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Abstract A simple algorithm is presented for solving the
modified Poisson-Boltzmann equation for the electric poten-
tial around a planar charged surface in contact with an elec-
trolyte solution, which takes into account the effects of ionic
size on the basis of ionic activity coefficient given by
Carnahan and Starling (J Chem Phys (1969) 51: 635). An
approximate analytic expression for the surface charge
density/surface potential relationship is derived.

Keywords ModifiedPoisson-Boltzmannequation .Effects of
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Introduction

The electric potential distribution around a charged particle in
an electrolyte solution, which plays an essential role in deter-
mining the electric behaviors of the colloidal particles, is usu-
ally obtained by solving the Poisson-Boltzmann equation
[1–9]. The standard Poisson-Boltzmann equation for the elec-
tric potential distribution, however, assumes that ions behave
like point charges and neglects the effects of ionic size. There
are many theoretical studies on the modified Poisson-
Boltzmann equation [10–15], which takes into account the
effect of ionic size by introducing the activity coefficients of

electrolyte ions [10, 16–18]. In the present paper on the basis
of the equation for the ionic activity coefficients given by
Carnahan and Starling [18], which is the most accurate among
existing theories, we present a simple algorithm for solving
the modified Poisson-Boltzmann equation and derive a simple
approximate analytic expression for the surface charge
density/surface potential relationship for a planar charged
surface.

Theory

Consider a charged planar wall surface in contact with a sym-
metrical electrolyte solution of valence z and bulk concentra-
tion (number density) n (in units of m−3) and take an x-axis
perpendicular to the wall surface with its origin 0 at the wall
surface.We denote the surface potential and the surface charge
density of the wall by ψo = ψ(0) and σ, respectively. The
potential distribution ψ(x) obeys the Poisson equation for the
region x > 0, viz.,

d2ψ
dx2

¼ −
ρel xð Þ
εrεo

ð1Þ

Here, εr is the relative permittivity of the electrolyte solu-
tion, εo is the permittivity of a vacuum, and ρel(x) is the space
charge density resulting from the electrolyte ions and is given
by

ρel xð Þ ¼ zefnþ xð Þ−n− xð Þg ð2Þ

where n+(x) and n−(x) are, respectively, the concentrations of
cations and anions at position x and e is the elementary electric
charge. In the standard Poisson-Boltzmann approach, in
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which ions are assumed to be point charges, the ion distribu-
tion is given by the Boltzmann distribution, viz.,

n� xð Þ ¼ nexp ∓
zeψ xð Þ
kT

� �
ð3Þ

where k is Boltzmann’s constant and T is the absolute temper-
ature. Equation (1) as combined with Eqs. (2) and (3) thus
becomes the following standard Poisson-Boltzmann equation:

d2ψ
dx2

¼ 2zen
εrεo

sinh
zeψ xð Þ
kT

� �
ð4Þ

which can be rewritten in the non-dimensional form as

d2y
dx2

¼ κ2sinhy ð5Þ

where y = zeψ/kT is the scaled electric potential and

κ ¼ 2z2e2n
εrεokT

� �1=2

ð6Þ

is the Debye-Hückel parameter. The boundary conditions are

dψ
dx

����
x¼0þ

¼ −
σ

εrεo
ð7Þ

ψ xð Þ→0 and
dψ
dx

→0 as x→∞ ð8Þ

The standard Poisson-Boltzmann Eq. (4) assumes that elec-
trolyte ions are point-like charges. This assumption, however,
becomes invalid especially in the region very close to a highly
charged surface, where the concentration of counterions is
very high. We must thus take into account steric interactions
among ions of the finite size, by introducing ionic activity
coefficient γ. We assume that the activity coefficients of cat-
ions and anion have the same value γ. The electrochemical
potential μ+(x) of cations and that of anions μ−(x) at position x
are thus given by

μ� xð Þ ¼ μÅ� � zeψ xð Þ þ kT ln γ xð Þn� xð Þ½ � ð9Þ
which must take the same value as those in the bulk solution
phase, where ψ(x) = 0, viz.,

μ� ∞ð Þ ¼ μo
� þ kT ln γ∞nð Þ ð10Þ

where μ±
o are constant trems and γ∞ = γ(∞) . By

equatingμ±(x) = μ±(∞), we obtain

n� xð Þ ¼ γ∞n
γ xð Þ exp ∓

zeψ xð Þ
kT

� �
ð11Þ

so that Eq. (2) gives

ρel xð Þ ¼ γ∞

γ xð Þ zen
(
exp −

zeψ xð Þ
kT

� �
−exp

zeψ xð Þ
kT

� �)

¼ −
2γ∞

γ xð Þ zensinh
zeψ xð Þ
kT

� �
ð12Þ

Thus, Eq. (1) becomes the following modified Poisson-
Boltzmann equation:

d2ψ
dx2

¼ 2zen
εrεo

⋅
γ∞

γ xð Þ sinh
zeψ xð Þ
kT

� �
ð13Þ

We now assume that cations and anions have the same
radius a. We introduce the volume fraction ϕ+ of cations and
that of anions ϕ− at position x. Then we have

ϕ� xð Þ ¼ 4

3
πa3

� �
n� xð Þ ð14Þ

The total ion volume fraction ϕ(x) at position x is thus
given by

ϕ xð Þ ¼ ϕþ xð Þ þ ϕ− xð Þ ¼ 4

3
πa3

� �
nþ xð Þ þ n− xð Þ� � ð15Þ

Let the total ion volume fraction in the bulk solution phase
be ϕB ≡ ϕ(∞). Then from Eq. (15), we obtain

ϕB ¼ 4

3
πa3

� �
⋅2n ð16Þ

so that Eq. (15) becomes

ϕ xð Þ ¼ ϕB nþ xð Þ þ n− xð Þ� �
2n

ð17Þ

By substituting Eq. (11) into Eq. (17), we obtain

ϕ xð Þ ¼ ϕB
γ∞

γ xð Þ cosh
zeψ xð Þ
kT

� �
ð18Þ

The modified Poisson-Boltzmann Eq. (13) becomes, by
using Eq. (18),

d2ψ
dx2

¼ 2zen
εrεo

⋅
ϕ xð Þ
ϕB

tanh
zeψ xð Þ
kT

� �
ð19Þ

which is rewritten in the non-dimensional form as

d2y
dx2

¼ ϕ xð Þ
ϕB

⋅κ2tanh y ð20Þ
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Now, we employ the expressions for γ(x) derived by
Carnahan and Starling [18], viz.,

γ xð Þ ¼ exp
ϕ xð Þf8−9ϕ xð Þ þ 3ϕ2 xð Þg

f1−ϕ xð Þg3
#"

ð21Þ

and

γ∞ ¼ exp
ϕB 8−9ϕB þ 3ϕ2

B

� �
1−ϕBð Þ3

" #
ð22Þ

Then Eq. (18) becomes

ϕ xð Þ ¼ ϕBexp −
ϕ xð Þf8−9ϕ xð Þ þ 3ϕ2 xð Þg

f1−ϕ xð Þg3 −
ϕB 8−9ϕB þ 3ϕB

2
� �

1−ϕBð Þ3
 !" #

cosh
zeψ xð Þ
kT

� �

ð23Þ
which is an equation for ϕ(x) for given values of ϕB and ψ(x).
Once ϕ(x) is obtained, we substitute the result into Eq. (19) to
obtain the final form of the modified Poisson-Boltzmann
equation.

In the zeroth-order approximation in the limit of very small
ϕB, we have form Eq. (23) by approximating the exponential
factor to be unity,

ϕ xð Þ ¼ ϕBcosh
zeψ xð Þ
kT

� �
ð24Þ

If we substitute Eq. (24) into Eq. (19), then the modified
Poisson-Boltzmann Eq. (19) reduces back to the standard
Poisson-Boltzmann Eq. (4). In order to obtain the first-order
approximation for ϕ(x), we expand the exponential factor on
the right-hand side of Eq. (23) in a power series of ϕ(x) and ϕB
to give

ϕ xð Þ ¼ ϕB
1þ 8ϕBð Þcosh zeψ xð Þ=kTð Þ
1þ 8ϕB cosh zeψ xð Þ=kTð Þ ð25Þ

By substituting Eq. (25) into Eq. (19), we obtain the fol-
lowing first-order approximation to the modified Poisson-
Boltzmann equation:

d2ψ
dx2

¼ 2zen
εrεo

⋅
sinh

zeψ xð Þ
kT

� �

1þ 16ϕB

1þ 8ϕB

� �
sinh2

zeψ xð Þ
2kT

� � ð26Þ

which is rewritten in the non-dimensional form as

d2y
dx2

¼ κ2sinhy

1þ 16ϕB

1þ 8ϕB

� �
sinh2 y=2ð Þ

ð27Þ

It is possible to obtain the higher-order approximation to
the modified Poisson-Boltzmann equation. As will be shown
later, however, the above first-order approximation (Eq. (26))
is a good approximation with negligible errors for low ϕB
(ϕB < 0.1) and low-to moderate potentials. It is also to be noted
that one can estimate the accuracy of an approximation for
ϕ(x) by considering that Eq. (23) gives exact values of ϕ(x)
for given values of ϕB and ψ(x), as will be shown later in
Fig. 1.

The modified Poisson-Boltzmann Eq. (26) can be integrat-
ed once to give

dψ
dx

¼ −sgn ψoð Þ 2κkT
ze

⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ϕB

16ϕB

s
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 16ϕB

1þ 8ϕB

� �
sinh2

zeψ xð Þ
2kT

� �
 �s
ð28Þ

where sgn(ψo) = 1 if ψo > 0 and −1 if ψo < 0. By evaluating
Eq. (28) at x = 0+ and substituting the result into Eq. (4), we
obtain the following relationship between the surface charge
density σ and the surface potential ψo:

σ ¼ sgn ψoð Þ 2εrεoκkT
ze

⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ϕB

16ϕB

s
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 16ϕB

1þ 8ϕB

� �
sinh2

zeψo

2kT

� �
 �s
ð29Þ

or equivalently

ψo ¼ sgn σð Þ 2kT
ze

⋅arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ϕB

16ϕB

(
exp

4ϕB

1þ 8ϕB

� �
zeσ

εrεoκkT

� �2
" #

−1

)vuut
0
@

1
A

ð30Þ

Fig. 1 Total ion volume fraction ϕ(x) of cations and anions at position x
as a function of the scaled electric potential zeψ(x)/kT and the total bulk
ion volume fraction ϕB ≡ ϕ(∞). Solid lines are the exact results obtained
via Eq. (23) and the dotted lines are the approximate results obtained via
Eq. (25)
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By integrating Eq. (28) once again, we have

κx ¼ sgn ψoð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϕB

1þ 8ϕB

s Z yo

y

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 16ϕB

1þ8ϕB

� 

sinh2 y

2

� �h ir ð31Þ

where yo = zeψo/kT is the scaled surface potential. Equation
(31) gives the scaled potential distribution y(x) = zeψ(x)/kT as
a function of the scaled distance κx.

Results and discussion

The principal results of this paper are Eqs. (29)–(31). These
equations depend on the approximate expression given by
Eq. (25) for the total volume fractions ϕ(x). This expression is
the first-order approximation to Carnahan-Starling’s Eq. (23). In
order to estimate the accuracy of Eq. (25), in Fig. 1, we plot ϕ(x)
calculated via Eq. (25) as a function of ϕB for four values of y(x)
(dotted lines) in comparison with the exact results (solid lines)
obtained via Eq. (23). It can be seen that Eq. (25) is a good
approximation to Eq. (23) for small ϕB (ϕB ≤ 0.1) and low-to-
moderate values of the electric potential y(x) (|y(x)| ≤ 3). The
maximum relative error of Eq. (25) is ca. 3 % for y(x) = 1, ca.
4 % for y(x) = 2, and ca. 7 % for y(x) = 3. Even for y(x) = 4, the
maximum relative error is ca. 12 % at ϕB = 0.01.

We have derived approximate expressions given by
Eqs. (29)–(31) for the surface charge density σ/surface potential
ψo relationship for a charged planar surface and the electric po-
tential distribution ψ(x) on the basis of the modified Poisson-
Boltzmann Eq. (26). In the limit of ϕB→ 0, Eqs. (29)–(31) tend
to

σ ¼ 2εrεoκkT
ze

sinh
zeψo

2kT

� �
ð32Þ

ψo ¼
2kT
ze

⋅arcsinh
zeσ

2εrεoκkT

� �
ð33Þ

and

κx ¼ 1

2

Z yo

y

dy

sinh y
.
2

� 
 ð34Þ

which gives

y xð Þ ¼ 2ln
1þ tanh yo=4ð Þ⋅e−κx
1−tanh yo=4ð Þ⋅e−κx


 �
ð35Þ

The above results agree with the results obtained by the stan-
dard Poisson-Boltzmann equation (Eq. (4)).

Figure 2 shows an example of the calculation of the surface
potential ψo via Eq. (30) plotted as a function of electrolyte
concentration n (given in units of M) in an aqueous monovalent
electrolyte solution containing cations and anions of radius

a = 0.4 nm (z = 1, εr = 78.55) for three values of the surface
charge densityσ (σ= 0.01, 0.02, and 0.05C/m2) at T= 298.15K.
The solid lines are the results obtained by the modified Poisson-
Boltzmann equation (Eq. (30)) and the dotted lines are those
obtained by the standard Poisson-Boltzmann equation
(Eq. (33)). In Fig. 2, the exact numerical results obtained by
Lopez-Garcia et al. [15] are also plotted as closed circles. The
agreement between the approximate results obtained via Eq. (30)
and the corresponding exact numerical results [15] is excellent
with negligible errors. Figure 2 shows how the effects of ionic
size on the surface potential becomes appreciable for higher sur-
face charge density and higher electrolyte concentrations. For
σ = 0.05 C/m2 and n = 0.05 M, for example, the modified
Poisson-Boltzmann equation (Eq. (34)) gives ca. ψo = 82 mV,
while the standard Poisson-Boltzmann equation (Eq. (33)) gives
only ca. 72 mV, the difference being higher than 12%. The ionic
size effect always gives rise to an increase in the surface potential
ψo. This is because the ionic concentration becomes lower due to
the ionic size effect, leading to a decrease in the ionic shielding
effects so that themagnitude ofψo increases. If the surface charge
density σ is low, on the other hand, then the ionic size effect
becomes small. In order to see this more clearly, we expand ψo

given by Eq. (30) in a power series of σ with the result that

ψo ¼
σ

εrεoκ
−

1

24
−

ϕB

1þ 8ϕB

� �
ze
kT

� 
 σ
εrεoκ

� �3

þ O σ5
� � ð36Þ

Fig. 2 Surface potentialψo of a charged planar surface in contact with an
aqueous monovalent electrolyte solution as a function of electrolyte
concentration n (given in units of M). The solid lines are the results
obtained via the modified Poisson-Boltzmann equation (Eq. (30)) and
the dotted lines are the results by the standards Poisson-Boltzmann equa-
tion (Eq. (33)). Calculated for the surface charge density σ = 0.01, 0.02,
and 0.04 C/m2, the ionic radius a = 0.4 nm, T = 298.15 K, and εr = 78.55.
The exact numerical results obtained by Lopez-Garcia et al. [15] are also
plotted as closed circles
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We see that the first term on the right-hand side of Eq. (36)
does not involve ϕB so that in the limit of σ→ 0, the ionic size
effect vanishes. The ionic size effect appears only in terms of the
third and higher orders of σ.

Finally, we give below an approximate expression for the
differential electric double layer capacitance Cd = dσ/dψo, viz.,

Cd ¼ εrεoκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϕB

1þ 8ϕB

s
⋅

sinh
zeψo

kT

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 16ϕB

1þ 8ϕB

� �
sinh2

zeψo

2kT

� �
 �s

⋅
1

1þ 16ϕB

1þ 8ϕB

� �
sinh2

zeψo

2kT

� �
ð37Þ

For ϕB → 0, Eq. (37) reduces to

Cd ¼ εrεoκcosh
zeψo

2kT

� �
ð38Þ

which agrees with the differential electric double layer capaci-
tance based on the standard Poisson-Boltzmann equation (33).

Conclusion

We have presented a simple algorithm for solving the modi-
fied Poisson-Boltzmann equation for the electric potential
around a planar charged surface in contact with an electrolyte
solution, which takes into account the effects of ionic size on
the basis of ionic activity coefficient given by Carnahan and
Starling [18]. We have derived approximate analytic expres-
sions for the surface charge density/surface potential relation-
ship (Eqs. (29) and (30)) and the potential distribution
(Eq. (31)), and the differential capacitor of electrical double
layer (Eq. (37)).
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