ORIGINAL CONTRIBUTION

Approximate expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical or cylindrical colloidal particle based on the modified Poisson-Boltzmann equation

Hiroyuki Ohshima¹

Received: 31 December 2017 / Revised: 3 February 2018 /Accepted: 5 February 2018 /Published online: 17 February 2018 \circled{c} Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Approximate expressions for the surface charge density/surface potential relationship and double-layer potential distribution are derived for a spherical or cylindrical colloidal particle in an electrolyte solution. The obtained expressions are based on an approximate form of the modified Poisson-Boltzmann equation taking into account the ion size effects through the Carnahan-Starling activity coefficients of electrolyte ions. We further derive approximate expression for the effective surface potentials of a spherical or cylindrical particle and for the electrostatic interaction energy between two spherical or cylindrical particles on the basis of the linear superposition approximation.

Keywords Surface charge density/surface potential relationship . Double-layer potential distribution . Spherical particle . Cylindrical particle . Modified Poisson-Boltzmann equation

Introduction

The surface charge density/surface potential relationship and the electric double-layer potential distribution for colloidal particles in an electrolyte solution, which play essential roles in determining the behaviors of colloidal particles, can be obtained via the Poisson-Boltzmann equation [[1](#page-4-0)–[9\]](#page-5-0). The standard Poisson-Boltzmann equation, however, assumes that ions behave like point charges and neglects the effects of ionic size. There are many theoretical studies on the modified Poisson-Boltzmann equation $[10-16]$ $[10-16]$ $[10-16]$ $[10-16]$, which takes into account the effect of ionic size by introducing the activity coefficients of electrolyte ions [\[10](#page-5-0), [17](#page-5-0)–[19\]](#page-5-0). In a previous paper [\[20\]](#page-5-0), on the basis of the equation for the ionic activity coefficients given by Carnahan and Starling [[19](#page-5-0)], which is the most accurate among existing theories, we presented a simple algorithm for solving the modified Poisson-Boltzmann equation and derived a simple approximate analytic expression for the surface charge density/surface potential relationship for a planar charged surface. On the basis of the modified Poisson-Boltzmann equation, we also derived analytic expressions for the interaction energy between two colloidal particles [\[21](#page-5-0)] and the electrophoretic mobility of a spherical particle [\[22](#page-5-0)].

In the present paper, we derive approximate expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical or cylindrical colloidal particle based on the modified Poisson-Boltzmann equation with the help of the previously developed method [[23](#page-5-0)–[26](#page-5-0)]. We also derive approximate expression for the effective surface potential of a spherical or cylindrical particle and for the electrostatic interaction energy between two spherical or cylindrical particles on the basis of the linear superposition approximation.

Surface charge density/surface potential relationship and double-layer potential distribution around a spherical particle

Consider a spherical particle of radius a in a symmetrical electrolyte solution of valence z and bulk concentration

 \boxtimes Hiroyuki Ohshima ohshima@rs.noda.tus.ac.jp

¹ Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan

(number density) n . We take a spherical coordinate system with its origin $r = 0$ placed at the center of the sphere and r is the radial distance from the sphere center so that the region r $> a$ corresponds to the electrolyte solution. The electric double-layer potential (r) at position r in the electrolyte solution $(r > a)$ obeys the following spherical Poisson equation:

$$
\frac{d^2\psi}{dr^2} + \frac{2}{r}\frac{d\psi}{dr} = -\frac{\rho_{\rm el}(r)}{\varepsilon_{\rm r}\varepsilon_{\rm o}}\tag{1}
$$

Here, ε_r is the relative permittivity of the electrolyte solution, ε_0 is the permittivity of a vacuum, and $\rho_{el}(r)$ is the space charge density resulting from the electrolyte ions and is given by

$$
\rho_{\rm el}(r) = ze\{n_+(r) - n_-(r)\}\tag{2}
$$

where $n_{+}(r)$ and $n_{-}(r)$ are, respectively, the concentrations of cations and anions at position r and e is the elementary electric charge. The boundary conditions for (r) are given by

$$
\psi(a) = \psi_0 \tag{3}
$$

$$
\psi \to 0, \quad \frac{d\psi}{dr} \to 0 \quad \text{as} \quad r \to \infty \tag{4}
$$

We assume that the activity coefficients of cations and anions at position r have the same value $\gamma(r)$. The electrochemical potential $\mu_+(r)$ of cations and that of anions $\mu_-(r)$ are thus given by

$$
\mu_{\pm}(r) = \mu_{\pm}^{0} \pm z e \psi(r) + k \sin[\gamma(r) n_{\pm}(r)] \tag{5}
$$

where μ_{\pm}° are constant terms, k is Boltzmann's constant, and T is the absolute temperature. The values of $\mu_{\pm}(r)$ must be the same as those in the bulk solution phase, where $(r) = 0$, viz.,

$$
\mu_{\pm}(\infty) = \mu_{\pm}^{\circ} + kT \ln(\gamma^{\infty} n) \tag{6}
$$

where $\gamma^{\infty} = \gamma(\infty)$. By equating $\mu_{\pm}(r) = \mu_{\pm}(\infty)$, we obtain

$$
n_{\pm}(r) = \frac{\gamma^{\infty} n}{\gamma(r)} \exp\left(\mp \frac{ze\psi(r)}{kT}\right)
$$
 (7)

Thus, Eq. (1) as combined with Eqs. (2) and (7) becomes the following modified Poisson-Boltzmann equation:

$$
\frac{d^2\psi}{dr^2} + \frac{2}{r}\frac{d\psi}{dr} = \frac{2zen}{\varepsilon_r \varepsilon_o} \cdot \frac{\gamma^{\infty}}{\gamma(r)} \sinh\left(\frac{ze\psi(r)}{kT}\right)
$$
(8)

We now assume that cations and anions have the same radius a_i . We introduce the volume fraction $\varphi_+(r)$ of cations and that of anions $\varphi_-(r)$ at position r. Then, we have

$$
\phi_{\pm}(r) = \left(\frac{4}{3}\pi a_i^3\right) n_{\pm}(r) \tag{9}
$$

The total ion volume fraction $\rho(x)$ at position r is thus given by

^ϕð Þ¼ ^r ^ϕþð Þþ ^r ^ϕ[−]ð Þ¼ ^r ⁴ ³ ^πa³ i f g ⁿþ; ;ð Þ ^r; ; ^þ; ⁿ−; ;ð Þ ^r; ^¼ ^ϕ^B f g ⁿþ; ;ð Þ ^r; ; ^þ; ⁿ−; ;ð Þ ^r; 2n ð10Þ

where $\varphi_B \equiv \varphi(\infty) = (4\pi a_1^3/3) \cdot 2n$ is the total ion volume fraction in the bulk solution phase.

We employ the expression for $\gamma(x)$ derived by Carnahan and Starling [\[19\]](#page-5-0), viz.,

$$
\gamma(r) = \exp\left[\frac{\phi(r)\{8 - 9\phi(r) + 3\phi^2(r)\}}{\{1 - \phi(r)\}^3}\right]
$$
(11)

In a previous paper $[20]$ $[20]$, we have shown that Eq. (11) can be approximated well by

$$
\gamma(r) = \gamma^{\infty} \left\{ 1 + G \sinh^2 \left(\frac{ze\psi(r)}{2kT} \right) \right\}
$$
 (12)

where G is defined by

$$
G = \frac{16\phi_{\rm B}}{1 + 8\phi_{\rm B}}\tag{13}
$$

The above approximation $(Eq. (12))$ is a good approximation with negligible errors for low \varnothing_B ($\sigma_{\rm B} \leq 0.1$) and low-to-moderate potentials (|ze $_0$ / kT \leq 3) [[20](#page-5-0)]. By substituting Eq. (12) into Eq. (8), we obtain the following approximate form for the spherical modified Poisson-Boltzmann equation:

$$
\frac{d^2\psi}{dr^2} + \frac{2}{r}\frac{d\psi}{dr} = \frac{2zen}{\varepsilon_r \varepsilon_0} \cdot \frac{\sinh\left(\frac{ze\psi(r)}{kT}\right)}{1 + G\sinh^2\left(\frac{ze\psi(r)}{2kT}\right)}\tag{14}
$$

which is rewritten in terms of the scaled electric potential $y(r) = ze(r)/kT$:

$$
\frac{d^2y}{dr^2} + \frac{2}{r}\frac{dy}{dr} = \frac{\kappa^2 \sinh(y)}{H(y)}
$$
(15)

with

$$
H(y) = 1 + G\sinh^2(y/2)
$$
\n⁽¹⁶⁾

We introduce $f(y)$ defined by

$$
f(y) = \text{sgn}(y_0) \cdot 2 \sqrt{\frac{\ln(H(y))}{G}} \tag{17}
$$

where $y_0 = ze_0/kT$ is the scaled particle surface potential and sgn(y_o) = + 1 for y_o > 0 and − 1 for y_o < 0. Then, Eq. [\(15\)](#page-1-0) becomes

$$
\frac{d^2y}{dr^2} + \frac{2}{r}\frac{dy}{dr} = \kappa^2 f(y)\frac{df(y)}{dy}
$$
\n(18)

In order to obtain a large κa approximate solution to Eq. (18), we make the change of variables [[23](#page-5-0)–[25](#page-5-0)]

$$
s = -\frac{a}{r} e^{-\kappa(r-a)} \tag{19}
$$

and rewrite Eq. (18) as

$$
s^2 \frac{d^2y}{ds^2} + s \frac{dy}{ds} = f(y) \frac{df}{dy} - \frac{2\kappa r + 1}{(\kappa r + 1)^2} \left\{ f(y) \frac{df}{dy} - s \frac{dy}{ds} \right\} \tag{20}
$$

which is subject to the boundary conditions: $y = y_0$ at $s = 1$ and $y = dy/ds = 0$ at $s = 0$ (see Eqs. ([3\)](#page-1-0) and [\(4](#page-1-0))). This approximation method is excellent for $\kappa a \ge 1$ with relative errors less than about 1% [\[23](#page-5-0)–[25\]](#page-5-0).

When $\kappa a \gg 1$, Eq. (20) reduces to

$$
s^2 \frac{d^2 y}{ds^2} + s \frac{dy}{ds} = f(y) \frac{df}{dy}
$$
 (21)

which is integrated one to give

$$
s\frac{dy}{ds} = f(y) \tag{22}
$$

We then replace the second term on the right-hand side of Eq. (20) with its large κa limiting form, i.e., $\kappa r \rightarrow \kappa a$ and $s dy$ / $ds \rightarrow f(y)$ (Eq. (22)), and integrate Eq. (21) to obtain

$$
s\frac{dy}{ds} = F_s(y) \tag{23}
$$

with

$$
F_s(y) = \frac{\kappa a}{\kappa a + 1} f(y) \left[1 + \frac{2(2\kappa a + 1)}{(\kappa a)^2} \frac{1}{f^2(y)} \int_0^y f(u) du \right]^{1/2}
$$
\n(24)

The surface charge density σ /surface potential $_{0}$ (or y_{0}) relationship can be obtained by using the following relation:

$$
\sigma = -\varepsilon_{\rm r}\varepsilon_{\rm o}\frac{d\psi}{dr}\bigg|_{r=a^{+}} = \frac{\varepsilon_{\rm r}\varepsilon_{\rm o}\kappa kT}{ze}\frac{\kappa a + 1}{\kappa a} s\frac{dy}{ds}\bigg|_{s=1}
$$

$$
= \frac{\varepsilon_{\rm r}\varepsilon_{\rm o}\kappa kT}{ze}\frac{\kappa a + 1}{\kappa a}F_{\rm s}(y_{\rm o})\tag{25}
$$

or

$$
\sigma = \frac{\varepsilon_{\rm r}\varepsilon_{\rm o}\kappa kT}{ze}f(y_{\rm o})\left[1+\frac{2(2\kappa a+1)}{(\kappa a)^2}\frac{1}{f^2(y_{\rm o})}\int_0^{y_{\rm o}}f(u)du\right]^{1/2}
$$
\n(26)

Equation (23) is integrated again to give

$$
-\ln s = \int_{y}^{y_o} \frac{dy}{F_s(y)}\tag{27}
$$

One can numerically calculate $F_s(y)$ from $f(y)$ (Eq. [\(17](#page-1-0))) with the help of Eq. (24) and then calculate $y(r)$ from Eq. (27).

Equations (26) and (27) are the required expressions for the σ /y_o relationship and y(r) for a sphere based on the modified Poisson-Boltzmann equation.

Surface charge density/surface potential relationship and potential distribution around a cylindrical particle

The same approximation method as for a spherical particle can be applied to an infinitely long cylindrical particle of radius a [\[23](#page-5-0), [24,](#page-5-0) [26\]](#page-5-0). The cylindrical Poisson-Boltzmann equation for the electric potential (r) around a cylinder of radius a is

$$
\frac{d^2\psi}{dr^2} + \frac{1}{r}\frac{d\psi}{dr} = \frac{2\overline{z}\overline{e}n}{\varepsilon_r\varepsilon_0} \cdot \frac{\sinh\left(\frac{\overline{z}e\psi(r)}{kT}\right)}{1 + G\sinh^2\left(\frac{\overline{z}e\psi(r)}{2kT}\right)}\tag{28}
$$

where r is the radial distance from the cylinder axis $r = 0$. We make the change of variables [[24](#page-5-0), [26](#page-5-0)]

$$
c = \frac{K_0(\kappa r)}{K_0(\kappa a)}\tag{29}
$$

where $K_n(z)$ is the modified Bessel functions of the second kind of order *n*. It can be shown that Eq. (28) can approximately integrated to give

$$
c\frac{dy}{dc} = F_c(y)
$$
\n(30)

where

$$
F_c(y) = \beta f(y) \left[1 + 2 \left(\frac{1}{\beta^2} - 1 \right) \frac{1}{f^2(y)} \int_0^y f(u) du \right]^{1/2}
$$
 (31)

with

$$
\beta = \frac{K_0(\kappa a)}{K_1(\kappa a)}\tag{32}
$$

The surface charge density σ of the cylinder can be obtained as follows:

$$
\sigma = -\varepsilon_{\rm r}\varepsilon_{\rm o}\frac{d\psi}{dr}\bigg|_{r=a^{+}} = \frac{\varepsilon_{\rm r}\varepsilon_{\rm o}\kappa kT}{ze} \frac{1}{\beta}c\frac{dy}{dc}\bigg|_{c=1}
$$
\n
$$
= \frac{\varepsilon_{\rm r}\varepsilon_{\rm o}\kappa kT}{ze} \frac{1}{\beta}F_{c}(y_{\rm o})\tag{33}
$$

or

$$
\sigma = \frac{\varepsilon_{\rm r}\varepsilon_{\rm o}\kappa kT}{ze}f(y_{\rm o})\left[1+2\left(\frac{1}{\beta^2}-1\right)\frac{1}{f^2(y_{\rm o})}\int_0^{y_{\rm o}}f(u)du\right]^{1/2}
$$
\n(34)

Equation (30) is integrated again to give

$$
-\text{ln}c = \int_{y}^{y_{o}} \frac{dy}{F_{c}(y)}
$$
\n(35)

which gives $y(r)$ as a function of r for a cylinder of radius a and scaled surface potential y_0 .

Equations (34) and (35) are the required expressions for the σ/v_0 relationship and $y(r)$ for a cylinder based on the modified Poisson-Boltzmann equation.

Results and discussion

The principal results of the present paper are Eqs. [\(26](#page-2-0)), ([27\)](#page-2-0), (34), and (35) for the surface charge density/surface potential relationship and the electric double-layer potential distribution for a spherical or cylindrical colloidal particle in an electrolyte solution. These expressions, which are applicable for $|y_0| \leq 3$, $\varrho_{\rm B} \leq 0.1$, and $\kappa a \geq 1$, have been derived on the basis of the modified Poisson-Boltzmann equations (Eqs. [\(14\)](#page-1-0) and [\(28\)](#page-2-0)) by taking into account the ionic size effect through the approx-imate form (Eq. [\(12](#page-1-0))) of the Carnahan-Starling activity coef-ficient (Eq. ([11](#page-1-0))). The Carnahan-Starling ionic activity coefficient (Eq. (11)) is the most accurate among the exiting theories and indeed agrees well with simulation results by Attard [[27\]](#page-5-0). It can be seen $[20]$ $[20]$ that Eq. (12) is a good approximation to Eq. [\(11\)](#page-1-0) for small ϱ_B ($\varrho_B \le 0.1$) and low-to-moderate values of the electric potential $y(x)$ ($|y(x)| \le 3$). The maximum error of Eq. [\(12\)](#page-1-0) relative to Eq. [\(11\)](#page-1-0) is ca. 3% for $y(x) = 1$, ca. 4% for $y(x) = 1$ 2, and ca. 7% for $y(x) = 3$. Even for $y(x) = 4$, the maximum relative error is ca. 12% at $\varrho_B = 0.01$.

In the limit of small y_0 , Eqs. ([26\)](#page-2-0) and [\(27](#page-2-0)) for the sphere case reduce to

$$
\psi_{\rm o} = \frac{\sigma}{\varepsilon_{\rm r}\varepsilon_{\rm o}\kappa(1 + 1/\kappa a)}\tag{36}
$$

$$
\psi(r) = \psi_{\rm o} \frac{a}{r} e^{-\kappa(r-a)} \tag{37}
$$

2 Springer

and Eqs. (34) and (35) for the cylinder case to

$$
\psi_{o} = \frac{\sigma}{\varepsilon_{r}\varepsilon_{o}\kappa} \frac{K_{0}(\kappa a)}{K_{1}(\kappa a)}
$$
\n(38)

$$
\psi(r) = \psi_{\rm o} \frac{K_0(\kappa r)}{K_0(\kappa a)}\tag{39}
$$

Note that in this limit, the σ/v_0 relationship and $y(r)$ for a sphere or a cylinder become independent of ϱ_B and coincide with those obtained via the standard Poisson-Boltzmann equation.

In the limiting case of $\varphi_B \to 0$, Eqs. [\(26](#page-2-0)), [\(27\)](#page-2-0), (34), and (35) for the σ/γ_0 relationship and $y(r)$ for a spherical or cylindrical colloidal particle tend to those obtained via the standard Poisson-Boltzmann equation [[24](#page-5-0)–[26](#page-5-0)].

Some examples of the calculation of the σ/v_0 relationship and $y(r)$ for a spherical particle on the basis of Eqs. (26) and (27) (27) (27) are shown in Figs. 1 and [2.](#page-4-0) These figures show how the effects of ionic size on the σ/y_0 relationship and $y(r)$ become appreciable for higher surface charge density σ and higher total ion volume fraction $\varrho_{\rm B}$. The ionic size effect always gives rise to an increase in the values of surface potential y_0 and double-layer potential $y(r)$. This is because the ionic concentration becomes lower due to the ionic size effect, leading to a decrease in the ionic shielding effects so that the magnitude of y_0 and double-layer potential $y(r)$ increases.

Fig. 1 Scaled surface potential $y_0 = ze_0/kT$ as a function of scaled surface charge density $\sigma^* = ze\sigma/\varepsilon_r \varepsilon_0 \kappa kT$ calculated with Eq. ([26\)](#page-2-0) for three values of the total ion volume fraction $\varphi_B = 0.1$ (solid lines), 0.01 (dashed lines), and 0 (dotted lines) at scaled sphere radius $\kappa a = 1$ and 10

Fig. 2 Scaled electric potential $v(r) = ze(r)/kT$ as a function of scaled radial distance κr calculated with Eq. [\(27](#page-2-0)) for three values of the total ion volume fraction $\varrho_B = 0.1$ (solid lines), 0.01 (dashed lines), and 0 (dotted lines) at scaled surface charge density $\sigma^* = ze\sigma/\varepsilon_r\varepsilon_0 \kappa kT = 3$ and scaled sphere radius $\kappa a = 10$

The asymptotic form of the potential distribution around a sphere must be

$$
\psi(r) = \psi_{\text{eff}} \frac{a}{r} e^{-\kappa(r-a)} \tag{40}
$$

where eff is called the effective surface potential and is related to the surface potential $_o$ by [[25](#page-5-0)]

$$
\psi_{\text{eff}} = \psi_0 \exp\left[\mathcal{f}_0^{\nu_0} \left\{\frac{1}{F_s(\mathcal{y})} - \frac{1}{\mathcal{y}}\right\} d\mathcal{y}\right]
$$
(41)

where $F_s(y)$ is given by Eq. [\(24\)](#page-2-0). The asymptotic form of the interaction energy, which corresponds to the linear superposition approximation, is given in terms of the effective surface potential. The asymptotic interaction energy $V_{\text{sp}}(R)$ between two spheres at separation R between their centers having radii a_1 and a_2 and effective surface potentials $_{\text{eff1}}$ and $_{\text{eff2}}$, respectively, is given by

$$
V_{\rm sp}(R) = 4\pi\varepsilon_{\rm r}\varepsilon_{\rm o}a_1a_2\psi_{\rm eff1}\psi_{\rm eff2}\frac{e^{-\kappa(R-a_1-a_2)}}{R}
$$
(42)

Similarly, the asymptotic form of the potential distribution around a cylinder must be

$$
\psi(r) = \psi_{\text{eff}} \frac{K_0(\kappa r)}{K_0(\kappa a)}\tag{43}
$$

where eff is the effective surface potential and is related to the surface potential $_{o}$ by [\[26\]](#page-5-0)

$$
\psi_{\text{eff}} = \psi_{\text{o}} \exp\left[\mathbf{f}_{0}^{v_{\text{o}}} \left\{\frac{1}{F_{\text{c}}(y)} - \frac{1}{y}\right\} dy\right]
$$
(44)

where $F_c(y)$ is given by Eq. [\(31](#page-2-0)). The asymptotic interaction energy $V_{\text{cl}}(R)$ per unit length between two parallel cylinders at separation R between their axes having radii a_1 and a_2 and effective surface potentials $_{\text{eff1}}$ and $_{\text{eff2}}$, respectively, is given by

$$
V_{\rm cl}(R) = 2\pi\varepsilon_{\rm r}\varepsilon_{\rm o}\psi_{\rm eff1}\psi_{\rm eff2}\frac{K_0(\kappa R)}{K_0(\kappa a_1)K_0(\kappa a_2)}\tag{45}
$$

Our theory is based on the Poisson-Boltzmann approach. Although various analytic approximations are possible within the frame work of the Poisson-Boltzmann theory, the standard Poisson-Boltzmann theory ignores the ionic size effect and the inter-ion interactions [\[28](#page-5-0)]. In the present paper, we have considered only the finite ion size effect. In order to take into account the inter-ion interactions, one has to employ simulation studies or an advanced electrostatic theory, i.e., a classical density functional theory. The readers should refer to recent papers by Zhao [\[29](#page-5-0), [30\]](#page-5-0) and Zhao et al. [[31\]](#page-5-0).

Conclusion

We have derived approximate expressions for the surface charge density/surface potential relationship and electric double-layer potential distribution for a spherical or cylindrical colloidal particle in an electrolyte solution (Eqs. [\(26](#page-2-0)), ([27\)](#page-2-0), [\(34](#page-3-0)), and [\(35\)](#page-3-0)). The obtained expressions are based on an approximate form (Eqs. (14) (14) and (28) (28) (28)) of the modified Poisson-Boltzmann equation taking into account the ion size effects through Carnahan-Starling activity coefficients of electrolyte ions. We further derive approximate expression for the effective surface potential for a spherical or cylindrical particle (Eqs. (41) and (44)) and for the electrostatic interaction energy between two spherical or cylindrical particles on the basis of the linear superposition approximation (Eqs. (42) and (45)).

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

References

1. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14: 633–662

- 2. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier/Academic Press, Amsterdam
- 3. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134
- 4. Ohshima H, Furusawa K (eds) (1998) Electrical phenomena at interfaces, fundamentals, measurements, and applications. 2nd ed, revised and expanded edn. Dekker, New York
- 5. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York
- 6. Lyklema J (2005) Fundamentals of interface and colloid science, Volume IV, Chapter 3, Elsevier/Academic Press, Amsterdam
- Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier/Academic Press, Amsterdam
- 8. Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, Hoboken
- 9. Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences. John Wiley & Sons, Hoboken
- 10. Sparnaay MJ (1972) Ion-size corrections of the Poisson-Boltzmann equation. J Electroanal Chem 37:65–70
- 11. Adamczyk Z, Warszyński P (1996) Role of electrostatic interactions in particle adsorption. Adv Colloid Interface Sci 63:41–149
- 12. Biesheuvel PW, van Soestbergen M (2007) Counterion volume effects in mixed electrical double layers. J Colloid Interface Sci 316:490–499
- 13. Lopez-Garcia JJ, Horno J, Grosse C (2011) Poisson-Boltzmann description of the electrical double layer including ion size effects. Langmuir 27:13970–13974
- 14. Lopez-Garcia JJ, Horno J, Grosse C (2012) Equilibrium properties of charged spherical colloidal particles suspended in aqueous electrolytes: finite ion size and effective ion permittivity effects. J Colloid Interface Sci 380:213–221
- 15. Giera B, Henson N, Kober EM, Shell MS, Squires TM (2015) Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations. Langmuir 31:3553–3562
- 16. Lopez-Garcia JJ, Horno J, Grosse C (2016) Ion size effects on the dielectric and electrokinetic properties in aqueous colloidal suspensions. Curr Opin Colloid Interface 24:23–31
- 17. Bikerman JJ (1942) Structure and capacity of electrical double layer. Philos Mag 33:384
- 18. Hill TL (1962) Statistical thermodynamics. Addison-Westley, Reading
- 19. Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635–636
- 20. Ohshima H (2016) An approximate analytic solution to the modified Poisson-Boltzmann equation. Effects of ionic size. Colloid Polym Sci 294:2121–2125
- 21. Ohshima H (2017) Approximate analytic expressions for the electrostatic interaction energy between two colloidal particles based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 295: 289–296
- 22. Ohshima H (2017) A simple algorithm for the calculation of an approximate electrophoretic mobility of a spherical colloidal particle based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 295:543–548
- 23. White LR (1977) Approximate analytic solution of the Poisson– Boltzmann equation for a spherical colloidal particle. J Chem Soc Faraday Trans II 73:577–596
- 24. Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J Colloid Interface Sci 90:17–26
- 25. Ohshima H (1995) Effective surface potential and double-layer interaction of colloidal particles. J Colloid Interface Sci 174:45–52
- 26. Ohshima H (1998) Surface charge density/surface potential relationship for a cylindrical particle in an electrolyte solution. J Colloid Interface Sci 200:291–297
- 27. Attard P (1993) Simulation of the chemical potential and the cavity free energy of dense hard sphere fluids. J Chem Phys 98:2225– 2231
- 28. Lamm G (2003) In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, vol 19. John Wiley & Sons, Hoboken, pp 147–365
- 29. Zhou S (2015) Three-body potential amongst similarly or differently charged cylinder colloids immersed in a simple electrolyte solution. J Stat Mech Theory Exp Paper ID/11030
- 30. Zhou S (2017) Effective electrostatic interactions between two overall neutral surfaces with quenched charge heterogeneity over atomic length scale. J Stat Phys 169:1019–1037
- 31. Zhou S, Lamperski S, Sokołowska M (2017) Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode. J Stat Mech Theory Exp Paper ID/073207