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Abstract Simple analytic expressions are derived for the
electrostatic interaction energy between two charged colloidal
particles in an electrolyte solution. The obtained expressions
are based on an approximate form of the modified Poisson-
Boltzmann equation taking into account the ion size effects
through Carnahan-Starling activity coefficients of electrolyte
ions. We derive the electrostatic interaction energy between
two parallel plates on the basis of the linear superposition
approximation.We further employDerjaguin’s approximation
to derive the corresponding expressions for the electrostatic
interaction energy between two spheres, two parallel cylin-
ders, or two crossed cylinders.

Keywords Electrostatic interaction energy .Modified
Poisson-Boltzmann equation . Effects of ionic size . Linear
superposition approximation

Introduction

According to the Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory of colloid stability, the calculation of the elec-
trostatic double-layer interaction force and energy between
two charged particles in an electrolyte solution is based on
the solution to the Poisson-Boltzmann equation for the electric
potential distribution around the interacting particles [1–9].
The standard Poisson-Boltzmann equation, however, assumes

that ions behave like point-charges and neglects the effects of
ionic size. There are many theoretical studies on the modified
Poisson-Boltzmann equation [10–16], which takes into ac-
count the effect of ionic size by introducing the activity coef-
ficients of electrolyte ions [10, 17–19]. In a previous paper
[20], on the basis of the equation for the ionic activity coeffi-
cients given by Carnahan and Starling [19], which is the most
accurate among existing theories, we presented a simple algo-
rithm for solving the modified Poisson-Boltzmann equation
and derived a simple approximate analytic expression for the
surface charge density/surface potential relationship for a pla-
nar charged surface.

In the present paper, we present a simple algorithm for the
calculation of the interaction energy between two charged
colloidal particles, that is, two parallel plates, spheres, and
parallel or crossed cylinders on the basis of the modified
Poisson-Boltzmann equation taking into account the ion size
effects through Carnahan-Starling activity coefficients of elec-
trolyte ions [20]. In this modified Poisson-Boltzmann equa-
tion [20], we consider only the steric interactions among ions
of finite size and do not consider other effects relating to the
dielectric permittivity of the electrolyte solution. We employ
the linear superposition approximation for the electric poten-
tial between the two interacting plates [1, 2, 7, 8, 21–23] and
Derjaguin’s approximation [24–26], which enables the calcu-
lation of the interaction energy between two spheres or cylin-
ders from the corresponding interaction energy between two
parallel plates. These approximations are widely used in the-
ories of colloid stability including the original DLVO theory.
Expressions for the interaction energy obtained with the help
of the linear superposition approximation, which do not de-
pend on the type of the electrostatic double-layer interaction,
can be applied irrespective of whether the surface potential or
the surface charge density of the interacting particles remains
constant during interaction.
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Potential distribution around a single planar plate
based on the modified Poisson-Boltzmann equation

The linear superposition approximation uses a potential distri-
bution for a single plate. Before considering two parallel
plates, we thus treat a single charged plate immersed in a
symmetrical electrolyte solution of valence z and bulk concen-
tration (number density) n (in units of m−3) and take an x-axis
perpendicular to the plate surface with its origin 0 at the plate
surface so that the region x > 0 corresponds to the electrolyte
solution. We denote the surface potential of the plate by ψo.
The electric potential distribution ψ(x) obeys the Poisson
equation for the region x > 0, viz.,

d2ψ
dx2

¼ −
ρel xð Þ
εrεo

ð1Þ

Here, εr is the relative permittivity of the electrolyte solu-
tion, εo is the permittivity of a vacuum, and ρel(x) is the space
charge density resulting from the electrolyte ions and is given
by

ρel xð Þ ¼ zefnþ xð Þ−n− xð Þg ð2Þ

where n+(x) and n−(x) are, respectively, the concentrations
of cations and anions at position x and e is the elementary
electric charge. The boundary conditions are

ψ 0ð Þ ¼ ψo;ψ xð Þ→0 and
dψ
dx

→0 as x→∞ ð3Þ

We assume that the activity coefficients of cations and an-
ions at position x have the same value γ(x). The electrochem-
ical potential μ+(x) of cations and that of anions μ−(x) are thus
given by

μ� xð Þ ¼ μo
� � zeψ xð Þ þ kT1n γ xð Þn� xð Þ½ � ð4Þ

where μo
� are the constant terms, k is the Boltzmann’s con-

stant, and T is the absolute temperature. The values of μ±(x)
must be the same as those in the bulk solution phase, where
ψ(x) = 0, viz.,

μ� ∞ð Þ ¼ μo
� þ kT1n γ∞nð Þ ð5Þ

where γ∞ = γ(∞). By equating μ±(x) = μ±(∞), we obtain

n� xð Þ ¼ γ∞n
γ xð Þ exp ∓

zeψ xð Þ
kT

� �
ð6Þ

so that Eq. (2) gives

ρel xð Þ ¼ γ∞

γ xð Þ zen exp −
zeψ xð Þ
kT

� �
− exp

zeψ xð Þ
kT

� �� �

¼ −
2γ∞

γ xð Þ zen sinh
zeψ xð Þ
kT

� �
ð7Þ

Thus Eq. (1) becomes the following modified Poisson-
Boltzmann equation:

d2ψ

dx2
¼ 2zen

εrεo
⋅
γ∞

γ xð Þ sinh
zeψ xð Þ
kT

� �
ð8Þ

When γ(x) = γ∞ = 1, Eq. (8) becomes the following stan-
dard Poisson-Boltzmann equation:

d2ψ

dx2
¼ 2zen

εrεo
sinh

zeψ xð Þ
kT

� �
ð9Þ

We now assume that cations and anions have the same
radius a. We introduce the volume fraction ϕ+ of cations and
that of anions ϕ− at position x. Then we have

ϕ� xð Þ ¼ 4

3
πa3

� �
n� xð Þ ð10Þ

The total ion volume fraction ϕ(x) at position x is thus
given by

ϕ xð Þ ¼ ϕþ xð Þ þ ϕ− xð Þ ¼ 4

3
πa3

� �
fnþ xð Þ þ n− xð Þg ð11Þ

From Eq. (11), we obtain

ϕ xð Þ ¼ ϕBfnþ xð Þ þ n− xð Þg
2n

ð12Þ

where ϕB ≡ ϕ(∞) = (4πa3/3)2n is the total ion volume frac-
tion in the bulk solution phase. By substituting Eq. (6) into
Eq. (12), we obtain

ϕ xð Þ ¼ ϕB
γ∞

γ xð Þ cosh
zeψ xð Þ
kT

� �
ð13Þ

The modified Poisson-Boltzmann equation (8) becomes,
by using Eq. (13)

d2ψ
dx2

¼ 2zen
εrεo

⋅
ϕ xð Þ
ϕB

tanh
zeψ xð Þ
kT

� �
ð14Þ

Now, we employ the expression for γ(x) derived by
Carnahan and Starling [19], viz.,

γ xð Þ ¼ exp
ϕ xð Þf8−9ϕ xð Þ þ 3ϕ2 xð Þg

f1−ϕ xð Þg3
" #

ð15Þ

Then Eq. (13) becomes

ϕ xð Þ ¼ ϕBexp −
ϕ xð Þf8− 9ϕ xð Þ þ 3ϕ2 xð Þg

f1−ϕ xð Þg3 −
ϕB 8− 9ϕB þ 3ϕB

2
� �

1−ϕBð Þ3
 !" #

cosh
zeψ xð Þ
kT

� �
ð16Þ
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which is an equation for ϕ(x) for the given values of ϕB and
ψ(x).

In a previous paper [20], we have shown that Eq. (16) can
be approximated well by

ϕ xð Þ ¼ ϕB
1þ 8ϕBð Þcosh zeψ xð Þ=kTð Þ
1þ 8ϕBcosh zeψ xð Þ=kTð Þ ð17Þ

or equivalently

γ xð Þ ¼ γ∞
1þ 8ϕBcosh zeψ xð Þ=kTð Þ

1þ 8ϕB
ð18Þ

which results from Eq. (13). By substituting Eq. (17) into
Eq. (14), we obtain the following approximation to the mod-
ified Poisson-Boltzmann equation [20]:

d2ψ
dx2

¼ 2zen
εrεo

⋅
sinh

zeψ xð Þ
kT

� �

1þ 16ϕB

1þ 8ϕB

� �
sinh2

zeψ xð Þ
2kT

� � ð19Þ

The above approximation (Eq. (19)) is a good ap-
proximation with negligible errors for low ϕB (ϕB <
0.1) and low-to-moderate potentials (|zeψo/kT| ≤ 3). It is
also to be noted that Eq. (19), which uses the Carnahan-
Starling equation, differs from the so far proposed mod-
ified Poisson-Boltzmann equation based on the less pre-
cise Bikerman equation [17], in which B2ϕB^ appears
instead of B16ϕB/(1 + 8ϕB)^ on the right-hand side of
Eq. (19).

The modified Poisson-Boltzmann equation (19) can be in-
tegrated to give

κx ¼ sgn ψoð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϕB

1þ 8ϕB

s Z yo

y

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 16ϕB

1þ 8ϕB

� �
sinh2

y
2

	 
� �s

ð20Þ

where sgn(ψo) = 1 if ψo > 0 and −1 if ψo < 0, y(x) = zeψ(x)/kT
is the scaled potential, yo = zeψo/kT is the scaled surface po-
tential, and

κ ¼ 2z2e2n
εrεokT

� �1=2

ð21Þ

is the Debye-Hückel parameter. Equation (20) gives y(x) as
a function of the scaled distance κx. It can be shown that at
large distances x compared with the Debye length 1/κ, the
asymptotic form of ψ(x) must be

ψ xð Þ ¼ ψeffe
−κx ð22Þ

where ψeff is called the effective surface potential and is
related to the surface potential ψo by [23]

ψeff ¼ ψoexp ∫yo0
1

f yð Þ −
1

y

� �
dy

� �
ð23Þ

with

f yð Þ ¼ sgn ψoð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ϕB

4ϕB

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 16ϕB

1þ 8ϕB

� �
sinh2

y
2

	 
� �s

ð24Þ

Equation (23) as combined with Eq. (24) will be used later.
Note that at ϕB = 0, Eqs. (23) and (24) give

ψeff ¼
4kT
ze

tanh
zeψo

4kT

� �
ð25Þ

which agrees with the result obtained via the standard
Poisson-Boltzmann equation (8).

Electrostatic interaction between two parallel plates

Consider two parallel plates 1 and 2 having surface potentials
ψ1 and ψ2, respectively, in the absence of interaction, separat-
ed by h between their surfaces in a symmetrical electrolyte
solution of valence z and bulk concentration (number density)
n (in units of m−3) and take an x-axis perpendicular to the plate
surface with its origin 0 of plate 1 (Fig. 1a). The electrostatic
interaction force Ppl(h) per unit area between plates 1 and 2
can be calculated by integrating the osmotic pressure and the
Maxwell stress over an arbitrary closed surface Σ enclosing
either one of the two interacting plates. As Σ, we choose two
planes located at x = −∞ (in the bulk solution far from the
plates) and x = x′ (0 < x′ < h) enclosing plate 1. Here, x′ is
an arbitrary point near the midpoint in the region 0 < x < h
between plates 1 and 2.

At equilibrium, the gradient of the pressure p(x) and the
electric force ρel(x)dψ(x)/dx acting on the space charge ρel(x)
must balance each other, viz.,

dp xð Þ
dx

þ ρel xð Þ dψ
dx

¼ 0 ð26Þ

By substituting the Poisson equation (1) into Eq. (26), we
obtain

d
dx

p xð Þ− 1

2
εrεo

dψ
dx

� �2
" #

¼ 0 ð27Þ
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which gives

p xð Þ− 1

2
εrεo

dψ
dx

� �2

¼ constant ð28Þ

The second term on the left-hand side of Eq. (28) corre-
sponds to the Maxwell stress. The pressure p(x) at position x
can be obtained from the Gibbs-Duhem relation [11], viz.,

nþ xð Þþ dμþ xð Þ
dx

þ n− xð Þ− dμ− xð Þ
dx

¼ 0 ð29Þ

By substituting Eq. (4) into Eq. (29), we obtain

kT
d
dx

fnþ xð Þ þ n− xð Þg

þ kTfnþ xð Þ þ n− xð Þg dlnγ xð Þ
dx

þ ρel xð Þ dψ xð Þ
dx

¼ 0

ð30Þ

By comparing Eqs. (26) and (30), we find [11]

dp xð Þ
dx

¼ kT
d
dx

nþ xð Þþ þ n− xð Þ− �
þ kT nþ xð Þþ þ n− xð Þ− � dlnγ xð Þ

dx
ð31Þ

which can be integrated to give

p xð Þ ¼ kTfnþ xð Þ þ n− xð Þg

þ kT
Z

fnþ xð Þ þ n− xð Þg dlnγ xð Þ
dx

dxþ constant ð32Þ

The first term on the right-hand side of Eq. (32) is the usual
osmotic pressure obtained via the standard Poisson-
Boltzmann equation (9) and the second term results from the
effect of ionic size. The sum of the first and second terms on

the right-hand side of Eq. (32) corresponds to the osmotic
pressure of electrolyte ions taking into account the ionic size
effect. Now, we substitute Eqs. (17) and (18) into Eq. (32) to
obtain

p xð Þ ¼ 2nkT 1þ 1þ 8ϕB

8ϕB

� �
ln

1þ 8ϕBcoshy
1þ 8ϕB

� �� �
þ po

ð33Þ
where po is the pressure in the absence of electrolyte ions. The
electrostatic interaction force per unit area between plates 1
and 2 is thus given by

Ppl hð Þ ¼ p xð Þ− 1

2
εrεo

dψ xð Þ
dx

� �2
" #

x¼x0

− p xð Þ− 1

2
εrεo

dψ xð Þ
dx

� �2
" #

x¼−∞

ð34Þ

By substituting Eq. (33) into Eq. (34), we obtain

Ppl hð Þ ¼ 4nkT
1þ 8ϕB

16ϕB

� �
ln 1þ 16ϕB

1þ 8ϕB

� �
sinh2

zeψ x′ð Þ
2kT

� �� �

−
1

2
εrεo

dψ
dx

�����
x¼x′

 !2

ð35Þ

Here, we have used the fact that p(−∞) = 2nkT + po and dψ/
dx = 0 at x = −∞. Since x′ is an arbitrary point near the mid-
point in the region 0 < x < h between plates 1 and 2, ψ(x′) can
be considered to be small so that

Eq. (35) can be linearized with respect to ψ(x′) to give

Ppl hð Þ ¼ 1

2
εrεo κ2ψ2 x

0
	 


−
dψ
dx

����
x¼x0

� �2
( )

ð36Þ

h
Plate 1                                               Plate 2                                        Sphere 1                Sphere 2

(a) (b)

(c) (d)

Cylinder 1                  Cylinder 2                                   Cylinder 1                  Cylinder 2

a1 H a2

a1 H a2

H
a1

a2

0                     h x

Fig. 1 Interaction between two
colloidal particles at separation h
or H between their surfaces.
Parallel plates (a). Spheres (b).
Parallel cylinders (c). Crossed
cylinder (d)
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Here, Ppl(h) > 0 corresponds to repulsion and Ppl(h) < 0 to
attraction. It must be stressed that the above linearization is not
for the surface potentials ψ1 and ψ2 but only for ψ(x′). That is,
this linearization approximation holds good even when the
surface potentials are arbitrary, provided that the particle sep-
aration h is large compared with the Debye length 1/κ. Also in
this region, ψ(x′) can be approximated as the sum of the as-
ymptotic forms of the unperturbed potentials ψ1(x′) and ψ2(x′)
produced by plates 1 and 2, respectively, in the absence of
interaction, which are given by Eq. (22), viz.,

ψ x
0

	 

¼ ψ1 x

0
	 


þ ψ2 x
0

	 

ð37Þ

with

ψ1 x
0

	 

¼ ψeff1e

−κx0 ð38Þ

ψ2 x
0

	 

¼ ψeff2e

−κ h−x0ð Þ ð39Þ

where ψeff1 and ψeff2 are, respectively, the effective surface
potentials of plates 1 and 2. These potentials are given by
Eq. (23) as combined with Eq. (24). By substituting
Eqs. (37)–(39) into Eq. (36), we obtain

Ppl hð Þ ¼ 2εrεoκ
2ψeff1ψeff2e

−κh ð40Þ

Note that P(h) is independent of the value of x′. The elec-
trostatic interaction energy Vpl(h) per unit area between plates
1 and 2 can thus be derived by integrating Eq. (40), viz.,

Vpl hð Þ ¼ 2εrεoκψeff1ψeff2e
−κh ð41Þ

Equation (41) as combined with Eqs. (23) and (24) is the
required expression for the electrostatic interaction energy be-
tween two parallel plates 1 and 2 based on the modified
Poisson-Boltzmann equation (19) taking into account the ion
size effect.

Results and discussion

We have derived an approximate expression (41) for the in-
teraction energy per unit area between two parallel plates. This
expression, which is based on the linear superposition approx-
imation, involves the effective surface potential calculated
with Eqs. (23) and (24). It is to be noted that the expressions
for the interaction force and energy based on the modified
Poisson-Boltzmann equation (8) takes the same form as those
based on the standard Poisson-Boltzmann equation (9). The
difference is that the effective surface potentials appearing in
these expressions are given by Eqs. (23) and (24) for the
modified Poisson-Boltzmann equation case but they are given
by Eq. (25) for the standard Poisson-Boltzmann equation case.

With the help of Derjaguin’s approximation [24], one
can calculate the electrostatic interaction energy Vsp(H)
between two spheres 1 and 2 having radii a1 and a2 and
effective surface potentials ψeff1 and ψeff2, respectively,
separated by a distance H between their surfaces
(Fig. 1b) via the corresponding electrostatic interaction
energy Vpl(h) between two parallel dissimilar plates,
viz.,

V sp Hð Þ ¼ 2πa1a2
a1 þ a2

Z ∞

H
Vpl hð Þdh ð42Þ

By substituting Eq. (41) into Eq. (42), we obtain

V sp Hð Þ ¼ 4πa1a2
a1 þ a2

εrεoψe f f1ψe f f2e
−κH ð43Þ

Similarly, by using Derjaguin’s approximation for the
electrostatic interaction energy Vcy//(H) per unit length
between two parallel cylinders having radii a1 and a2
and effective surface potentials ψeff1 and ψeff2, respec-
tively, separated by a distance H between their surfaces
[25, 26], that is,

V
cy

.. Hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a1a2
a1 þ a2

r
∫∞HVpl hð Þ dhffiffiffiffiffiffiffiffiffi

h−H
p ð44Þ

we obtain

V
cy

.. Hð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πa1a2
a1 þ a2

r ffiffiffi
κ

p
εrεoψeff1ψeff2e

−κH ð45Þ

For the case of two crossed cylinders having radii a1 and a2
and effective surface potentials ψeff1 and ψeff2, respectively, at
separation H between their closest surfaces, Derjaguin’s ap-
proximation for the interaction energyVcy⊥(H) is given by [25,
26]

V cy⊥ Hð Þ ¼ 2π
ffiffiffiffiffiffiffiffiffi
a1a2

p
∫∞HVpl hð Þdh ð46Þ

By substituting Eq. (42) into Eq. (46), we obtain

V cy⊥ Hð Þ ¼ 4π
ffiffiffiffiffiffiffiffiffi
a1a2

p
εrεoψeff1ψeff2e

−κH ð47Þ

The scaled interaction energies for the above four
cases take the same funct ional form, that is ,
V * (h) = yeff1yeff2e

−κh for two parallel plates and
V * (H) = yeff1yeff2e

−κH for two spheres and two parallel
or crossed cylinders. That is,

V* hð Þ≡ ze
kT

	 
2 1

2εrεoκ

� �
⋅Vpl hð Þ ¼ ye f f1ye f f2e

−κh ð48Þ

V* Hð Þ≡ ze
kT

	 
2 a1 þ a2
4πεrεoa1a2

� �
⋅V sp Hð Þ ¼ ye f f1ye f f2e

−κH ð49Þ
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V* Hð Þ≡ ze
kT

	 
2 1

2εrεo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2
2πa1a2κ

r
⋅Vcy== Hð Þ

¼ ye f f1ye f f2e
−κH ð50Þ

and

V* Hð Þ≡ ze
kT

	 
2 1

4πεrεo
ffiffiffiffiffiffiffiffiffi
a1a2

p
� �

⋅Vcy⊥ Hð Þ

¼ ye f f1ye f f2e
−κH ð51Þ

In Fig. 2, we plot the scaled electrostatic interaction ener-
gies V* hð Þ ¼ y2e f f e

−κh or V* Hð Þ ¼ y2e f f e
−κH for two similar

parallel plates, two similar spheres, or two similar cylinders
having scaled surface potential yo = zeψo/kT and scaled effec-
tive surface potential yeff = zeψeff/kT as a function of κh or κH
for yo = 1, 2, and 3 at ϕB = 0, 0.05, and 0.1. Figure 2 shows
how the effects of ionic size on the electrostatic interaction
energy become appreciable for a higher surface potential yo
and a higher total ion volume fraction ϕB. For yo = 2 and
ϕB = 0.05 for example, the modified Poisson-Boltzmann
equation (Eq. (8)) gives V*(κh) (or V*(κH)) = 1.449, while
the standard Poisson-Boltzmann equation (Eq. (9)) gives
V*(κh) (or V*(κH)) = 1.257, the difference being 15%. The
ionic size effect always gives rise to an increase in the inter-
action energy V*(κh) (or V*(κH)). This is because the ionic

concentration becomes lower due to the ionic size effect, lead-
ing to a decrease in the ionic shielding effects so that the
magnitude of V*(κh) (or V*(κH)) increases.

It is to be noted that the expressions for the interaction
energy V (κh) or V (κH) between the two particles ob-
tained in the present paper are derived on the basis of the
linear superposition approximation (LSA). This approxi-
mation is no longer a good approximation for small par-
ticle separations h or H as compared with the Debye
length 1/κ and thus the energy curves are given by dot-
ted lines in Fig. 2. The interaction force and energy be-
tween two particles for small particle separations depend
on the interaction models. Most generally employed
models are the constant surface potential model and the
constant surface charge density model, where the surface
potential ψo or surface charge density σ of the particles
remain constant during interaction. In the appendix we
give the exact expressions for the interaction force be-
tween two parallel similar plates obtained from the con-
stant surface potential model and the constant surface
charge density model. It is known that the magnitude
of the interaction energy or force obtained from the lin-
ear superposition approximation lies between those ob-
tained from the above two interaction models and a good
approximation for κh > 1 or κH > 1 [7]. For this reason,
the linear superposition approximation is employed in the
original DLVO theory of the stability of colloidal sus-
pensions [1, 2]. Indeed, Eq. (43) with a1 = a2 and y-
eff1 = yeff2 for the case ϕB = 0 is employed in the original
DLVO theory [1, 2]. Equation (43) is thus a generaliza-
tion of the DLVO electrostatic interaction energy by tak-
ing into account the ion size effects.

Conclusion

We have presented a simple algorithm for calculating the
electrostatic interaction energy between two charged parti-
cles (plates, spheres, and cylinders) in an electrolyte solu-
tion based on the modified Poisson-Boltzmann equation
(8) for the electric potential around the interacting parti-
cles, which takes into account the effects of ionic size on
the basis of ionic activity coefficient given by Carnahan
and Starling. It is to be noted that expressions for the
interaction force and energy based on the modified
Poisson-Boltzmann equation [8] takes the same form as
those based on the standard Poisson-Boltzmann equation
[9]. The difference is that the effective surface potentials
ψeff1 and ψeff2 appearing in these expressions are different
for these two cases. In a previous paper [27], we derived
a simple expression for the stability ratio of colloidal dis-
persions by considering the sum of the electrostatic and
van der Waals interaction energies between two spherical

Fig. 2 Scaled electrostatic interaction energy V* hð Þ ¼ y2e f f e
−κh for two

parallel similar plates and V* Hð Þ ¼ y2e f f e
−κH for two similar spheres of

radius a and for two parallel or crossed similar cylinders of radius a.
Calculated with Eqs. (48)–(51) with a1 = a2 = a and yeff1 = yeff2 = yeff
for the scaled unperturbed surface potential yo = 1, 2, and 3 at the total ion
volume fraction ϕB = 0, 0.05, and 0.1. The lines for ϕB = 0 correspond to
the results obtained via the standard Poisson-Boltzmann model
neglecting the ionic size effect. For small κh or κH, the linear
superposition approximation (LSA) is no longer good approximation
and thus the energy curves are given by dotted lines κh ≤ 1 or κH ≤ 1.
Note that the scaled interaction energy takes the same functional form V
* hð Þ ¼ y2eff e

−κh for plates orV* Hð Þ ¼ y2eff e
−κh for spheres and cylinders
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particles based on the standard Poisson-Boltzmann equa-
tion [9]. By replacing the expressions for the effective
surface potentials appearing in the electrostatic interaction
energy with those based on the modified Poisson-
Boltzmann equation (8), the ionic size effect is taken into
account in the resultant electrostatic energy expression.
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Appendix

Analytic expressions for the interaction between two
parallel similar plates at separation h can be derived
on the basis of the modified Poisson-Boltzmann equa-
tion (19). The interaction force Ppl(h) per unit area be-
tween the two plates is given by

Ppl hð Þ ¼ 4nkT
1

g ϕBð Þ ln 1þ g ϕBð Þsinh2 ym
2

	 
h i
ð52Þ

with

g ϕBð Þ ¼ 16ϕB

1þ 8ϕB
ð53Þ

where ym is the scaled potential at the midpoint x = h/2
between the two plates. Eq. (52) can be derived from
Eq. (35) by choosing h/2 as x′. Note that Eq. (52) can be
applied for both of the constant surface potential and surface
charge density models. For the constant surface potential
model, ym is related to the scaled surface potential yo = zeψo/
kT, viz.,

κh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g ϕBð Þ

p Z jyoj

jymj

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1þ g ϕBð Þsinh2 y=2ð Þ
1þ g ϕBð Þsinh2 ym=2ð Þ

� �s ð54Þ

which is derived by applying Eq. (20) for the system of two
parallel plates. For the constant surface charge density model,
on the other hand, we have

κh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g ϕBð Þ

p Z jy 0ð Þj

jymj

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1þ g ϕBð Þsinh2 y=2ð Þ
1þ g ϕBð Þsinh2 ym=2ð Þ

� �s ð55Þ

Note that the scaled surface potential y (0), which is a
function of the plate separation h, is related to the scaled

unperturbed surface potential yo = zeψo/kT in the absence of
interaction (h =∞) by

σ2 ¼ 2εrεoκkT
ze

� �2 1

g ϕBð Þ ln
1þ g ϕBð Þsinh2 y 0ð Þ=2ð Þ
1þ g ϕBð Þsinh2 ym=2ð Þ

� �
ð56Þ

which can be derived by integrating Eq. (19) once and
applying the boundary condition: dψ/dx|x=0

+ = − σ/εrεo and
dψ/dx|x = h/2 = 0 (from symmetry of the system). The surface
charge density σ of the plates is related to the scaled unper-
turbed surface potential yo = zeψo/kT (in the absence of inter-
action) by

σ ¼ sgn ψoð Þ 2εrεoκkT
ze

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g ϕBð Þ ⋅ln 1þ g ϕBð Þsinh2 yo
2

	 
h is

ð57Þ

By combining Eqs. (56) and (57), we obtain

1þ g ϕBð Þsinh2 yo=2ð Þ ¼ 1þ g ϕBð Þsinh2 y 0ð Þ=2ð Þ
1þ g ϕBð Þsinh2 ym=2ð Þ ð58Þ

Equations (55) and (58) form coupled equations for ym for
the given values of yo and κh.

Once the value of ym is obtained from Eq. (54) for the
constant potential model (in which y(0) is always equal to
the unperturbed surface potential yo) or the coupled
Eqs. (55) and (58) for the constant surface charge density
model, one can calculate the interaction force Ppl(h) via
Eq. (52).
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