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Abstract
An excellent control over the charged transport process and optical properties in polyaniline has been attained through successful
localization of polarons formed in the polyaniline chain. The localization of polaron in polyaniline has been achieved through its
interaction with methylene blue (MB) dye. Polyaniline has been synthesized on paper substrate from aniline using FeCl3 as
polymerizing agent. On optical measurement of prepared sample, a remarkable red shift in the optical band gap has been
observed varying from 2.63 to 2.47 eV. The charge transport behavior as reflected from its I-Vmeasurement shows a nice tuning
in the logarithmic scale. The chemical interaction between theMB dye and the polaronic charged defect states brings this brilliant
tuning in the optical and electrical properties of polyaniline. Predominantly, the intra-chain charge transport of the polyaniline
backbone is affected by the MB dye interaction.
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Introduction

The fundamental understanding of intra-chain and inter-chain
charge transfer processes in conjugated polymers opened up
an inspiring area of research nowadays. The electronic struc-
ture of π-conjugated molecules is of specific interest to scien-
tists and researchers, particularly in semiconductor science
and technology, in order to bring a tuning and alignment of
energy levels to control the optical, electrical, and chemical
catalytic properties [1–4]. In addition, the extensive delocali-
zation and localization of defect states in the polymer chain
provide outstanding opportunities in tuning their optical and
electrical properties [5]. Thus, such π-conjugated molecules
have been appearing with excellent physical properties, and as
a result, conducting polymers such as polyaniline [6–8],

polypyrrole [9, 10], polythiophene [11], and their derivatives
have been widely investigated for application in electronic
devices such as light-emitting diodes [12–14], solar cells
[15–17], energy storage devices [18–20], catalytic applica-
tions [21, 22], thermoelectric devices [23–25], supercapacitors
[26–29], and sensors [30–33] as active materials. Among dif-
ferent π-conjugated molecules, polyaniline is one with excel-
lent physical properties and suitable electronic band structures
[34], providing its possibility to be employed in electronic
devices [35–39]. Moreover, polyaniline has advantages of its
simpler polymerization process, low cost, and tunability of
physical properties like electrical and optical properties
[40–43].

Dye molecules are of special significance for their optical
absorption properties, and they have chromophore for gener-
ating color in organic compounds. The chromophores are part
of a conjugate system and thus likely to interact with π-
conjugated molecules. Based on the fact that the partially ox-
idized polyaniline has positive charged defect states [44, 45],
we approached to investigate the interaction of a dye with
polyaniline. In this work, an attempt has been taken to observe
the effect of methylene blue (MB) dye interaction with
polyaniline, in tuning its optical and electrical properties.
Especially, this polyaniline dye interaction has been observed
on cellulose system, considering the advantages of flexibility
and high hydrophilicity of cellulose, which provides
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opportunities of better chemical interaction with dye solution
and also during synthesis.

With the recent rapid progress of functionality of polymer-
based electronic materials, one can also observe parallel de-
velopments in their synthesis techniques, which included a
number of polymerization processes such as photo-induced
polymerization [46, 47], interfacial polymerization [48, 49],
electrochemical polymerization [50–52], solution polymeriza-
tion [53, 54], seeding polymerization [55], emulsion polymer-
ization [56], vapor phase self-assembling polymerization [57,
58], plasma polymerization [59, 60], and sonochemical syn-
thesis process [61, 62] techniques. Considering the point of
better control and uniformity over cellulose substrate, the va-
por phase polymerization process has been chosen and
employed for polyaniline synthesis in this article. Here, poly-
merization of aniline has been carried out using FeCl3 as po-
lymerizing agent. Subsequently, the polyaniline-coated cellu-
lose sheet was used for MB dye interaction. The preparedMB
dye–implanted polyaniline samples have been studied for
structural analysis, optical properties, and electrical properties.
A remarkable tuning has been achieved in the electrical trans-
port properties along with optical properties, thus opening a
wider and simpler way of functionalizing π-conjugated mol-
ecules on cellulose as an electronic material system.

Experimental details

Materials

Highly purified aniline, methanol, anhydrous ferric chloride
(Merck), and methylene blue (Sigma-Aldrich) were used in
the chemical synthesis process. Cellulose papers of thickness
of 127 μm were used as the flexible substrates.

Synthesis of dye-implanted polyaniline on cellulose

Polymerization of aniline on cellulose was carried out from
double-distilled aniline through vapor phase polymerization
technique as detailed in our earlier report [63]. Partially oxi-
dized emeraldine salt form of polyaniline has been obtained
through this process using FeCl3 as polymerizing agent. The
prepared polyaniline-implanted cellulose sheets were then
used for MB dye interaction. For that, powdered MB dye
was dissolved in distilled water to prepare solutions of MB
dye at four different concentrations of 1 mg/l, 3 mg/l, 7 mg/l,
and 11 mg/l in four different beakers. Then, four pieces of
polyaniline-implanted cellulose sheets were emerged into
those beakers for desired interactions with MB dye at four
different concentrations. All the samples were taken out from
the dye solution and were dried on air at ambient temperature.
The dye-interacted polyaniline-implanted cellulose sheets
were thus produced and then used for different physical

characterizations to study their functionality as electronic
materials.

Characterizations

The prepared samples were studied for their physical proper-
ties through different characterization techniques. X-ray dif-
fraction (XRD) measurements have been done to analyze
crystal structure using XRD (Bruker D-8 Advance) system.
Field emission scanning electron microscopy (FESEM) has
been performed using JEOL (JSM-7200F) model for its mor-
phological investigations. The optical absorbance has been
measured by UV-Vis-NIR spectrophotometer (Shimadzu
3600 plus). The electrical properties were studied by electrical
conductivity (I-V) measurements using Agilent (B2912A,
USA) precision source/measurement.

Results and discussion

Structural and morphological characterizations

The crystal structure of the polyaniline-loaded cellulose has
been investigated for both the cases before and after MB dye
incorporation. The X-ray diffraction pattern has been depicted
in Fig. 1, which shows one prominent peak appeared at 2θ =
22.4∘ and two small peaks at 2θ = 38∘and 2θ = 44.26∘ corre-
sponding to the Miller planes (020), (300), and (222) of
polyaniline [5].

The X-ray diffraction measurements show that the degree
of crystallinity of the polyaniline-loaded paper does not de-
cline significantly due toMB dye interaction. The XRD peaks

Fig. 1 X-ray diffraction pattern of dye-interacted polyaniline on cellulose

1928 Colloid Polym Sci (2018) 296:1927–1934



also indicate that the emeraldine salt form of polyaniline has
been obtained during polymerization process, as intended dur-
ing its synthesis process. The basic oxidation state of the
polyaniline remains unaltered during dye interaction without
further oxidation or reduction of the polymer chain by the
interaction of MB dye.

Morphological and compositional analyses

The morphological investigation of the prepared polyaniline-
coated cellulose has been done from field emission scanning
electron microscopy (FESEM) measurements. Figure 2a rep-
resents the FESEM image of the polyaniline-implanted
cellulose.

The FESEM image clearly depicts that the polyaniline has
been successfully implanted over the cellulose sheet with ex-
cellent uniformity. In order to investigate the incorporation of
MB dye on cellulose sheet, the FESEM image has been taken
after dye loading as well, which is shown in Fig. 2b. This
demonstrates uniform distribution of the loaded dye over the
cellulose sheet. Further, the compositional analysis was

performed from energy dispersive X-ray (EDX) measure-
ment, in order to confirm the incorporation of MB dye. The
EDX spectra of polyaniline-implanted cellulose with MB dye
incorporation are shown in Fig. 3. The elemental detection by
EDX measurements confirms the presence of MB dye over
the polyaniline-implanted cellulose. In the EDX spectra, the
presence of S, Cl, C, N, and O has been observed. Among
these elements, C and N have appeared for both the com-
pounds polyaniline and MB dye. But S and Cl have been
observed due to the presence of MB dye only, since no other
sources of S and Cl were used. Further, the UV-vis-NIR spec-
tra (Fig. 4) of the dye-loaded polyaniline show the character-
istic optical absorption of MB dye confirming the presence of
MB dyes.

Optical absorption spectroscopy

The interaction of organic π-conjugated molecules with elec-
tromagnetic radiation provides a convincing tool to investi-
gate the energy band structure of such macromolecular sys-
tems. In order to understand the effect of MB dye on the
fundamental optical absorption properties of polyaniline, op-
tical absorption spectroscopic measurements have been done
for polyaniline-implanted cellulose sheets interacted for dif-
ferent times with MB dye. The optical absorption spectra of
polyaniline interacted with MB dye at 1 mg/l concentration
are demonstrated in Fig. 4.

For the pure polyaniline, the absorption bands are centered
at 255 nm, 355 nm, 400 nm, and 780 nm respectively. The
absorption bands are due to the characteristic optical transi-
tions of the emeraldine form of polyaniline. The weak peak
appearing at 255 nm is related to the molecule conjugation
[64]. The broad peak centered at 355 nm is due to π-π* tran-
sition within the benzenoid segments [65]. The absorption
peak at 400 nm corresponds to polaron–π* transition and is
related to doping level and formation of polaron [66]. Another
broad characteristic absorption peak of polyaniline appearing
at 780 nm attributes for π–polaron transition [65]. The MB
dye has its characteristic absorptions occurring at 605 nm and
668 nm [67]. This fundamental absorption of MB dye occurs
due to vibronic transitions and π-π* transitions.

The effect of MB dye treatment on the optical band gap
of polyaniline has also been studied from optical absorp-
tion measurements. The optical band gap has been calcu-
lated from the fundamental relationship between the opti-
cal absorption coefficient (α) and the incident photon en-
ergy (hν) as given below

αhνð Þ1n ¼ A hν−Eg
� � ð1Þ

where α, ν, Eg, and A denote the absorption coefficient,
linear frequency of the incident photon, energy band gap,
and an energy-independent constant, respectively. The

Fig. 2 a FESEM image of the polyaniline-implanted cellulose. b FESEM
image taken after dye loading
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index n is related to the different types of transition. n ¼ 1
2

for a direct band allowed transition energy gap, n = 2 for
an indirect allowed transition, n ¼ 3

2 for forbidden direct
transition, and n = 3 for forbidden indirect transition ener-
gy gap. The optical energy band gap is obtained from the
(αhν)2 vs. (hν) plot by extrapolating the linear portion of
the plot to the (hν) axis, as illustrated in Fig. 5.

It has been observed that the energy band gap of
polyaniline suffers a red shift during interaction with
MB dye. Some inter-band defect levels have been created
in the polyaniline band structure due to MB dye interac-
tion, and this causes the decrease in energy band gap of
polyaniline. This is also responsible for localizations of
carriers affecting the electrical behavior of polyaniline
interacted with MB dye, discussed in the next section.

Electrical properties

The polyaniline as prepared on cellulose shows electrical con-
ductivity, and the charge transport process of the polyaniline-
implanted cellulose is based on the formation of polaron and
bipolaron charged defect states on the polymer backbone [63].
The overall electrical transport of polyaniline depends on the
performance of two different transport processes, generally in-
volved in such polymeric systems: intra-chain and inter-chain
transport processes. The intra-chain charge transport is based
on the delocalization of the carriers on the polymer chain and
the effective conjugation length [68]. The inter-chain charge
transport in polymeric system is based on the hopping mecha-
nism, which is dependent on the ordered molecular packing. In

Fig. 3 The EDX spectra of the
dye-loaded polyaniline-implanted
cellulose

Fig. 5 Variation of optical band gap of polyaniline interacted with MB
dye for different interaction times

Fig. 4 Optical absorbance spectra of MB dye–interacted polyaniline on
cellulose
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crystalline polymer system, the hopping mechanism can play a
significant contribution in electrical charge transport. In this work,
the crystallinity of the polyaniline remains almost unaltered even
after theMBdye interaction as observed fromXRD results. Thus,
the interaction of the polyaniline with dyemainly affects the intra-
chain charge transport process. Furthermore, the intra-chain trans-
port is much faster than the inter-chain one, and thus, a substantial
effect can be observed in the electrical conductivity of polyaniline
after MB dye interaction. The electrical conductivity variation of

polyaniline with MB dye interaction is depicted in Fig. 6. It has
been observed that the electrical conductivity is reduced signifi-
cantly with increasing concentration of MB dye, indicating a
convenient way of controlling the electrical conductivity and
tuning it towards lower conductivity or higher resistivity.

TheMBdye interaction brings an operative localization of the
charge carriers bringing a control over the intra-chain carrier
movement, thus increasing the resistivity. The mechanism of
localization of polarons in the polymer backbone is based on

Fig. 6 Current vs. voltage plot of MB dye–interacted polyaniline on
cellulose

Fig. 7 Schematic representation
of MB dye interaction with
polyaniline

Fig. 8 Variation of sheet resistance of MB dye–interacted polyaniline
with concentration of MB dye
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the interaction of the cationic MB dye with the polymer chain as
illustrated in Fig. 7.

The delocalization of the electronic states relies on the
resonance-stabilized structure of the polymer.Molecular arrange-
ment must be conjugated and allow the charge defect states to
propagate through the polymer chain for the charge transfer. The
interaction of theMBdyewith the polymer chain at first prevents
the formation of polaron at the interaction site of the chain and
thus reduces the number carrier. Secondly, it does not allow
alteration of the σ and π bonds in the polymer backbone. As a
result, the polyaniline interacted with the MB dye is not a good
medium for the propagation of the charged defect states through
its chain, affecting the intra-chain charge transport.

As a result, the resistivity increases, and the variation of
sheet resistance of the polyaniline-implanted cellulose after
MB dye interaction at different concentrations is depicted in
Fig. 8. One can clearly observe a remarkable increase in sheet
resistance with the increasing concentration of MB dye with
an excellent tuning over a wide range.

Conclusions

Interaction of MB dye with polyaniline has been studied in
this article with an objective to bring a control over the elec-
trical transport properties of the polyaniline prepared on flex-
ible cellulose sheet. MB dye mainly affects the intra-chain
transport properties by localizing the polarons in the polymer
backbone. The chemical attachment of MB dye with the
polyaniline prevents the alteration of σ and π bonds in that
part of the chain, and thus, the polaron already existing in the
chain becomes localized. The electrical studies of the
polyaniline interacted with MB dye on cellulose sheet show
an excellent control of its electrical transport properties with a
remarkable 10,000 times increase in sheet resistance. This
wide-range control and tuning in its electrical transport have
achieved keeping its optical band gap within the range of 2.47
to 2.63 eV, which lies on a suitable range of values for elec-
tronic and optoelectronic applications.
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