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Abstract
In the present paper, the influence of acid–base properties of inorganic particles in ion-exchange membrane-based nanocompos-
ites on their physicochemical and transport properties was investigated. For this purpose, particles of Zr, Ti, and Si oxides have
been synthesized in situ in the system of pores and channels of the membranes. Depending on the acid–base properties of oxides,
introduction of nanoparticles can increase or decrease the water uptake, conductivity, and selectivity. A new approach to cross-
linking of ion-exchange membranes by incorporating ZrO2 particles into their matrix is proposed. Such cross-linking provides an
improvement of swelling, conductivity, and salt permselectivity of the membrane in Na+-form. These parameters are important
for successful application of such materials in direct and reverse electrodialysis, electrodeionization, and diffusion dialysis. For
example, incorporation of 10 wt% of zirconia leads to a Bcross-linking^ of the membrane, i.e., binding of 45–50% of sulfonic
groups, accompanied by a decrease of the water uptake by more than twofold and an increase of apparent transport numbers.
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Introduction

In recent years, the use of ion-exchange membranes in water
treatment, waste water purification, desalination of food prod-
ucts, electrochemical synthesis, and energy production is
widely expanding [1–4]. In particular, such processes as elec-
trodialysis and electrodeionization [5, 6], dialysis, reverse
electrodialysis [7, 8] etc. are carried out extensively. Ion-
exchange membranes play key roles in these processes. As a
result of self-organization phenomena, pores and channel
structure are formed within such membranes [9–12]. Such
pores (ionic nanoclusters) has inverted micellar structure and

contain mobile ions formed due to the dissociation of
ionogenic groups (counter-ions) with sorbed water molecules.
This provides a high rate of ion transfer in the membranes [10].

The higher is the water uptake of the membranes, the great-
er is their ionic conductivity. However, the undesirable trans-
fer of co-ions (having the charge of the same sign as the groups
fixed on pore walls) and non-polar molecules or molecules
with non-polar fragments (such as hydrogen, oxygen, metha-
nol etc.) is enhanced at the same time. As a result, a trend
towards lowering of membrane permselectivity or selectivity
with increasing conductivity is observed [13–15]. Therefore,
for various membrane processes, it is necessary to control ion-
exchange capacity, flexibility of polymer chains, and their
cross-linking degree, which determine water uptake of the
membranes, their conductivity, and permselectivity [16].

Membrane water uptake is usually controlled by varying
either the fraction of a conductive polymer or its cross-
linking degree [17]. In a number of membrane preparation
methods, such as the paste method [18], both ways to control
the water uptake can be used simultaneously. But when, for
example, the membrane casting is used, cross-linking becomes
complicated and requires either additional treatment steps or
introduction of specific groups that are cross-linked during film
formation [17, 19, 20]. The latter significantly increase the cost
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of the membranes. This is the case of the membranes based on
polyetheretherketones, polysulfones, or block co-polymers
based on polystyrene and polyolefins. At relatively low sulfo-
nation degrees, the mentioned polymers possess good transport
andmechanical properties. However, the membraneswith high
functionalization degree lose their mechanical properties in
contact with water or even dissolve in it [21, 22].

Currently, the modification of ion-exchange membranes by
inorganic and organic nanoparticles is a subject of extensive in-
vestigation [23–30]. The majority of studies in this field are ded-
icated to synthesis of hybrid materials for fuel cells (FC) in order
to increase their proton conductivity and decrease gas permeabil-
ity [24]. For this purpose, particleswith an acidic surface are often
incorporated into the membranes. Such particles promote an in-
crease in the membrane water uptake and in the concentration of
carriers [26, 31]. However, in a number of studies, hybrid mate-
rials are synthesized with inorganic particles coupled to the sur-
face of membrane pores [27, 32, 33]. Thereby, an excessive
expansion of pores leading to loss of mechanical properties and
permselectivity is prevented. Operating conditions and, as a re-
sult, required membrane characteristics are significantly different
for applications in fuel cells and in processes such as direct and
reverse electrodialysis, electrodeionization, dialysis etc. More af-
fordable materials based on sulfonated polystyrene are preferred
in these processes [5]. It is of both practical and fundamental
interest to extend the mentioned approach to improving the prop-
erties of sulfonated polystyrene-based membranes [25].

The aim of the present study is to explore a possibility of
controlled change of water uptake and properties of mem-
branes based on sulfonated polystyrene via modification with
inorganic nanoparticles (Zr, Ti, and Si oxides). Impact of dop-
ing on transport properties of the membranes is compared to
the traditional approaches to conductivity/selectivity control:
change in cross-linking degree and proportion of the hydro-
phobic polymer. The use of grafted membranes is highly ad-
vantageous in this case, since grafting degree and cross-linking
degree can be varied during membrane preparation [34].

Materials and methods

Synthesis of grafted cation-exchange membranes Backbone
polymethylpentene film (TPX®_MX002, GoodFellow, Great
Britain) was subjected to UV-radiation (Hg-lamp 950 W) for
30 min. The obtained material was stored for 24 h prior to
styrene grafting. Styrene was distilled before the synthesis to
remove the inhibitors. For this purpose, styrene (Sigma-
Aldrich > 99%) was mixed with NaOH (BKhimmed sintez^
LLC, dry, Bchemically pure^ grade) and stirred for 1 h, followed
by distillation under argon atmosphere at 70 °C (pressure
60 mmHg). Synthesis of polystyrene on the film surface was
carried out in a reactor, where the activated films were placed.
Grafting was carried out in 70 vol% solution of distilled styrene

in methanol (BKhimmed sintez^ LLC, Bspecial purity for gra-
dient HPLC^ grade) with an addition of 1.5 mg FeSO4·7H2O
(BKhimmed sintez^ LLC) per 1 mL of the mixture. Synthesis
was performed at the solution boiling point (≈ 68–70 °С) under
vigorous stirring for 2 to 4 h, depending on the required grafting
degree. After the synthesis membranes were washed with tolu-
ene (BKhimmed sintez^ LLC) and acetone (BKhimmed sintez^
LLC) to remove the forming homopolymer, and then dried. To
perform sulfonation, the obtained films were placed in 1.5 vol%
solution of chlorosulfonic acid (BKhimmed sintez^ LLC) in 1,2-
dichloroethane (BKhimmed sintez^ LLC) and stirred in a shaker
for 20 min. The methanol (BKhimmed sintez^ LLC, Bspecial
purity for gradient HPLC^ grade) was added to the system to
quench the sulfonation. After washing with acetone, the film
was placed in a 2 M NaCl solution, kept for 2 h at 70–90 °С,
and, after multiple washings, was used for investigation.

The amount of grafted polystyrene was evaluated as
grafting degree (GD, wt%), which was calculated according
to the equation

GD ¼ mg −m0

mg
⋅100 ð1Þ

where m0 and mg are the film masses before and after the
grafting copolymerization stage, respectively.

Synthesis of modifiedmembranes Synthesis of hydrated amor-
phous oxides was carried out in situ within the grafted mem-
branes in the Na+-form. To obtain ZrO2 membrane, samples
were kept in 1 M, 0.5 M, and 0.1 M solutions of ZrOCl2·
8H2O (BKhimmed sintez^ LLC, Bchemically pure^ grade) for
24 h. Afterwards, the surface of the films was briefly washed to
remove excess of ZrOCl2 and soaked in 1MNaOH (BKhimmed
sintez^ LLC, dry, Bchemically pure^ grade) solution for 1 day.

To synthesize SiO2 membrane, samples were kept in a
mixture of TEOS (BKhimmed sintez^ LLC, Bpure for
analysis^ grade) and i-PrOH (BKhimmed sintez^ LLC, chem-
ically pure grade) for 24 h. Volumetric proportion of TEOS/i-
PrOH was varied from 1:1 to 4:1. Afterwards, the membranes
were removed from the solution, their surface was washed to
remove excess of the precursor, and they were soaked in 1 M
HCl solution for 1 day.

To synthesize TiO2 membrane, samples were kept in 1 M,
0.5 M, and 0.1 M solution of TiOCl2 (BKhimmed sintez^
LLC, Bchemically pure^ grade) for 24 h. Afterwards, they
were removed from the solution, their surface was washed to
remove excess of the precursor, and they were soaked in 1 M
NaOH solution for 1 day.

Methods of investigation

X-ray diffraction analysis of the samples was carried out using
Rigaku D/MAX 2200 diffractometer, CuKα radiation. Rigaku
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Application Data Processing software was used to process the
spectra. The size of crystalline domains was calculated ac-
cording to the Scherrer equation [35]. The instrument width,
i.e., resolution function of the diffractometer, was determined
in a special diffraction experiment using the standard powder
of lanthanum hexaboride LaB6 (Standard Reference
Material® 660a). Analysis of the microstructure was car-
ried out using transmission electron microscope Jeol JEM
2100 (Shared Equipment Center MISIS), accelerating
voltage was 200 kV. IR-spectra were recorded using a
Fourier transform IR-spectrometer Nicolet iS5 with an
ATR accessory (diamond crystal).

Ionic conductivity of membranes was measured in a 4-
electrode cell by impedance spectroscopy in 0.5 M sodium
chloride solution at 25 °C. A detailed procedure for determin-
ing the ionic conductivity is given in a previous paper [14].

Determination of apparent transport numbers was carried
out according to a procedure described previously in detail
[36]. The cell was filled with 0.5 M NaCl solution on one side
and with 0.1MNaCl solution on the other side. Calculation of
transport numbers (t+app) was done according to the following
equation

tþapp ¼ Em

RT
F

ln
a1
a2

� � ð2Þ

where Em is the measured membrane potential, mV; R is
the universal gas constant; T is the absolute temperature,
K; F is the Faraday constant; a1 and a2 are the electro-
lyte activities (the values were found by extrapolation of
tabulated values by a continuous function, a1 (0.5 M
NaCl) = 0.339, a2 (0.1 M NaCl) = 0.0783). The accuracy
of t+app determination was ± 0.5%.

Determination of water uptake was carried out gravimetri-
cally.Water was removed from the surface of the membrane in
the Na+ form using filter paper. Afterwards, the membrane
was weighted (m1), dried for 2 h under vacuum at 70 °C,
and weighted again (m2). Water uptake (ω(H2O), wt%) was
calculated according to the following equation

ω H2Oð Þ ¼ 100 ⋅ m1 −m2ð Þ=m1 ð3Þ

To determine the dopant content, the membrane was con-
verted to the H+-form and annealed for 12 h at 700 °С to
ensure complete burnout of the polymeric part of the mem-
brane. Residue was weighted (m3); calculation of the dopant
content (ω(dopant), wt%) was carried out using the following
equation

ω dopantð Þ ¼ 100 ⋅m3=m2 ð4Þ
The ion-exchange capacity was determined by keeping the

membranes in the hydrogen form in a 1.0М solution of NaCl;
then, an aliquot portion of the solution was titrated with

0.01 М NaOH. After that, the membrane was washed in dis-
tilled water, dehydrated for 1 h in vacuum at 70 °С, and
weighed (m4). The ion-exchange capacity (IEC, mmol g−1 of
the dry membrane) was calculated from the equation

IEC ¼ c1 ⋅ V1 ⋅ V2

V3 ⋅m4
ð5Þ

where c1 and V1 are the concentration and the volume of the
titrating solution (mmol/mL and mL), V2 is the volume of the
1.0 М solution of NaCl, V3 is the aliquot volume taken for
titration.

Molality of the inner solution (Cinn, mol kg−1) was calcu-
lated from the water uptake (ω(H2O), wt%) and ion-exchange
capacity (IEC, mmol g−1) according to the equation

Cinn ¼ IEC ⋅
100

ω H2Oð Þ −1
� �

ð6Þ

Results and discussion

Characterization of hybrid membranes

When ion-exchange membranes are kept in ZrOCl2 and
TiOCl2 salts, the oxocations are sorbed following an ion-
exchange mechanism:

ZrO2þ þ 2R−SO3
−↔ R−SO3ð Þ2−ZrO ð7Þ

TiO2þ þ 2R−SO3
−↔ R−SO3ð Þ2−TiO ð8Þ

During further treatment with alkali nanoparticles of hy-
drated oxides, ZrO2·nH2O and TiO2·mH2O are formed within
the membrane pores. The presence of zirconia was confirmed
by high-resolution transmission electron microscopy (TEM).
Sizes of the majority of particles lie within the range of 2–
5 nm (Fig. 1). The size is most likely limited by the sizes of
pores according to the Gierke model [10]. At the same time, a
few larger particles can be seen in the figure, which probably
corresponds to the particles formed at the membrane surface.

According to X-ray diffraction data, the residue after an-
nealing of the samples doped with hydrated zirconium oxide
is monoclinic ZrO2. X-ray diffraction patterns of the residue
after annealing of the membranes doped with titanium oxide
feature reflexes of the anatase form of TiO2. Particle sizes
estimated from the Scherrer equation are 13 and 20 nm for
ZrO2 and TiO2, respectively. The residue after annealing of
the membranes doped with silica remains amorphous. SiO2

formation is confirmed using IR-spectroscopy by the presence
of a characteristic band of Si–O stretching vibration at 1000–
1100 cm−1.

It is generally recognized that incorporation of hydro-
philic oxides in the pores of Nafion® type membranes can
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lead to an increase in water uptake [26, 37–39], which is
in good agreement with our results for the membranes
doped with silica (Table 1). On the other hand, according
to the literature, the introduction of titanium or zirconium

oxide nanoparticles can lead to the preservation or reduc-
tion of conductivity and water uptake [40–43]. In our
case, incorporation of titanium or zirconium oxides leads
to a decrease in the water uptake. Moreover, when the
membranes are doped with zirconia, the ion-exchange ca-
pacity (IEC) decreases dramatically, whereas for the sam-
ples doped with TiO2, such changes are less pronounced
(Table 1).

The change in IEC is associated with binding of sulfonic
groups by the oxide surface. Binding efficiency should de-
crease as the acidity of the respective oxides increases in the
following sequence ZrO2-TiO2-SiO2 [44, 45]. This process
can be described by the formation of Bsalt^ bridges according
to the eq. (9).

ZrO2−x OHð Þx þ Х R−SO3−→ZrO2−x R−SO3−� �
x

ð9Þ

Similar processes occur during sulfonation or phosphation
of zirconium and titanium oxides [46–48], as well as during
their use as anion-exchange materials [49]. Formation of such
salt bridges limits membrane swelling, similar to introduction
of a cross-linking agent or decreasing the fraction of the con-
ductive polymer in traditional approaches to control the swell-
ing of ion-exchange membranes.

In order to prove that cross-linking takes place, an addition-
al experiment was carried out. Pure polystyrene sulfonate,
which is responsible for conductive properties of the obtained
membranes, demonstrated high water solubility. However, af-
ter consecutive treatment with ZrOCl2 and NaOH solutions,
the material lost this property. It confirms that such treatment
leads not only to water displacement, but also to polymer
cross-linking due to formation of salt bridges.

Fig. 1 TEM image of the membrane doped with zirconium oxide

Table 1 Main physicochemical parameters of the initial and doped
membranes with varying dopant content

Membrane,
dopant

ω(dopant),
wt%

IEC
mmol g−1

ω(H2O),
wt%

Сinn,
mmol g−1

GD= 30% 1.6 30 3.7 ± 0.1

ZrO2 1 1.0 19 4.3 ± 0.2

2 0.91 14 5.6 ± 0.3

3 0.83 14 5.1 ± 0.3

GD= 60% 1.9 44 2.3 ± 0.1

ZrO2 7 1.1 29 2.7 ± 0.1

9 0.90 27 2.4 ± 0.1

12 0.88 26 2.5 ± 0.1

GD= 42% 1.8 39 3.1 ± 0.1

TiO2 5 1.7 33 3.5 ± 0.1

6 1.6 29 3.9 ± 0.1

10 1.5 29 3.7 ± 0.1

GD= 63% 2.1 51 2.0 ± 0.1

TiO2 4 2 49 2.1 ± 0.1

7 1.9 45 2.3 ± 0.1

10 1.7 37 2.9 ± 0.1

GD= 35% 1.8 41 2.6 ± 0.1

SiO2 2 1.8 42 2.5 ± 0.1

2 1.9 41 2.7 ± 0.1

4 2 45 2.4 ± 0.1

GD= 71% 2.2 50 2.3 ± 0.1

SiO2 5 2.3 49 2.4 ± 0.1

5 2.3 51 2.2 ± 0.1

8 2.3 55 1.9 ± 0.1

0.005 0.010 0.015 0.020 0.025 0.030
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
 1
 2
 3

GD=30%

t
ppa+

 25o

Na+, S cm -1

GD=60%

σ

Fig. 2 Apparent transport numbers as a function of ionic conductivity for
initial (1, 2) and zirconia-doped membranes (3); 1 = initial membranes
used in the present study, 2 = hybrid materials obtained from these
membranes, 3 = previously described grafted membranes [14] with
varying grafting degree (proportion of ion conducting polymer) and
cross-linking degree
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Influence of doping on transport properties

Incorporation of zirconia in the matrix of the investigated
membranes leads to an increase in ionic conductivity and to
a decrease in permselectivity (Fig. 2) Furthermore, molality of
the inner solution increases dramatically (Table 1). Water up-
take decreasing after zirconia incorporation into the mem-
brane matrix is coupled with contraction of pores and as a
result channels, which limit the membrane conductivity. The
volume of the electroneutral solution in pore centers,
through which non-selective transport of co-ions occurs,
decreases even to a greater degree. In contrast, the advan-
tage of using traditional cross-linking is that a decrease in
charge carrier concentration is not pronounced. It is ob-
served only due to a slight Bdilution^ after the cross-
linking agent is introduced. As a result, the conductivity
decrease is smaller in this case (Fig. 2).

However, in hybrid membranes based on zirconia and a
film with a high initial grafting degree (GD = 60%), the mo-
lality of inner solution increases only slightly. Still, these
membranes have high transport numbers. It is due to the fact
that water is partly coordinated by the dopant surface or local-
ized in the hydration shells of the formed salt bridges. Since
the hydration shells do not contribute to the IEC of the mem-
brane, the real concentration of solvatedmobile ions should be
markedly higher.

The strategy of controlling membrane swelling by incorpo-
ration of zirconia is similar to ionic cross-linking by mixing a
polyacid and a polybase [50, 51], which is widely used for the
synthesis of proton-conducting membranes which cannot be
cross-linked by any other method. However, this approach is
only efficient for the membranes in the protonated form,
whereas quite often, non-acidic solutions should be subjected
to desalination.

In the case of titanium oxide, which has lower basicity,
binding of functional groups is weaker (Table 1), and a change
of conductivity and transport numbers is smaller (Table 2). For
silica, on the contrary, we observed an increase in conductivity
and a decrease in permselectivity, compared to the initial
membranes.

According to the membrane pore semi-elasticity model
[52], incorporation of nanoparticles results in widening of
pores due to the increased osmotic pressure, since a nano-
particle takes up a part of volume. The mentioned effect
predominates only in the case of membranes doped by
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Fig. 3 Illustration of the
nanoparticle incorporation impact
on the structure of pores (or ion
clusters)-channel systems for
zirconia and silica

Table 2 Ionic conductivities and transport numbers of the initial
membrane with 65% polystyrene grafting degree and some of the
corresponding hybrid membranes with the dopant content of 8–10 wt%

Property Initial membrane Dopant

ZrO2 TiO2 SiO2

IEC mmole g−1 2.1 1.1 1.9 2.1

σNa+, mS cm−1 25.3 10.1 22.3 31.6

t+app 88 95 88 81
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silica (Fig. 3). When functional groups of the membrane
are bound to the dopant surface, corresponding forces
prevent the pores from broadening. Furthermore, the con-
centration of counter-ions formed due to the dissociation
of –SO3Na groups decreases. The sum of the mentioned
phenomena leads to the effects observed for membrane
doping with different oxides (Table 2). The effects are
illustrated on Fig. 3.

The obtained results can be compared with a previous
study [26], where fabrication of a series of hybrid materials
based on perfluorinated homogeneous Nafion® membranes
and the same oxides has been reported. Silicon and titanium
oxides demonstrate behavior similar to these data. Silica in-
corporation leads to an increase in water uptake and conduc-
tivity, while titanium oxide has little effect on these parame-
ters. The situation is directly opposite in the case of zirconia.
According to the reported data [22], conductivity as well as
water uptake of the obtained membranes were markedly
higher, compared to the initial one. Most likely, the discrep-
ancy arises from further treatment of the hybrid membranes.
We assume that after boiling in sulfuric acid, the sulfonated
form of zirconia was obtained. As a result, no salt bridges
were formed between the functional groups of the polymer
and the zirconia surface. Introduction of such particles led to
an increase in conductivity and water uptake. We observed a
similar effect previously, when ion-exchange membranes
were doped with zirconium oxide, zirconium phosphate
[28], and zirconium oxide with surface phosphate groups [43].

The reversibility of salt bridge formation can be demon-
strated. When the membrane is treated with 1 M solution of
sodium hydroxide, the sulfonic groups bound to the oxide
surface are substituted with OH-ions. After alkali is removed
by repeated washing with 0.1 M NaCl solution, conductivity
of these membranes increases twofold, compared to the ones
not treated with alkali (Fig. 4). Enhanced conductivity of such
membranes is preserved for several days. After treatment with

acid solution and washing with 0.1MNaCl, ionic resistance is
restored via regeneration of salt bridges between the oxide
surface and the functional groups. Conductivity of the mem-
branes with Bbound^ groups also remains stable. In other
words, the salt bridges between the membrane polymer and
dopant nanoparticles can be broken down and restored on
demand by treatment with solutions of different acidity. This
makes it possible to control conductive properties by pH
varying.

Conclusion

In the present study, we demonstrate that incorporation of
inorganic oxides of different nature is an efficient way to con-
trol water uptake, conductivity, and permselectivity of ion-
exchange membranes. Doping with silica increases water up-
take and conductivity. Introduction of titanium or zirconium
oxide changes the properties of the membranes in the opposite
direction. The fact that the reason for this phenomenon is
peculiar cross-linking of the membrane via salt bridge forma-
tion was shown. Since a part of functional groups are involved
in such cross-linking, its efficiency is lower, compared to tra-
ditional cross-linking of polymeric chains where no decrease
of ion-exchange capacity can be observed usually. The pro-
posed procedures are simple to realize and can be efficiently
used with a wide range of ion-exchange membranes for appli-
cations in fuel cells and other processes.
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