≤ 1

In the present paper, in order to account for the ion-partitioning  
effects, we have introduced different relative dielectric  
permittivities of the PEL and the bulk solution. As a result, 
on the boundary between the PEL and the surrounding 
electrolyte solution, the electric field strength is no longer 
continuous and instead the electric displacement becomes 
continuous [37]. For the case when the relative dielectric 
permittivities of the PEL and the bulk solution are equal, 
this boundary condition becomes the continuity condition 
of the electric field strength. The solutions of the Poisson 
equation Eqs. (5a) and (5b), inside and outside PEL with the 
corresponding above boundary condition given in Eq. (6) 
are as follows 

 here, In and Kn are the modified Bessel function of first and 
second kind of order n and we denote exp (−Δw) as m. The 
values of the arbitrary constants are specified in Eqs. (7a) 
and (7b) are given in “Appendix 1”.

Analytic expression for velocity field

The nanopore is assumed to be very long and concentrating 
the study at the middle region far away from inlet/outlet, the 
flow is considered as unidirectional and fully developed. For 
unsteady unidirectional EOF in fully developed generalize 
Maxwell fluid, the modified Cauchy momentum equation 
with Darcy–Brinkman term in the exterior and interior PEL 
can be written as 

 here, u∗
e
 and u∗

p
 denote the velocity components in the elec-

trolyte and PEL region respectively. � is the hydrodynamics 
frictional coefficient [38] of the PEL. The stress tensor of 
Maxwell fluid �∗

rz
 , satisfies the constitutive equation

(6)

d�e

dr
∣r=0= 0, �e ∣r=(1−d)−= �p ∣r=(1−d)+

d�e

dr
∣r=(1−d)−= �r

d�p

dr
∣r=(1−d)+ , �p ∣r=1= �

(7a)𝜙e =AI0(𝜅ar) + BK0(𝜅ar) 0 ≤ r < 1 − d

(7b)
�p =CI0

(
�a

√
m

�r
r

)
+ DK0

(
�a

√
m

�r
r

)

+
qfix

m(�a)2
1 − d ≤ r ≤ 1

(8a)
𝜌
𝜕

𝜕t∗
u∗
e
(r∗, t∗) = −

1

r∗
𝜕

𝜕r∗

(
r∗𝜏∗

rz

)
+ 𝜌∗

e
Ez(t

∗)

0 ≤ r∗ < a − d∗

(8b)

�
�

�t∗
u∗
p
(r∗, t∗) = −

1

r∗
�

�r∗

(
r∗�∗

rz

)
+ �∗

e
Ez(t

∗) − �u∗
p
(r∗, t∗)

a − d∗ ≤ r∗ ≤ a
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where � is the relaxation time [39] and �0 is the zero-shear-
rate viscosity of the fluid. Corresponding boundary condi-
tions are given as

The velocity field u∗ and time t∗ are scaled by the Helmholtz– 
Smoluchowski  ve loc i ty  UHS(= �0�eE0�0∕�0) and  
1∕� respectively. The stress coefficient �∗

r,z
 is scaled by 

�0UHS∕a . The oscillating Reynolds number Rew is defined 
as Rew = ��a2∕�0 which represents as the ratio between the 
characteristic length scale associate with momentum diffu-
sions length scale. Here, � = �0∕� is the kinematic viscos-
ity. The non-dimensional parameter �=a∕�−1

0
 , represents a 

measure of the friction experienced by the fluid within the 
polyelectrolyte layer where �−1

0
=
√
�0∕�  is the softness 

degree of the PEL.
To establish the analytic solution for the distribution of 

the induced potential and axial velocity of the present sce-
nario under the AC electric field, we have considered the 
electric field and velocity in the following complex form as

where Im denotes the imaginary part of a complex number, 
and u∗

0
(r∗) is the complex amplitude of EOF velocity. The 

Cauchy momentum equation in the non-dimensional form 
can be written as 

 The simplified dimensionless constitutive equation for Max-
well model is

Here, �1 = ��0∕�a
2 represents the competition between 

elastic and viscous effects of the fluid, called the Deborah 
number or elasticity number. The non-dimensional form of 

(9)
(
1 + �

�

�t∗

)
�∗
r,z

= −�0
�u∗

�r∗

(10)

�u∗
e

�r∗
∣r∗=0= 0, u∗

e
∣r∗=(a−d∗)−= u∗

p
∣r∗=(a−d∗)+

�u∗
e

�r∗
∣r∗=(a−d∗)−=

�u∗
p

�r∗
∣r∗=(a−d∗)+ , u∗

p
∣r∗=a= 0

(11)Ez(t
∗) =Im

(
E0e

i�t∗
)

(12)u∗(r∗, t∗) =Im
(
u∗
0
(r∗)ei�t

∗)

(13a)
Rew

𝜕ue

𝜕t
= −

1

r

𝜕

𝜕r

(
r𝜏rz

)

− (𝜅a)2𝜙eIm(eit) 0 ≤ r < 1 − d

(13b)
Rew

�up

�t
= −

1

r

�

�r

(
r�rz

)
− (�a)2m�pIm(eit)

− �2up 1 − d ≤ r ≤ 1

(14)
(
1 + Rew�1

�

�t

)
�rz = −

�u

�r

momentum equation inside and outside of the PEL can be 
written as 

The corresponding dimensionless boundary conditions are 
given as

The solution of Eqs. (15a) and (15b) corresponding to the 
above boundary conditions Eq. (16) are given by 

The value of the arbitrary constants are specified in 
Eqs. (17) and (17b) are given in “Appendix 2”. We have cal-
culated the dimensional volumetric flow rate per unit width 
through the nanopore [40] in the following as

Introducing q∗
v
 as q∗

v
= Im

(
(q∗

0
)ve

i�t∗
)
 , then

(15a)
d2(u0)e

dr2
+

1

r

d(u0)e

dr
− (u0)e

(
iRew − 𝜆1Re

2
w

)

= (𝜅a)2(1 + i𝜆1Rew)AI0(𝜅ar) 0 ≤ r < 1 − d

(15b)

d2(u0)p

dr2
+

1

r

d(u0)p

dr
− (u0)p

(
�2 +

(
iRew − �1Re

2
w

))

= (�a)2m(1 + i�1Rew) ∗[
CI0

(
�a

√
m

�r
r

)
+ DK0

(
�a

√
m

�r
r

)
+

qfix

(�a)2m

]

1 − d ≤ r ≤ 1

(16)

d(u0)e

dr
∣r=0 = 0, (u0)e ∣r=(1−d)−= (u0)p ∣r=(1−d)+

d(u0)e

dr
∣r=(1−d)−=

d(u0)p

dr
∣r=(1−d)+ , (u0)p ∣r=1= 0

(17a)

(u0)e =C1I0

(√(
iRew − 𝜆1Re

2
w

)
r

)

+ D1K0

(√(
iRew − 𝜆1Re

2
w

)
r

)

+ GI0(𝜅ar) 0 ≤ r < 1 − d

(17b)

(u0)p =C2I0

(√
�2 +

(
iRew − �1Re

2
w

)
r

)

+ D2K0

(√
�2 +

(
iRew − �1Re

2
w

)
r

)

+MI0

(
�a

√
m

�r
r

)
+ NK0

(
�a

√
m

�r
r

)

− qfix
1 + i�1Rew

�2 +
(
iRew − �1Re

2
w

) 1 − d ≤ r ≤ 1

(18)q∗
v
= ∫

a

0

u∗(r∗, t∗)2�r∗dr∗

�a2
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We have introduced the scaling factor of the volumetric flow 
rate as UHSa

2 . Therefore, the dimensionless volume flow rate 
is given by

Analytic expression for the concentration field

The concentration distribution of the electroneutral sol-
ute along the nanopore of length L is studied in the pre-
sent analysis. Both ends of the nanopore are connected 
to a large reservoirs which is maintained with uniform 
concentration of neutral solute. The concentrations of the 
left and right reservoirs are c1 and c2 respectively where 
c1 > c2 . The species concentration is also considered as 
infinitely dilute, so that the concentration gradient will not 
interfere with each other’s. In the absence of no chemical 
reaction or absorption of solute along the nanopore wall, 
the characteristic behaviour of the species in an isotropic 
medium is governed by convection–diffusion equation and 
is given by 

 where c∗
e
 and c∗

p
 are the concentration of the solute species 

in the electrolyte region and PEL, respectively. Here, D rep-
resents the diffusion coefficient of the solute species in the 
fluid. The non-uniformity of the velocity distribution will 
cause that the concentration field is no longer uniform at 
cross-section of the nanopore. We have considered here 
Chatwin approximation [41, 42] because of the linearity of 
Eqs. (21a) and (21b). Therefore, the the concentration field 
can be expressed as the sum of a linear concentration distri-
bution and a concentration distribution caused by the peri-
odic effect of the velocity field. The species distribution of 
solute can be written as follow

where c∗
0
(r∗, t∗) denotes the concentration distribution caused 

by the imposed oscillatory effect of the velocity. The bound-
ary conditions at the two end are considered as

(19)(q∗
0
)v = 2UHSa

2 ∫
1

0

u0(r)rdr

(20)(q0)v = 2∫
1

0

u0(r)rdr

(21a)

𝜕c∗
e

𝜕t∗
+ u∗

e

𝜕c∗
e

𝜕z∗
= D

1

r∗
𝜕

𝜕r∗

(
r∗
𝜕c∗

e

𝜕r∗

)
0 ≤ r∗ < a − d∗

(21b)

�c∗
p

�t∗
+ u∗

p

�c∗
p

�z∗
= D

1

r∗
�

�r∗

(
r∗
�c∗

p

�r∗

)
a − d∗ ≤ r∗ ≤ a

(22)c∗(z∗, r∗, t∗) = c1 +
c2 − c1

L
z∗ + c∗

0
(r∗, t∗)

These boundary conditions of the above equation are not 
satisfied at the end of nanopore due to imposed flow oscil-
lation effect c∗

0
(r∗, t∗) . But it is observed that such approxi-

mation is still valid far from the nanopore ends [42, 43] by 
neglecting the end effect of a low-aspect-ratio configuration 
with a << L . 

The boundary conditions for the above Eqs. (24a) and (24b) 
are given by

The species concentrations (c0)∗e and (c0)∗p are scaled by (
c2 − c1

)
 . The species concentration is assumed to be of the 

form as c0(r∗, t∗) = Im
(
g∗(r∗)ei�t

∗) and accordingly the spe-
cies conversion equations become 

where ge and gp are, respectively, the dimensionless solute 
concentration in the electrolyte and PEL region. The aspect 
ratio is denoted as � = a∕L , Schmidt number Sc is defined 
as Sc = �∕D and Pe is the Peclet number and defined by 
Pe = UHSa∕D . The corresponding dimensionless boundary 
conditions are given as

(23)
c∗ =c1 at z∗ = 0

c∗ =c2 at z∗ = L

(24a)

𝜕(c0)
∗
e

𝜕t∗
+ u∗

e

c2 − c1

L

= D
1

r∗
𝜕

𝜕r∗

(
r∗
𝜕(c0)

∗
e

𝜕r∗

)
0 ≤ r∗ < a − d∗

(24b)

�(c0)
∗
p

�t∗
+ u∗

p

c2 − c1

L

= D
1

r∗
�

�r∗

(
r∗
�(c0)

∗
p

�r∗

)
a − d∗ ≤ r∗ ≤ a

(25)

�(c0)
∗
e

�r∗
∣r∗=0= 0,

�(c0)
∗
p

�r∗
∣r∗=(a−d∗)+=

�(c0)
∗
e

�r∗
∣r∗=(a−d∗)−

(c0)
∗
p
∣r∗=(a−d∗)+= (c0)

∗
e
∣r∗=(a−d∗)−

�(c0)
∗
p

�r∗
∣r∗=a= 0

(26a)

d2ge

dr2
+

1

r

dge

dr
− iRewScge = 𝜀Peue 0 ≤ r < 1 − d

(26b)

d2gp

dr2
+

1

r

dgp

dr
− iRewScgp = �Peup 1 − d ≤ r ≤ 1

(27)

dge

dr
∣r=0 = 0,

dgp

dr
∣r=(1−d)+=

dge

dr
∣r=(1−d)−

gp ∣r=(1−d)+= ge ∣r=(1−d)−
dgp

dr
|r=1 = 0
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The solutions of the above Eqs. (26a) and (26b) correspond-
ing to the boundary conditions Eq. (27) are given by 

The value of the arbitrary constants are specified in 
Eqs. (28a) and (28b) are given in “Appendix 3”.

For oscillatory electroosmotic flow, we have introduced 
the concept of tidal displacement Δz [19, 42]. Basically, tidal 
displacement represents the average moving distance of each 
cross section on full cycle of oscillation T(= 2�∕�) [19, 44] 
and defined as

When the tidal displacement has to be considered the same 
value for each flow situation, then the imposed electric 
field, Helmholtz–Smoluchowski velocity and corresponding  
Peclet number will no longer remain constant. The  
Helmholtz–Smoluchowski velocity subjected into Eq. (29) can  
be redefined as

A net mass transport exists from upstream to downstream, 
due to either the pure diffusion effect or the convective 
effect. The net mass transport is calculated based on the 
time and space average mass-transfer rate [19, 44, 45] for 
each cross-section of the tube in one period of oscillation

(28a)

ge(r) =G1I0

�√
iRewScr

�
+ G2K0

�√
iRewScr

�

+ G3I0

��
(iRew − 𝜆1Re

2
w
)r

�

+ G4I0(𝜅ar) 0 ≤ r < 1 − d

(28b)

gp(r) =G9I0

�√
iRewScr

�
+ G10K0

�√
iRewScr

�

+ G5I0

��
�2 + (iRew − �1Re

2
w
)r

�

+ G6K0

��
�2 + (iRew − �1Re

2
w
)r

�

+ G7I0

�
�a

�
m

�r
r

�

+ G8K0

�
�a

�
m

�r
r

�

+ qfix
�(1 + i�1Rew)Pe

i
�
�2 + (iRew − �1Re

2
w
)
�
RewSc

1 − d ≤ r ≤ 1

(29)Δz =
2

a2�
∣ ∫

a

0 ∫
T

0

u∗r∗dr∗dt∗ ∣

(30)UHS =
Δz�

4 ∣ ∫ 1

0
u0rdr ∣

(31)m∗
�
=

2

a2T ∫
a

0 ∫
T

0

jzr
∗dr∗dt∗

The instant mass flux in the z-direction is denoted by jz 
caused due to convection diffusion effects and defined as

Equivalently,

The dimensionless form of Eq. (33) is given by

Introducing Eq.  (34) in Eq.  (31) and express 
m� = m∗

�
L∕D

(
c1 − c2

)
 as dimensionless average mass trans-

port rate in the following

where Re[.] denotes the real part of the product of the func-
tion u0 by the complex conjugate of the function g. We have 
redefined Peclet number based on the angular phenomena as 
Pew =

RewScΔZ

∣<u0>∣
 where, ∣< u0 >∣=∣ 4 ∫ 1

0
u0rdr ∣ and ΔZ =

Δz

a
 . 

The dimensionless induced potential, axial velocity, average 
fluid velocity, concentration distribution and mass transfer 
rate have been evaluated numerically with MATLAB [46].

Results

In the previous section, we have established the analytic 
solution for the distribution of induced potential and axial 
velocity based on the modified Bessel function. These 
solutions rely some non-dimensional parameter such as 
oscillating Reynolds number Rew , permittivity ratio �r , 
normalized relaxation time �� , Debye–Hückel parameter 
�a , softness parameter � and nanopore surface charge � 
which control the electrokinetic flow dynamics for the 
present study. The nanopore wall has fixed zeta poten-
tial �∗ = �∗ = −0.025  V (i.e. � = −1 ). We have consid-
ered the nanopore radius a = 20 × 10−9 m, the thickness 
of the PEL d = 0.2 , permittivity of the electrolyte solu-
tion �0�e = 79.8 × 8.854 × 1012 F m −1 , density � = 103 kg/
m3 , zero shzre rate �0  = 10−3  kg  m−1  s−1 , Boltzmann 
constant kB = 1.3806 × 10−23 J K−1 , elementary charge 

(32)jz = −D
c2 − c1

L
+
(
c1 +

c2 − c1

L
z∗ + c∗

0
(r∗, t∗)

)
u∗

(33)

jz = − D
c2 − c1

L
+ c1Im

(
u∗
0
ei�t

∗)
+ z∗

c2 − c1

L
Im

(
u∗
0
ei�t

∗)

+ Im(g∗ei�t
∗

)Im
(
u∗
0
ei�t

∗)

(34)

jz = − D
c2 − c1

L
+ UHSc1Im

(
ueit

)
+ aUHSz

c2 − c1

L
Im

(
u0e

it
)

+ UHS

(
c2 − c1

)
Im

(
geit

)
Im

(
u0e

it
)

(35)m� =2∫
1

0

rdr − 2
Pew

� ∫
1

0

Im
(
geit

)
Im

(
u0e

it
)
rdr

(36)=2∫
1

0

rdr − 2
Pew

� ∫
1

0

Re
(
u0g

)
rdr
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e = 1.602 × 10−19 C, Faraday’s constant F = 96,472 Cmol−1 , 
aspect ratio � = 0.001 , Peclet number Pe = 5000 , absolute 
temperature T=298 K, Helmholtz–Smoluchowski velocity 
UHS = 0.18158m s−1 , and applied electric field E0=107 V/m. 
Generally, the parametric values of oscillation frequency in 
the applied AC electric field is 10 ≤ � ≤ 103 s−1 [39] and 
relaxation time is 10−4 ≤ � ≤ 103 s [47]. In order to ensure 
the fundamental assumption for undistributed EDL structure 
[22, 48] in steady state, the relaxation time � must be smaller 
than the imposed oscillating frequency 2�∕� [39, 47]. This 
restriction can be expressed in the dimensionless form as 
�1Rew ≤ 2� which implies the normalized relaxation time 
�� ≤ 2� . The variation of fluid velocity with time is one 
of the most significant characteristics in AC electroosmotic 
flow in a generalized Maxwell fluids through a nanopore. 
The instantaneous change in velocity profiles within a period 
of a time cycle (t varies from 0 to 2 � ) are illustrated in some 
profile figures at different scaled time. We have also verified 
the distribution of the axial velocity of EOF of a Newtonian 
fluid for a particular case of Maxwell fluid. We analyzed 
the neutral species transport phenomena through the carrier 
fluid without effecting the electric potential.

Velocity field and solute transport

Figure 2 depicts the scaled axial velocity and concentration 
profiles for different values of the Debye–Hückel parameter 
�a(= 5, 15, 50) when oscillating Reynolds number Rew = 5 , 
permittivity ratio �r = 0.7 , PEL fixed charge density qfix = 5 , 
softness parameter � = 1 . First and second columns corre-
spond to the axial velocity profiles for Newtonian � = 0 
and Maxwell fluid �� = 5 respectively while third column 
indicates the concentration profiles corresponding to the 
Maxwell fluid �� = 5 . The axial velocity increases with the 
Debye–Hückel parameter �a i.e., ionic concentration of the 
electrolyte solution for both Newtonian and Maxwell fluid 
but it almost remains constant for high ionic concentration. 
Due to the shearing-thinning effects, the magnitude of the 
axial velocity for Maxwell fluid is always greater than the 
Newtonian fluid. It is also noted in Newtonian fluid that 
the velocity gradient occurs near the nanopore surface wall 
region. The concentration is also increased with axial veloc-
ity for the Maxwell fluid.

The scaled axial velocity and concentration profiles are 
shown in Fig. 3 for different values of PEL scaled charge 
density qfix(= 2, 5, 15) . The surface potential of the nanopore 
wall is considered as � = −1 while the charge density of the 
PEL is positive. The increase in positive charge density of 
the PEL reduces the axial velocity both the Newtonian � = 0 
(first column) and generalized Maxwell fluid �� = 5 (second 
column) for fixed Debye–Hückel parameter �a = 20 . Here, 
we considered the oscillating Reynolds number Rew = 5 , 

permittivity ratio �r = 0.7 and softness parameter � = 1 . As 
shown in third column of Fig. 3, the increasing scaled charge 
density decreases concentration distribution.

Figure 4 displays the scaled axial velocity and concen-
tration profiles for different values of permittivity ratio 
�r(= 0.3, 0.6, 1.0) at different dimensionless time for fixed 
oscillating Reynolds number Rew = 5 , PEL scaled fixed 
charge density qfix = 5 , Debye–Hückel parameter �a = 20 
and softness parameter � = 1 . As permittivity ratio �r indi-
cates the dielectric permittivity ratio between the PEL layer 
and the electrolyte solution while �r = 1 implies the same 
permittivity among these two adjacent layer. Due to the low 
dielectric permittivity of the PEL and the electrolyte solu-
tion, low counter ions penetrate in the PEL, as a result the 
ion-partitioning effects occurs. The axial velocity increases 
with the permittivity ratios and this effects is more promi-
nent in Maxwell fluid �� = 5 . To analyse the influence of the 
permittivity ratio in concentration distribution, we plotted 
the concentration profiles of the generalized Maxwell fluid 
�� = 5 in third column of Fig. 4. Similarly as axial veloc-
ity, the concentration distribution is also increased with the 
permittivity ratio.

The effects of variation of softness parameter �(= 1, 3, 5) 
on the axial velocity and concentration profiles are shown in 
Fig. 5 when the oscillating Reynolds number Rew = 5 , per-
mittivity ratio �r = 0.7 , Debye–Hückel parameter �a = 20 , 
PEL scaled fixed charge density qfix = 5 . The scaled axial 
velocity decreases with the increase in the softness param-
eter for Newtonian fluid � = 0 (first column) and general-
ized Maxwell fluid �� = 5 (second column). The softness  
parameter mainly represents the frictional forces acting 
on the electrolyte solution flowing through the PEL, and 
it mainly effects the hydrodynamics behaviour inside the 
nanopore while the conductance is not affected crucially by 
the flow field. It is cleared form Fig. 5 (second and third  
column) that as axial scaled velocity decreases, the solute concen-
tration is also decreased with the increase in softness parameter. 

The oscillating Reynolds numbers have a great impact 
on the fluid behaviours. To illustrate this effects, we plot-
ted the variation of axial velocity and concentration pro-
files for different oscillating Reynolds number at different 
time for both Newtonian and generalized Maxwell fluids 
case when the permittivity ratio �r = 0.7 , Debye–Hückel 
parameter �a = 20 , PEL scaled fixed charge density qfix = 5 
and softness parameter � = 1 . For low oscillating Reynolds 
number, the viscoelasticity of the fluid does not affect the 
hydrodynamics practice in comparison with the Newtonian  
fluid (first column) and the axial velocity form plug-like pro-
file shape in both fluids. The magnitude of the axial velocity 
profile of EOF decreases with the higher values of oscillat-
ing Reynolds number where as the flow oscillation increases 
for the generalized Maxwell fluid �� = 3 as shown in second 
column of Fig. 6. The concentration profiles (third column) 
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corresponding to this Maxwell fluid show that, concentration 
amplitude decreases but oscillation increases with the higher 
oscillating Reynolds number.

To show the influence of the normalized relaxation time 
�� , we illustrated the distribution of the axial velocity pro-
files (first row; a, b, c, d) and corresponding distribution of 
the concentration profiles (second row; e, f, g, h) for differ-
ent dimensionless time in Fig. 7 when oscillating Reynolds 
number Rew = 15 , permittivity ratio �r = 0.7 , Debye–Huckel 
parameter �a = 20 , PEL scaled fixed charge density qfix = 5 
and softness parameter � = 1 . For the higher value of the 
oscillating Reynolds number, flow oscillation occurs in 
both the Newtonian and generalized Maxwell fluids, but 

it’s occurrences are more rapid in generalized Maxwell 
fluid cases. The amplitude of the axial velocity increases 
with higher values of normalized relaxation time for gen-
eralized Maxwell fluids in different time. It is observed 
that the viscoelastic effects increase the axial fluid velocity 
due to higher fluidity. Since the oscillation time period is 
much smaller than the diffusion time scale and hence there 
is no sufficient time for the flow moment to diffuse away 
from the nanopore surface. As a result, the effects are only 
restricted only within a thin layer near the nanopore wall 
surface. The axial velocity and subsequent concentration dis-
tribution corresponding to the Newtonian fluid ( � = 0 ) are 
shown in Fig. 7a and c, respectively. It can be observed from 

Fig. 2  Distribution of the dimensionless axial velocity profiles of 
Newtonian fluid � = 0 (first column), Maxwell fluid �� = 5 (second 
column) and corresponding dimensionless concentration profiles 
(third column) of the Maxwell fluid �� = 5 for different values of 

Debye–Huckel parameter �a (= 5, 15, 50) at different dimensionless 
time. Here, Schmidt number Sc = 2000 , oscillating Reynolds number 
Rew = 5 , PEL fixed charge density qfix = 5 , permittivity ratio �r = 0.7 
and softness parameter � = 1
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Fig. 7 that the increasing values of the relaxation time ( �� ) 
enhance both of the solute concentration and oscillation.

Volumetric flow rate, average mass transport 
and neutralization factor

In Fig. 8, we illustrated the scaled volumetric flow rate (q0)v 
as a function of normalized relaxation times �� of Max-
well fluids for different values of permittivity ratio �r , PEL 
fixed charge density qfix and oscillating Reynolds number 
Rew . The effects of the permittivity ratio on volumetric 
flow rate is shown in Fig. 8a when the PEL charge density 
qfix(= 5) , Debye–Hückel parameter �a(= 40) and oscillating 

Reynolds number Rew(= 15) are fixed. The volumetric flow 
rate increases with permittivity ratio between PEL and elec-
trolyte region. It has been shown in Fig. 8b that the scaled 
volumetric flow rate decreases with the increases of the 
positive charge density in PEL. We have also plotted the 
variation of the volumetric flow rate for different oscillating 
Reynolds number in Fig. 8c and it is observed that volumet-
ric flow rate decreases with higher values of the oscillating 
Reynolds number. It can be seen from all theses in Fig. 8 that 
the volumetric flow rate has some peaks for some normal-
ized relaxation time. Due to the elasticity, the fluid velocity 
decreases for some relaxation time and increases for others 
relaxation time.

Fig. 3  Distribution of the dimensionless axial velocity profiles of 
Newtonian fluid � = 0 (first column), Maxwell fluid �� = 5 (second 
column) and corresponding dimensionless concentration profiles 
(third column) of the Maxwell fluid �� = 5 for different values of 

scaled PEL fixed charge density qfix (= 2, 5, 15) at different dimen-
sionless time. Here, Schmidt number Sc = 2000 , oscillating Reynolds 
number Rew = 5.0 , Debye–Hückel parameter �a = 20 , permittivity 
ratio �r = 0.7 and softness parameter � = 1

1786 Colloid and Polymer Science (2021) 299:1777–1795



1 3

The dimensionless average mass transport rate m� 
is illustrated in Fig. 9a for different values of the tidal 
displacement ΔZ  when the Schmidt number Sc = 1000 
and oscillating Reynolds number Rew = 15 for general-
ized Maxwell fluids. It shows that the mass transport rate 
increases with normalized relaxation time. The increase 
in the tidal displacement intensifies the instantaneous con-
vective and dispersion effects in the concentration field 
and promote the mass transport rate when Schmidt number 
and oscillating Reynolds number are fixed. To visualize 

the reasonable comparison of performance rate of the aver-
age mass transport, the tidal displacement ΔZ has consid-
ered to be same as ΔZ  for each flow situation as shown 
in Fig. 9b and c. Figure 9b shows that the variation of 
the average mass transport rate increases with normalized 
relaxation times for different values of oscillating Reyn-
olds number Rew(= 20, 40, 60) for fixed Schmidt number 
Sc(= 1000) and tidal displacement ΔZ(= 1.0) . It also shows 
that the mass transport rate decreases with the increase in 
the oscillating Reynold number and it is more prominent 

Fig. 4  Distribution of the dimensionless axial velocity profiles of 
Newtonian fluid � = 0 (first column), Maxwell fluid �� = 5 (second 
column) and corresponding dimensionless concentration profiles 
(third column) of the Maxwell fluid �� = 5 for different values of 

permittivity ratio �r (= 0.3, 0.6, 1.0) at different dimensionless time. 
Here, Schmidt number Sc = 2000 , oscillating Reynolds number 
Rew = 5 , Debye–Hückel parameter �a = 20 , PEL scaled fixed charge 
density qfix = 5 and softness parameter � = 1
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in higher values of the normalized relaxation time. The 
influence of Schmidt number on average mass transport 
rate is illustrated in Fig. 9c for fixed oscillating Reynolds 
number Rew(= 15) and tidal displacement ΔZ(= 1) . It is 
shown from this figure that the increase in Schmidt num-
ber enhance the mass transport rate. For small mass, diffu-
sivity implies large Schmidt number Sc which enhance the 
average mass transport rate and oscillatory EOF is more 
effective to intensify mass transport rate for large Schmidt 
number.

To demonstrate the charge neutralization in PEL, we 
have calculated the neutralization factor Γ [49] and is 
defined as

where Qeff is the volume average effective charge density 
and defined as

(37)Γ = 1 −
Qeff

Qfix

Fig. 5  Distribution of the dimensionless axial velocity profiles of 
Newtonian fluid � = 0 (first column), Maxwell fluid �� = 5 (second 
column) and corresponding dimensionless concentration profiles 
(third column) of the Maxwell fluid �� = 5 for different values of 

softness parameter � (= 1, 3, 5) at different dimensionless time. Here, 
Schmidt number Sc = 2000 , oscillating Reynolds number Rew = 5 , 
Debye–Hückel parameter �a = 20 , permittivity ratio �r = 0.7 and 
PEL scaled fixed charge density qfix = 5
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Fig. 6  Distribution of the dimensionless axial velocity profiles of 
Newtonian fluid � = 0 (first column), Maxwell fluid �� = 3 (sec-
ond column) and corresponding dimensionless concentration pro-
files (third column) of the Maxwell fluid �� = 3 for different 

values of oscillating Reynolds number Rew (= 0.1, 20, 40, 60) at dif-
ferent dimensionless time. Here, Schmidt number Sc = 2000 , Debye–
Hückel parameter �a = 20 , permittivity ratio �r = 0.7 , PEL scaled 
fixed charge density qfix = 5 and softness parameter � = 1
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and Qfix signifies the volume average fixed charge density 
and defined as

(38)Qeff =
2

�T ∫
1

0 ∫
2�

0

[
(�a)2 exp(Δwi)� + qfix

]
rdrdt

Figure 10a shows the variation of the neutralization fac-
tor with Debye–Hückel parameter �a (ionic concentration 
of the electrolyte) for different values of permittivity ratio �r 

(39)Qfix =
2

�T ∫
1

0 ∫
2�

0

qfixrdrdt

Fig. 7  Distribution of a dimensionless axial velocity profiles (first 
row) and b corresponding dimensionless concentration profiles 
(second row) for different values of normalized relaxation time �� 
(= 0, 1.5, 3.0, 6.0) at different dimensionless time. Here, Schmidt 

number Sc = 2000 , oscillating Reynolds number Rew = 15 , Debye–
Hückel parameter �a = 20 , permittivity ratio �r = 0.7 , PEL scaled 
fixed charge density qfix = 5 and softness parameter � = 1

Fig. 8  Variation of volumetric flow rate (q0)v with different value of 
normalized relaxation time �� of Maxwell fluid corresponding to dif-
ferent values of a permittivity ratio �r , b PEL scaled charge density 

qfix and c oscillating Reynolds number Rew . Here, Debye–Hückel 
parameter �a = 40 and softness parameter � = 1
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for Maxwell fluids �� = 5 when oscillating Reynolds num-
ber Rew = 5 , PEL fixed charge density qfix = 5 and softness 
parameter � = 1 . The charge neutralization factor Γ increases 
with the Debye–Hückel parameter �a and it attains higher 
values when the permittivity between the PEL and electro-
lyte region are same, i.e., �r = 1 as shown in Fig. 10a. This 
indicates that the neutralization of immobile charge occurs at 
a lower rate when the permittivity ratio is small in the PEL. 
The variation of the neutralization factor Γ with Debye–Hückel 
parameter �a is illustrated in Fig. 10b for different values of 
PEL fixed charge density qfix for Maxwell fluids �� = 5 when 
oscillating Reynolds number Rew = 5 , permittivity ratio 
�r = 0.7 and softness parameter � = 1 . In Fig. 10b, it indicates 

that the neutralization factor Γ decreases with increases of the 
positive fixed charge density qfix in PEL but increases with 
Debye–Hückel parameter �a i.e., ionic concentration of the 
electrolyte.

Conclusion

The motivation of the present study is to analyse the 
electrokinetic effects and solute transport phenomena 
for Maxwell fluids through the polyelectrolyte grafted 
nanopore considering ion-partitioning effects under AC 
electric field. Using Debye–Hückel approximation for 
linearizing modified Poisson–Boltzmann equation, an 

w

w
w

Fig. 9  Variation of dimensionless average mass transport rate m� with 
normalized relaxation time �� corresponding to different values of 
a tidal displacement ΔZ b oscillating Reynolds number Rew and c 

Schmidt number Sc . Here, Debye–Hückel parameter �a = 20 , permit-
tivity ratio �r = 0.7 , PEL scaled charge density qfix = 5 and softness 
parameter � = 1

Fig. 10  Variation of the 
neutralization factor Γ with 
Debye–Hückel parameters �a 
of Maxwell fluids �� = 5 for 
different values of a permittivity 
ratio �r and b PEL scaled charge 
density qfix . Here, oscillating 
Reynolds number Rew = 5 and 
softness parameter � = 1
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analytic expression for induced potential equation was 
established in the interior and exterior of the PEL. The 
analytic expression for axial velocity was also presented 
from the Cauchy momentum equation along with Maxwell 
constitutive equation in the interior and exterior of the 
PEL. The axial velocity increases with ionic concentra-
tion of the electrolyte solution but it decreases with the 
increase in the fixed positive charge density in the PEL for 
both Newtonian and Maxwell fluids cases. The increase 
in the permittivity ratio enhances the axial velocity for 
both fluids but its effects are more prominent in Maxwell 
fluids. The velocity decreases with the increase in the soft-
ness parameter. The analytic solution for the convection-
diffusions equation was also established in full domain. 
For higher values of the relaxation time, the axial velocity, 
and species concentration are both increased. The higher 
values of the oscillating Reynolds number increase the 
flow oscillation, as a result the axial velocity decreases. 
The volumetric flow rate decreases with the increase in 
the oscillatory Reynolds number and PEL fixed positive 
charge density but increases with permittivity ratio and 
relaxation time. For Maxwell fluids, it is also noticed the 
undulatory distribution in axial velocity and concentration 
field in comparison to the Newtonian fluids. The average 
mass transport rate increases with tidal displacement for 
fixed Schmidt number and relaxation time. The average 
mass transport rate increases with Schmidt number as well 
as relaxation time. The neutralization factor increases with 
permittivity ratio and decreases with PEL fixed charge 
density.

Appendix 1

Arbitrary constants which are used in the expression (Eqs. 7a 
and 7b) for the solution of the induced potential equation can 
be expressed as

where the variables can be written as

A =

(
qfix

(�a)2m
+ F −

ES

Q

)(
Q

QR − PS

)

B =0
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(
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)(
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)

D =
1

k0

(
�a

√
m

�r

)
[
� −

qfix

(�a)2m
− CI0

(
�a

√
m

�r

)]

Appendix 2

Arbitrary constants which are used in the expression 
(Eqs. 17 and 17b) of the solution in the momentum equa-
tion can be expressed as

where the variables are expressed as
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Appendix 3

Arbitrary constants which are used in the expression 
(Eqs. 28a and 28b) for the solution of the solute concentra-
tion equation can be expressed as

where variables as considered in the following are
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