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Abstract A simple algorithm is presented for the calculation
of an approximate electrophoretic mobility of a spherical col-
loidal particle in an electrolyte solution. The obtained expres-
sions are based on an approximate form of the modified
Poisson-Boltzmann equation taking into account the ion size
effects through Carnahan-Starling activity coefficients of elec-
trolyte ions (J Chem Phys 51:635,31). Agreement with the
exact numerical results by López-García et al. (J Colloid
Interface Sci 458:273,27) is good for most practical cases.
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Introduction

The standard theory of the electrophoretic mobility of a
colloidal particle in an electrolyte solution is based on the
solution to the Poisson-Boltzmann equation for the elec-
tric potential distribution around the particle [1–20]. The
original Poisson-Boltzmann equation, however, assumes
that ions behave like point-charges and neglect the effects
of ionic size. There are many theoretical studies on the
modified Poisson-Boltzmann eq. [21–28], which takes in-
to account the effect of ionic size by introducing the ac-
tivity coefficients of electrolyte ions [21, 29–31]. López-

García et al., in particular, presented the numerical results
of the electrophoretic mobility of a spherical particle tak-
ing into account the ionic size effect [27, 28]. In a previ-
ous paper [32], on the basis of the equation for the ionic
activity coefficients given by Carnahan and Starling [31],
which is the most accurate among existing theories, we
presented a simple algorithm for solving the modified
Poisson-Boltzmann equation and derive a simple approx-
imate analytic expression for the surface charge density/
surface potential relationship for a planar charged surface.
We also considered the interaction energy between two
colloidal particles in an electrolyte solution based on the
modified Poisson-Boltzmann eq. [33].

In the present paper, we present a simple algorithm for the
calculation of an approximate electrophoretic mobility of a
spherical colloidal particle in an electrolyte solution based
on the modified Poisson-Boltzmann eq. [32, 33]. We consider
only the steric interactions among ions of finite size and do not
consider other effects relating to the dielectric permittivity of
the electrolyte solution. The mathematical analysis given in
this paper is similar to that in our previous papers on the
electrophoresis problem based on the standard Poisson-
Boltzmann approach [9, 16].

Fundamental electrokinetic equations

Consider a spherical particle of radius a and zeta potential ζ
moving with a velocityU in a liquid containing a symmetrical
electrolyte with valence z and bulk concentration (number
density) n (in units of m−3). The origin of the spherical polar
coordinate system (r, θ, ϕ) is held fixed at the center of the
particle, and the polar axis (θ = 0) is put parallel to E. Without
loss of generality, wemay assume that the particle is positively
charged (ζ > 0).
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The main assumptions in our analysis are as follows:
(i) The Reynolds number of the liquid flow is small
enough to ignore inertial terms in the Navier-Stokes equa-
tion, and the liquid can be regarded as incompressible. (ii)
The applied field E is weak so that the particle velocity U
is proportional to E and terms of higher order in E may be
neglected. (iii) The slipping plane is located on the parti-
cle core. (iv) No electrolyte ions can penetrate the particle
surface.

The fundamental electrokinetic equations are given by

η∇� ∇� uþ ∇pþ ρel∇ψ ¼ 0 ð1Þ
∇ ⋅ u ¼ 0 ð2Þ

v� ¼ u −
1

λ�
∇μ� ð3Þ

∇ ⋅ n�v�ð Þ ¼ 0 ð4Þ
ρel rð Þ ¼ ze nþ rð Þ − n− rð Þf g ð5Þ
μ� rð Þ ¼ μo

� þ z�eψ rð Þ þ kT ln γ� rð Þn� rð Þ½ � ð6Þ

Δψ rð Þ ¼ −
ρel rð Þ
εrεo

ð7Þ

where u(r) is the liquid velocity at position r, v+ and v−
are, respectively, the velocities of cations and anions, λ+
and λ− are, respectively, the drag coefficients of cations
and anions, p(r) is the pressure, ρel(r) is the charge density
resulting from electrolyte ions given by Eq. (5), ψ(r) is the
electric potential, μ+(r) and n+(r) are, respectively, the
electrochemical potential and the concentration (the num-
ber density) of cations, μ−(r) and n−(r) are those of an-
ions, μ±

o are constant terms in μ±(r), and γ+(r) and γ -(r)
are, respectively, the activity coefficients of cations and
anions. The ionic size effects are taken into account
through γ±(r). Equations (1) and (2) are the Navier-
Stokes equation and the equation of continuity for an in-
compressible flow. Equation (3) expresses that the flow
v±(r) of electrolyte ions are caused by the liquid flow
u(r) and the gradient of the electrochemical potential
μ±(r), given by Eq. (6). Equation (4) is the continuity
equation for electrolyte ions, and Eq. (7) is Poisson’s
equation. The ionic drag coefficients λ± of cations and
anions are, respectively, related to the diffusion constant
D+ and the limiting equivalent conductance Λo

þ of cations
and those of anions D− and Λo

− by

λ� ¼ kT
D�

¼ NAze2

Λo
�

ð8Þ

where NA is Avogadro’s number. We assume that the slip-
ping plane, at which the liquid velocity u relative to the particle

is zero coincides the particle core surface at r = a, where
r = ∣r∣ (assumption (iii)). Then the above electrokinetic equa-
tions must be solved under the following boundary conditions:

u ¼ 0 at r ¼ a ð9Þ

u → −U as r → ∞ ð10Þ

In the stationary state the net force acting on the particle or
an arbitrary volume enclosing the particle must be zero.
Consider a large sphere S of radius r containing the particle
(plus the electrical double layer around the particle) at its
center. The radius r of S is taken to be sufficiently large so
that the net electric charge within S is zero. There is then no
electric force acting on S, and we need consider only hydro-
dynamic force FH, which must be zero, i.e.,

FH ¼ ∫ SσH ⋅ n̂dS → 0 as r→∞ ð11Þ

where the integration is carried out over the surface of S,σH is
the hydrodynamic stress tensor and n ̂ is the outward normal to
S. Finally, the boundary condition for the velocity of the ionic
flow v± is given by

v� ⋅ n̂jr¼a ¼ 0 ð12Þ

which states that no electrolyte ions can penetrate the particle
surface (assumption (iv)).

Linearized equations

Under assumption (ii), we may write

n� rð Þ ¼ n 0ð Þ
� rð Þ þ δn� rð Þ ð13Þ

ψ rð Þ ¼ ψ 0ð Þ rð Þ þ δψ rð Þ ð14Þ

μ� rð Þ ¼ μ 0ð Þ
� þ δμ� rð Þ ð15Þ

where the quantities with superscript (0) refer to those at equi-
librium, i.e., in the absence of E, and μ±

(0) is a constant inde-
pendent of r.

The equilibrium electric potential ψ(0)(r) outside the
particle satisfies the Poisson equation and is a function
of r only, viz.,

1

r2
d
dr

r2
dψ 0ð Þ

dr

 !
¼ −

ρ 0ð Þ
el rð Þ
εrεo

ð16Þ

with

ρ 0ð Þ
el rð Þ ¼ ze n 0ð Þ

þ rð Þ−n 0ð Þ
− rð Þ

n o
ð17Þ
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The boundary condition for ψ(0)(r) are

ψ 0ð Þ að Þ ¼ ζ ð18Þ
ψ 0ð Þ rð Þ→0 as r→∞ ð19Þ

Further, symmetry considerations permit us to write

u rð Þ ¼ −
2

r
h rð ÞEcosθ; 1

r
d
dr

rh rð Þð ÞEsinθ; 0
� �

ð20Þ

δμ� rð Þ ¼ ∓zeϕ� rð ÞEcosθ ð21Þ
where E = |E|, e is the elementary electric charge, and h(r) and
ϕ±(r) are functions of r. The fundamental electrokinetic eqs.
(1)–(4) can be transformed into equations for h(r) and ϕ±(r),
which are expressed as [9]

Lϕ� ¼ −
1

n 0ð Þ
�

dn 0ð Þ
�

dr
dϕ�
dr

∓
2λ�
e

h
r

� �
ð22Þ

L Lhð Þ ¼ G rð Þ ð23Þ
with

G rð Þ ¼ ze
ηr

dn 0ð Þ
þ

dr
⋅ϕþ−

dn 0ð Þ
−

dr
⋅ϕ−

 !
ð24Þ

where L = d2/dr2 + (2/r)d/dr − 2/r2. The boundary condi-
tions for u(r) and v±(r) are expressed in terms of h and ϕ±(r) as
follows:

dϕ�
dr jr¼a

¼ 0 ð25Þ

ϕ� rð Þ→r as r→∞ ð26Þ

h ¼ dh
dr

¼ 0 at r ¼ a ð27Þ

h rð Þ→ U
2E

r þ O
1

r

� �
as r→∞ ð28Þ

General expression for electrophoretic mobility

The electrophoretic mobility μ = U/E (where U = |U|) can be
calculated from Eq. (28) as

μ ¼ 2 lim
r→∞

h rð Þ
r

ð29Þ

The result is [9]

μ ¼ a2

9
∫∞a 1−

3r2

a2
þ 2r3

a3

� �
G rð Þdr ð30Þ

It is to be noted that Eq. (30) takes the same form as that of
the general mobility expression based on the standard
Poisson-Boltzmann eq. [9, 16]. If the Boltzmann distribution

is assumed for the concentrations n 0ð Þ
� rð Þ of cations and anions

at equilibrium, then n 0ð Þ
� rð Þ is given

n 0ð Þ
� rð Þ ¼ nexp ∓

zeψ rð Þ
kT

� �
ð31Þ

and Eq. (16) becomes the standard Poisson-Boltzmann equa-
tion, viz.,

1

r2
d
dr

r2
d
dr

zeψ 0ð Þ

kT

 ! !
¼ κ2sinh

zeψ 0ð Þ

kT

 !
ð32Þ

where

κ ¼ z2e2n
εrεokT

� �1=2

ð33Þ

is the Debye-Hückel parameter. In this case, Eq. (30) reduces
the general mobility expression based on the standard
Poisson-Boltzmann approach [9, 16].

Approximate mobility expression for large κa

We derive an approximate expression applicable for large
values of κa (≥30) with the help of an approximation method
as developed in a previous paper [9, 16]. For large κa, since
the principal contribution to the integral in Eq. (30) comes
from the region r - a ≈ 1/κ, we may regard (r -a)/a as of the
order of 1/κa and expand the integrand of Eq. (30) around
r = a, obtaining

μ ¼ 1

3
∫ ∞a r−að Þ2G rð Þdr þ O

1

κa

� �
: ð34Þ

Also in this case the Poisson eq. (16) can be approximated
by the following planar Poisson equation:

d2ψ 0ð Þ

dr2
¼ −

ρ 0ð Þ
el rð Þ
εrεo

ð35Þ

Modified Poisson-Boltzmann equation

In order to calculate the electrophoretic mobility of a spher-
ical colloidal particle, one needs the equilibrium concentra-
tions of electrolyte ions n±

(0)(r) and the equilibrium electric
potential ψ(0)(r). In the standard electrophoresis theory one
assumes the Boltzmann distribution of electrolyte ions
(Eq. (31)) and thus one uses the Poisson-Boltzmann
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equation for the electric potential (Eq. (32)). Now we em-
ploy the modified Poisson-Boltzmann equation instead of
the standard Poisson-Boltzmann equation. We take into ac-
count the ionic size effects through the ionic activity coef-
ficient γ±. We assume that cations and anions have the same
ionic radius ai and the activity coefficients of cations and
anions are the same, γ+(r) = γ−(r) = γ (r). The equilibrium
electrochemical potentials μ±(r) of cations and anions at
position r are thus given by

μ� rð Þ ¼ μo
� � zeψ rð Þ þ kT ln γ rð Þn 0ð Þ

� rð Þ
h i

ð36Þ

The values of μ±(r) must be the same as those in the bulk
solution phase, where ψ(r) = 0, viz.,

μ� ∞ð Þ ¼ μo
� þ kT ln γ∞nð Þ ð37Þ

where γ∞ = γ(∞). By equating μ±(r) = μ±(∞), we obtain

n 0ð Þ
� rð Þ ¼ γ∞n

γ rð Þ e
∓y ð38Þ

with

y rð Þ ¼ zeψ 0ð Þ rð Þ
kT

ð39Þ

where y(r) is the scaled equilibrium electric potential at posi-
tion r. We use the following Carnahan-Starling ionic activity
coefficient [31].

γ rð Þ ¼ exp

ϕ rð Þ
(
8−9ϕ rð Þ þ 3ϕ2 rð Þ

)

f1−ϕ rð Þg3

2
66664

3
77775 ð40Þ

where ϕ(r) is the total ion volume fraction at position r at
equilibrium and is given by

ϕ rð Þ ¼ 4

3
πa3i

� �
fn 0ð Þ

þ rð Þ þ n 0ð Þ
− rð Þg ¼ ϕBfn 0ð Þ

þ rð Þ þ n 0ð Þ
− rð Þg

2n

ð41Þ

and ϕB≡ϕ ∞ð Þ ¼ 4πa3i =3
� �

⋅2n is the total ion volume fraction
in the bulk solution phase. By substituting Eq. (38) into
Eq. (41), we obtain

ϕ rð Þ ¼ ϕB
γ∞cosh y
γ rð Þ ð42Þ

In a previous paper [32], we have shown that Eq. (40) can
be approximated well by

γ rð Þ ¼ γ∞H yð Þ ð43Þ
or equivalently

ϕ rð Þ ¼ ϕB
cosh y
H yð Þ ð44Þ

with

H yð Þ ¼ 1þ Bsinh2
y
2

� �
ð45Þ

B ¼ 16ϕB

1þ 8ϕB
ð46Þ

Then Eq. (38) becomes

n 0ð Þ
� rð Þ ¼ ne∓y

H yð Þ ð47Þ

and thus Eq. (35) gives the following modified Poisson-
Boltzmann equation:

d2y

dr2
¼ κ2sinhy

H yð Þ ð48Þ

which can be integrated to give

dy
dr

¼ −
2κffiffiffi
B

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln H yð Þ½ �

p
ð49Þ

which gives the following relationship between the surface
charge density σ and the zeta potential ζ = ψ(0)(a) (Eq. (18)):

σ ¼ 2εrεoκkT
ze

1ffiffiffi
B

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln H zeζ=kTð Þ½ �

p
ð50Þ

or equivalently

ζ ¼ 2kT
ze

⋅arcsinh
1ffiffiffi
B

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi(
exp

B
4

� �
zeσ

εrεoκkT

� �2
" #

−1

)vuut
0
@

1
A
ð51Þ

The above approximation (Eq. (42) or Eq. (43)) is a good
approximation with negligible errors for low ϕB (ϕB ≤ 0.1)
and low-to moderate zeta potentials (ζeψo/kT ≤ 3).

Approximate electrophoretic mobility expression
based on the modified Poisson-Boltzmann equation

By substituting Eqs. (47)–(49) into Eq. (34) and using an
approximation method developed in previous papers [9, 16],
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we finally obtain the following large-κa approximate expres-
sion for the electrophoretic mobility μ of a spherical colloidal
particle of radius a in an electrolyte solution based on the
modified Poisson-Boltzmann equation by neglecting terms
of order 1/κa:

μ ¼ εrεo
2η

kT
ze

� �
Nþ−

N−

1þ F

� �
ð52Þ

with

N� ¼ −
B
4
∫ zeζ=kT0 ∫ y0

(
e∓y

′

H y′ð Þ −1
)

dy′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln H y′ð Þ½ �p dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln H yð Þ½ �p ð53Þ

F ¼ 2

κa
1þ 3m−ð ÞM ð54Þ

m− ¼ 2εrεokT
3ηz2e2

λ− ð55Þ

M ¼
ffiffiffi
B

p

4
∫zeζ=kT0

(
ey

H yð Þ −1
)

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln H yð Þ½ �p ð56Þ

wherem− is the scaled drag coefficient of anions (counterions)
and F corresponds to Dukhin’s number based on the modified
Poisson-Boltzmann approach.

Results and discussion

The principal result of the present paper is Eq. (52) for the elec-
trophoretic mobility μ of a spherical colloidal particle in an elec-
trolyte solution based on the modified Poisson-Boltzmann ap-
proach (Eqs. (46)–(48)) by taking into account the ionic size
effect through the Carnahan-Starling activity coefficient [31]. In
the limiting case of ϕB → 0, Eq. (52) tends to the following
electrophoretic mobility expression based on the standard
Poisson-Boltzmann approach [9, 16]:

μ ¼ εrεo
η

(
ζ−

2F
1þ F

kT
ze

� �
ln

1þ exp zeζ=2kTð Þ
2

	 
)
ð57Þ

where

F ¼ 2

κa
1þ 3m−ð Þ

(
exp

zeζ
2kT

� �
−1

)
ð58Þ

corresponds to the Dukhin number based on the standard
Poisson-Boltzmann approach. It is found that Eq. (52) is a good
approximation for large particles (κa ≥ 30), low ϕB (ϕB ≤ 0.1)
and low-to moderate values of ζ (zeζ/kT ≤ 3). Figure 1 shows
some examples of the calculation of the scaled electrophoretic
mobility Em = (3ηze/2εrεokT)μ obtained via Eq. (52) in an
aqueous monovalent electrolyte solution containing cations
and anions having radius ai = 0.4 nm and the ionic diffusion

coefficient D = 2 × 10−9 m2/s at T = 298 K (z = 1, εr = 80,
η = 0.89 mPa s) as a function of the surface charge density σ for
the case where the particle radius a = 0.1 μm and 1 μm and the
electrolyte concentration C (in units of M) (which is related to
the number density n (in units of m−3) by n = 1000NAC). Since
the zeta potential ζ depends on the electrolyte concentration C
and the total ion volume fraction ϕB for given values of σ, we
plot μ as a function of σ instead of ζ in Fig. 1. Here σ is
calculated from ζ via Eq. (50). Figure 1 also shows the exact
numerical results obtained by López-García [27] (given as
closed circles). The agreement between the present results
(Eq. (52)) and the exact numerical results [27] is good for
low-to-moderate values of the particle surface charge density
σ (σ ≤ 0.05 C/m2) with relative errors of several percents. We
can thus conclude that the present algorithm for the calculation
of the electrophoretic mobility of a spherical colloidal particle in
an electrolyte solution based on the modified Poisson-
Boltzmann approach is applicable for most practical cases.

Conclusion

We have presented a simple algorithm for calculating the ap-
proximate electrophoretic mobility of a spherical colloidal
particle in an electrolyte solution based on the modified

Fig. 1 Scaled electrophoretic mobility Em = (3ηze/2εrεokT)μ obtained
via Eq. (52) in an aqueous monovalent electrolyte solution containing
cations and anions having radius ai = 0.4 nm and the ionic diffusion
coefficient D = 2 × 10−9 m2/s at T = 298 K (z = 1, εr = 80,
η = 0.89 mPa . s) as a function of the surface charge density σ.
Calculated for the particle radius a = 0.1 μm and 1 μm and the
electrolyte concentration C (in units of M) (which is related to the
number density n (in units of m−3) is 0.01 M. The exact numerical
results obtained by López-García [27] are plotted as closed circles)
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Poisson-Boltzmann approach (Eq. (52)), which takes into ac-
count the effects of ionic size on the basis of ionic activity
coefficient given by Carnahan and Starling [31]. It is shown
that the results are in good agreement with the exact numerical
results by Lopez-Garcia et al. [27] for most practical cases.
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