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Abstract
Approximate expressions for the surface charge density/surface potential relationship and double-layer potential distribution are
derived for a spherical or cylindrical colloidal particle in an electrolyte solution. The obtained expressions are based on an
approximate form of the modified Poisson-Boltzmann equation taking into account the ion size effects through the Carnahan-
Starling activity coefficients of electrolyte ions. We further derive approximate expression for the effective surface potentials of a
spherical or cylindrical particle and for the electrostatic interaction energy between two spherical or cylindrical particles on the
basis of the linear superposition approximation.
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Introduction

The surface charge density/surface potential relationship and
the electric double-layer potential distribution for colloidal
particles in an electrolyte solution, which play essential roles
in determining the behaviors of colloidal particles, can be
obtained via the Poisson-Boltzmann equation [1–9]. The stan-
dard Poisson-Boltzmann equation, however, assumes that
ions behave like point charges and neglects the effects of ionic
size. There are many theoretical studies on the modified
Poisson-Boltzmann equation [10–16], which takes into ac-
count the effect of ionic size by introducing the activity coef-
ficients of electrolyte ions [10, 17–19]. In a previous paper
[20], on the basis of the equation for the ionic activity coeffi-
cients given by Carnahan and Starling [19], which is the most
accurate among existing theories, we presented a simple algo-
rithm for solving the modified Poisson-Boltzmann equation
and derived a simple approximate analytic expression for the

surface charge density/surface potential relationship for a pla-
nar charged surface. On the basis of the modified Poisson-
Boltzmann equation, we also derived analytic expressions
for the interaction energy between two colloidal particles
[21] and the electrophoretic mobility of a spherical particle
[22].

In the present paper, we derive approximate expressions for
the surface charge density/surface potential relationship and
double-layer potential distribution for a spherical or cylindri-
cal colloidal particle based on the modified Poisson-
Boltzmann equation with the help of the previously developed
method [23–26]. We also derive approximate expression for
the effective surface potential of a spherical or cylindrical
particle and for the electrostatic interaction energy between
two spherical or cylindrical particles on the basis of the linear
superposition approximation.

Surface charge density/surface potential
relationship and double-layer potential
distribution around a spherical particle

Consider a spherical particle of radius a in a symmetrical
electrolyte solution of valence z and bulk concentration
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(number density) n. We take a spherical coordinate system
with its origin r = 0 placed at the center of the sphere and r
is the radial distance from the sphere center so that the region r
> a corresponds to the electrolyte solution. The electric
double-layer potential (r) at position r in the electrolyte solu-
tion (r > a) obeys the following spherical Poisson equation:

d2ψ

dr2
þ 2

r
dψ
dr

¼ −
ρel rð Þ
εrεo

ð1Þ

Here, εr is the relative permittivity of the electrolyte solu-
tion, εo is the permittivity of a vacuum, and ρel(r) is the space
charge density resulting from the electrolyte ions and is given
by

ρel rð Þ ¼ ze nþ rð Þ−n− rð Þf g ð2Þ
where n+(r) and n−(r) are, respectively, the concentrations of
cations and anions at position r and e is the elementary electric
charge. The boundary conditions for (r) are given by

ψ að Þ ¼ ψo ð3Þ

ψ→0;
dψ
dr

→0 as r→∞ ð4Þ

We assume that the activity coefficients of cations and an-
ions at position r have the same value γ(r). The electrochem-
ical potential μ+(r) of cations and that of anions μ−(r) are thus
given by

μ� rð Þ ¼ μo
� � zeψ rð Þ þ kT ln γ rð Þn� rð Þ½ � ð5Þ

where μo
� are constant terms, k is Boltzmann’s constant, and T

is the absolute temperature. The values of μ±(r) must be the
same as those in the bulk solution phase, where (r) = 0, viz.,

μ� ∞ð Þ ¼ μo
� þ kT ln γ∞nð Þ ð6Þ

where γ∞ = γ(∞). By equating μ±(r) = μ±(∞), we obtain

n� rð Þ ¼ γ∞n
γ rð Þ exp ∓

zeψ rð Þ
kT

� �
ð7Þ

Thus, Eq. (1) as combined with Eqs. (2) and (7) becomes
the following modified Poisson-Boltzmann equation:

d2ψ

dr2
þ 2

r
dψ
dr

¼ 2zen
εrεo

⋅
γ∞

γ rð Þ sinh
zeψ rð Þ
kT

� �
ð8Þ

We now assume that cations and anions have the same
radius ai. We introduce the volume fraction ø+(r) of cat-
ions and that of anions ø−(r) at position r. Then, we have

ϕ� rð Þ ¼ 4

3
πa3i

� �
n� rð Þ ð9Þ

The total ion volume fraction ø(x) at position r is thus given
by

ϕ rð Þ ¼ ϕþ rð Þ þ ϕ− rð Þ ¼ 4

3
πa3i

� �
nþ; ; r;ð Þ;þ; n−; ; r;ð Þf g

¼ ϕB
nþ; ; r;ð Þ;þ; n−; ; r;ð Þf g

2n

ð10Þ

where øB ≡ ø(∞) = (4πai
3/3)⋅2n is the total ion volume fraction

in the bulk solution phase.
We employ the expression for γ(x) derived by Carnahan

and Starling [19], viz.,

γ rð Þ ¼ exp
ϕ rð Þ 8−9ϕ rð Þ þ 3ϕ2 rð Þ� �

1−ϕ rð Þf g3
" #

ð11Þ

In a previous paper [20], we have shown that Eq. (11) can
be approximated well by

γ rð Þ ¼ γ∞ 1þ Gsinh2
zeψ rð Þ
2kT

� �� �
ð12Þ

where G is defined by

G ¼ 16ϕB

1þ 8ϕB
ð13Þ

The above approximation (Eq. (12)) is a good ap-
proximation with negligible errors for low øB

(øB ≤ 0.1) and low-to-moderate potentials (|ze o/
kT| ≤ 3) [20]. By substituting Eq. (12) into Eq. (8),
we obtain the following approximate form for the spher-
ical modified Poisson-Boltzmann equation:

d2ψ

dr2
þ 2

r
dψ
dr

¼ 2zen
εrεo

⋅
sinh

zeψ rð Þ
kT

� �

1þ Gsinh2
zeψ rð Þ
2kT

� � ð14Þ

which is rewritten in terms of the scaled electric poten-
tial y(r) = ze (r)/kT:

d2y

dr2
þ 2

r
dy
dr

¼ κ2sinh yð Þ
H yð Þ ð15Þ

with

H yð Þ ¼ 1þ Gsinh2 y=2ð Þ ð16Þ

We introduce f(y) defined by

f yð Þ ¼ sgn yoð Þ⋅2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln H yð Þð Þ

G

r
ð17Þ
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where yo = ze o/kT is the scaled particle surface potential and
sgn(yo) = + 1 for yo > 0 and − 1 for yo < 0. Then, Eq. (15) be-
comes

d2y

dr2
þ 2

r
dy
dr

¼ κ2 f yð Þ df yð Þ
dy

ð18Þ

In order to obtain a large κa approximate solution to Eq.
(18), we make the change of variables [23–25]

s ¼ a
r
e−κ r−að Þ ð19Þ

and rewrite Eq. (18) as

s2
d2y

ds2
þ s

dy
ds

¼ f yð Þ df
dy

−
2κr þ 1

κr þ 1ð Þ2 f yð Þ df
dy

−s
dy
ds

� �
ð20Þ

which is subject to the boundary conditions: y = yo at s = 1 and
y = dy/ds = 0 at s = 0 (see Eqs. (3) and (4)). This approxima-
tion method is excellent for κa ≥ 1 with relative errors less
than about 1% [23–25].

When κa »1, Eq. (20) reduces to

s2
d2y

ds2
þ s

dy
ds

¼ f yð Þ df
dy

ð21Þ

which is integrated one to give

s
dy
ds

¼ f yð Þ ð22Þ

We then replace the second term on the right-hand side of
Eq. (20) with its large κa limiting form, i.e., κr→ κa and sdy/
ds → f(y) (Eq. (22)), and integrate Eq. (21) to obtain

s
dy
ds

¼ Fs yð Þ ð23Þ

with

Fs yð Þ ¼ κa
κaþ 1

f yð Þ 1þ 2 2κaþ 1ð Þ
κað Þ2

1

f 2 yð Þ ∫
y
0 f uð Þdu

" #1=2

ð24Þ

The surface charge density σ/surface potential o (or yo)
relationship can be obtained by using the following relation:

σ ¼ −εrεo
dψ
dr

				
r¼aþ

¼ εrεoκkT
ze

κaþ 1

κa
s
dy
ds

				
s¼1

¼ εrεoκkT
ze

κaþ 1

κa
Fs yoð Þ ð25Þ

or

σ ¼ εrεoκkT
ze

f yoð Þ 1þ 2 2κaþ 1ð Þ
κað Þ2

1

f 2 yoð Þ ∫
yo
0 f uð Þdu

" #1=2

ð26Þ

Equation (23) is integrated again to give

−lns ¼ ∫yoy
dy

Fs yð Þ ð27Þ

One can numerically calculate Fs(y) from f(y) (Eq. (17)) with
the help of Eq. (24) and then calculate y(r) from Eq. (27).

Equations (26) and (27) are the required expressions for the
σ/yo relationship and y(r) for a sphere based on the modified
Poisson-Boltzmann equation.

Surface charge density/surface potential
relationship and potential distribution
around a cylindrical particle

The same approximationmethod as for a spherical particle can
be applied to an infinitely long cylindrical particle of radius a
[23, 24, 26]. The cylindrical Poisson-Boltzmann equation for
the electric potential (r) around a cylinder of radius a is

d2ψ

dr2
þ 1

r
dψ
dr

¼ 2zen
εrεo

⋅
sinh

zeψ rð Þ
kT

� �

1þ Gsinh2
zeψ rð Þ
2kT

� � ð28Þ

where r is the radial distance from the cylinder axis r = 0. We
make the change of variables [24, 26]

c ¼ K0 κrð Þ
K0 κað Þ ð29Þ

where Kn(z) is the modified Bessel functions of the second
kind of order n. It can be shown that Eq. (28) can approxi-
mately integrated to give

c
dy
dc

¼ Fc yð Þ ð30Þ

where

Fc yð Þ ¼ βf yð Þ 1þ 2
1

β2 −1
� �

1

f 2 yð Þ ∫
y
0 f uð Þdu


 �1=2
ð31Þ

with

β ¼ K0 κað Þ
K1 κað Þ ð32Þ
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The surface charge density σ of the cylinder can be obtain-
ed as follows:

σ ¼ −εrεo
dψ
dr

				
r¼aþ

¼ εrεoκkT
ze

1

β
c
dy
dc

				
c¼1

¼ εrεoκkT
ze

1

β
Fc yoð Þ ð33Þ

or

σ ¼ εrεoκkT
ze

f yoð Þ 1þ 2
1

β2 −1
� �

1

f 2 yoð Þ ∫
yo
0 f uð Þdu


 �1=2

ð34Þ

Equation (30) is integrated again to give

−lnc ¼ ∫yoy
dy

Fc yð Þ ð35Þ

which gives y(r) as a function of r for a cylinder of radius a
and scaled surface potential yo.

Equations (34) and (35) are the required expressions for the
σ/yo relationship and y(r) for a cylinder based on the modified
Poisson-Boltzmann equation.

Results and discussion

The principal results of the present paper are Eqs. (26), (27),
(34), and (35) for the surface charge density/surface potential
relationship and the electric double-layer potential distribution
for a spherical or cylindrical colloidal particle in an electrolyte
solution. These expressions, which are applicable for |yo| ≤ 3,
øB ≤ 0.1, and κa ≥ 1, have been derived on the basis of the
modified Poisson-Boltzmann equations (Eqs. (14) and (28))
by taking into account the ionic size effect through the approx-
imate form (Eq. (12)) of the Carnahan-Starling activity coef-
ficient (Eq. (11)). The Carnahan-Starling ionic activity coeffi-
cient (Eq. (11)) is the most accurate among the exiting theories
and indeed agrees well with simulation results by Attard [27].
It can be seen [20] that Eq. (12) is a good approximation to Eq.
(11) for small øB (øB ≤ 0.1) and low-to-moderate values of the
electric potential y(x) (|y(x)| ≤ 3). The maximum error of Eq.
(12) relative to Eq. (11) is ca. 3% for y(x) = 1, ca. 4% for y(x) =
2, and ca. 7% for y(x) = 3. Even for y(x) = 4, the maximum
relative error is ca. 12% at øB = 0.01.

In the limit of small yo, Eqs. (26) and (27) for the sphere
case reduce to

ψo ¼
σ

εrεoκ 1þ 1=κað Þ ð36Þ

ψ rð Þ ¼ ψo
a
r
e−κ r−að Þ ð37Þ

and Eqs. (34) and (35) for the cylinder case to

ψo ¼
σ

εrεoκ
K0 κað Þ
K1 κað Þ ð38Þ

ψ rð Þ ¼ ψo
K0 κrð Þ
K0 κað Þ ð39Þ

Note that in this limit, the σ/yo relationship and y(r) for a
sphere or a cylinder become independent of øB and coincide
with those obtained via the standard Poisson-Boltzmann
equation.

In the limiting case of øB → 0, Eqs. (26), (27), (34), and
(35) for the σ/yo relationship and y(r) for a spherical or cylin-
drical colloidal particle tend to those obtained via the standard
Poisson-Boltzmann equation [24–26].

Some examples of the calculation of the σ/yo rela-
tionship and y(r) for a spherical particle on the basis
of Eqs. (26) and (27) are shown in Figs. 1 and 2.
These figures show how the effects of ionic size on
the σ/yo relationship and y(r) become appreciable for
higher surface charge density σ and higher total ion
volume fraction øB. The ionic size effect always gives
rise to an increase in the values of surface potential yo
and double-layer potential y(r). This is because the ionic
concentration becomes lower due to the ionic size ef-
fect, leading to a decrease in the ionic shielding effects
so that the magnitude of yo and double-layer potential
y(r) increases.

Fig. 1 Scaled surface potential yo = ze o/kT as a function of scaled surface
charge density σ* = zeσ/εrεoκkT calculated with Eq. (26) for three values
of the total ion volume fraction øB = 0.1 (solid lines), 0.01 (dashed lines),
and 0 (dotted lines) at scaled sphere radius κa = 1 and 10
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The asymptotic form of the potential distribution around a
sphere must be

ψ rð Þ ¼ ψeff
a
r
e−κ r−að Þ ð40Þ

where eff is called the effective surface potential and is related
to the surface potential o by [25]

ψeff ¼ ψoexp ∫yo0
1

Fs yð Þ −
1

y

� �
dy


 �
ð41Þ

where Fs(y) is given by Eq. (24). The asymptotic form of the
interaction energy, which corresponds to the linear superposi-
tion approximation, is given in terms of the effective surface
potential. The asymptotic interaction energy Vsp(R) between
two spheres at separation R between their centers having radii
a1 and a2 and effective surface potentials eff1 and eff2, respec-
tively, is given by

V sp Rð Þ ¼ 4πεrεoa1a2ψe f f1ψe f f2
e−κ R−a1−a2ð Þ

R
ð42Þ

Similarly, the asymptotic form of the potential distribution
around a cylinder must be

ψ rð Þ ¼ ψeff
K0 κrð Þ
K0 κað Þ ð43Þ

where eff is the effective surface potential and is related to the
surface potential o by [26]

ψeff ¼ ψoexp ∫yo0
1

Fc yð Þ −
1

y

� �
dy


 �
ð44Þ

where Fc(y) is given by Eq. (31). The asymptotic interaction
energy Vcl(R) per unit length between two parallel cylinders at
separation R between their axes having radii a1 and a2 and
effective surface potentials eff1 and eff2, respectively, is given
by

V cl Rð Þ ¼ 2πεrεoψeff1ψeff2
K0 κRð Þ

K0 κa1ð ÞK0 κa2ð Þ ð45Þ

Our theory is based on the Poisson-Boltzmann approach.
Although various analytic approximations are possible within
the frame work of the Poisson-Boltzmann theory, the standard
Poisson-Boltzmann theory ignores the ionic size effect and the
inter-ion interactions [28]. In the present paper, we have con-
sidered only the finite ion size effect. In order to take into
account the inter-ion interactions, one has to employ simula-
tion studies or an advanced electrostatic theory, i.e., a classical
density functional theory. The readers should refer to recent
papers by Zhao [29, 30] and Zhao et al. [31].

Conclusion

We have derived approximate expressions for the surface
charge density/surface potential relationship and electric
double-layer potential distribution for a spherical or cylindri-
cal colloidal particle in an electrolyte solution (Eqs. (26), (27),
(34), and (35)). The obtained expressions are based on an
approximate form (Eqs. (14) and (28)) of the modified
Poisson-Boltzmann equation taking into account the ion size
effects through Carnahan-Starling activity coefficients of elec-
trolyte ions. We further derive approximate expression for the
effective surface potential for a spherical or cylindrical particle
(Eqs. (41) and (44)) and for the electrostatic interaction energy
between two spherical or cylindrical particles on the basis of
the linear superposition approximation (Eqs. (42) and (45)).
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