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Abstract Recently, boron neutron capture therapy (BNCT)
has been focused on, which is a cancer therapy using nuclear
reaction between boron and thermal neutron. To selectively
destroy cancer cells, the high accumulation and selective de-
livery of boron-10 (10B) into tumor tissue are required. We
have developed polyborane from 1,7-dicarba-closo-
dodecaborane as a boron carrier. To evaluate tumor accumu-
lation of polyborane, PEGylated liposomes were chosen as
carrier. The mean volume diameters of polyborane-
embedded liposomes were 50, 100, and 200 nm, respectively.
They were injected into the tail vein of tumor-bearing mice.
Twenty-four hours later, mice were killed and biodistribution
of boron was determined using the inductively coupled plas-
ma atomic emission spectrometry. At 24 h after injection,
50 nm bare liposome and 100 nm PEGylated liposome were
found in tumor with high boron levels. Moreover, 50 nm bare
liposome showed high tumor/blood ratios of boron concentra-
tion, and their usability for BNCTwas suggested.
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Introduction

Boron neutron capture therapy (BNCT) is a cancer ther-
apy using nuclear reaction between boron and thermal
neutron. It is based on the nuclear capture and fission
reactions. When boron-10 (10B) is irradiated with low-
energy thermal neutrons, it yields high linear energy
transfer (LET), α particles (4He), and recoiling lithium-
7 (7Li) nuclei. The high LET particles have limited path
lengths in tissue (5–9 μm). The destructive effects of
these high-energy particles are limited to boron contain-
ing cells. Therefore, it is possible to selectively destroy
cancer cells if 10B is selectively delivered into the cancer
cells. The high accumulation and selective delivery of
10B into tumor tissue are the most important require-
ments. In order to BNCT be successful, a minimum of
20–30 μg of non-radioactive 10B per gram of tumor tis-
sue and tumor/blood boron concentration ratio of over 5
are required [1–3].

Liposomal drug delivery system on tumor-selective
boron delivery in BNCT has been reported [2, 4–6]. A
liposome is a closing vesicle formed with phospholipids,
which are basic components of the biomembrane. It can
encapsulate hydrophilic boron compounds within the
aqueous core of the liposome, or lipophilic boron com-
pounds within the lipid bilayer, or both types of boron
compounds can be incorporated into the same liposome
formulation [6]. Liposomes can also be PEGylated and
grafted with targeting ligands [7]. PEGylation prolongs
the retention time of liposomes in circulation by avoiding
the uptake into the cells of the mononuclear phagocyte
system (reticuloendothelial system), and it promotes the
enhanced permeability and retention (EPR) effect in solid
tumors [8–10]. Ligands are used to bind liposomes and
tumor cells, and they allow receptor-directed targeting
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and intracellular delivery of liposomal drugs [11, 12].
Moreover, liposome size affects its biodistribution and
tumor uptake [13]. In previous studies for BNCT, sodium
or cesium salt of mercaptoundecahydrododecaborate
(BSH) and boronophenylalanine (BPA) were used as bo-
ron carriers [2, 4, 5, 14, 15]. BSH, having 12 10B atoms,
is known as a water-soluble cluster with low toxicity
[16]. It is encapsulated into the aqueous compartment
of liposomes. BPA, having one 10B atom, is known as
hydrophobic boron compound, and it attains a high tu-
mor concentration in brain [14]. Lipid analogs were syn-
thesized using BPA to incorporate into phospholipid bi-
layers of liposomes [15].

In this study, we have developed polyborane for BNCT
using liposomal drug delivery system, and evaluated its tumor
accumulation property by measuring biodistribution of boron
in mice. 1,7-Dicarba-closo-dodecaborane, a hydrophobic bo-
ron compound, was used as a boron carrier because dicarba-
closo-dodecaborane has 10 boron atoms in its structure and
exists as ortho, meta and para isomers, which differ in the
relative positions of the carbon atoms in the cluster [17].
Although this boron compound is stable in the presence of
many chemical reagents and it also has significant thermal
stability, various synthetic routes were reported [18–21].
Moreover, it has hydrophobic property and easily available.
To trap the boron in lipid bilayers of liposomes, we have
synthesized a polyborane from 1,7-dicarba-closo-
dodecaborane [22].Moreover, bare and PEGylated liposomes,
with diameter of 50, 100, and 200 nm, were prepared to study
effects of particle size and PEGylation.

Materials and methods

Materials

1,7-dicarba-closo-dodecaborane (C2H12B10, purity
≥97 %), tetrahydrofuran (THF; C4H8O, purity ≥99.5 %,

water ≤0.001 %), boron tribromide (BBr3; 99.85 %), chlo-
roform-d (CDCl3; purity ≥99.8 %, containing 0.05 vol%
TMS), boron standard solution (boron concentration
1000 mg/L), and Celite no. 503 (Imerys Minerals
California, Inc.) were purchased from Wako Pure
Chemical Industries, Ltd. (Osaka, Japan). Egg phosphati-
dylcholine (egg PC) was purchased from Asahi Kasei
Kogyo Co., Ltd. (Tokyo, Japan). Sunbright DSPE-
0 2 0 C N ( D S P E - P E G , N - ( c a r b o n y l -
methoxypolyethyleneglycol 2000)-1,2-distearoyl-sn-
glycero-3-phosphoethanolamine, sodium salt, Mw 2000)
was purchased from NOF Corporation (Tokyo, Japan).
1,2-Dimethoxyethane (DME) was purchased from Kanto
Chemical Co., Inc. (Tokyo, Japan). n-Butyllithium (in
hexane, ca. 1.5–1.7 mol/L) and heptyl p-toluene-sulfonate
were purchased from Tokyo Chemical Industry Co., Ltd.
(Tokyo, Japan). 2-[4-(2-Hydroxyethyl)-1-piperazinyl]
ethanesulfonic acid (HEPES) was purchased from
Dojindo Molecular Technologies Inc. (Mashiki, Japan).
All other chemicals were of the highest grade commer-
cially available.

Synthesis of polyborane for BNCT

1,7-dicarba-closo-dodecaborane (3.5 g, 24.3 mmol) in
DME (97.2 mL) was dropwise added into an n-
butyllithium in hexane (1.57 M, 16.3 mL, 25.5 mmol) at
0 °C under Ar atmosphere. After stirring for 30 min at
room temperature, copper chloride (3.13 g, 31.6 mmol)
was added and then continuously stirred for 1 h.
Pyridine (14.7 mL, 182 mmol) and 4-iodoanisole
(5.97 g, 25.5 mmol) were also dropwise added into the
reaction vessel, and the reaction mixture was stirred for
48 h at 100 °C. After cooling down to room temperature,
the reaction mixture was diluted with diethyl ether and
stirred for 15 h to quench the reaction. To remove insol-
uble materials, the reaction mixture was filtered through
Celite no. 503. The filtrate was washed with hydrochloric
acid (2 N), aqueous sodium thiosulfate, distilled water,
and brine. Then, the organic layer was dried with anhy-
drous sodium sulfate and concentrated under reduced
pressure. The crude solid residue was purified by silica
gel column chromatography (hexane/ethyl acetate = 40:1),
and as shown in Scheme 1, 1-(4-methoxyphenyl)-1,7-
dicarba-closo-dodecaborane was obtained as a white

Scheme 2 Synthesis of
1-(4-methoxyphenyl)-7-heptyl-
1,7-dicarba-closo-dodecaborane

Scheme 1 Synthesis of 1-(4-methoxyphenyl)-1,7-dicarba-closo-
dodecaborane (open circle boron atom, filled circle carbon atom)
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amorphous solid (2.17 g, 35.7 %) [23]. 1H-NMR (δ,
300 MHz, CDCl3): 1.50–3.70 (10H, broad multiplet),
3.04 (1H, broad singlet), 3.77 (3H, singlet), 6.76 (2H, dou-
blet, J = 9.0 Hz), and 7.33 (2H, doublet, J = 9.0 Hz).

1-(4-Methoxyphenyl)-1,7-dicarba-closo-dodecaborane
(2.2 g, 8.67 mmol) in THF (86.7 mL) was dropwise added
into a n-butyllithium in hexane (1.57 M, 5.8 mL,
9.11 mmol) over 45 min at 0 °C under Ar atmosphere.
After stirring the mixture at room temperature for 1 h,
heptyl p-toluene-sulfonate (2.46 g, 9.11 mmol) and n-
butyllithium (1.57 M) in hexane were dropwise added,
and continuously stirred at room temperature. After
12 h, cooled distilled water was added into the reaction
mixture, and the desired compound was extracted with
diethyl ether. The organic layer was washed with brine
and dried with anhydrous sodium sulfate, and then con-
centrated under reduced pressure. The crude solid residue
was purified by silica gel column chromatography (hex-
ane/ethyl acetate = 40:1), and as shown in Scheme 2,
1-(4-methoxyphenyl)-7-heptyl-1,7-dicarba-closo-
dodecaborane was obtained as a white amorphous solid
(2.12 g, 70.3 %) [22]. 1H-NMR (δ, 300 MHz, CDCl3):
0.88 (3H, triplet, J = 6.8 Hz), 1.24–1.43 (10H, broad mul-
tiplet), 1.93–1.99 (2H, multiplet), 3.78 (3H, singlet), 6.75
(2H, doublet, J = 9.0 Hz), and 7.33 (2H, doublet,
J = 9.0 Hz).

1-(4-Methoxyphenyl)-7-heptyl-1,7-dicarba-closo-
dodecaborane (2.1 g, 6.10 mmol) in dichloromethane
(61.0 mL) was dropwise added into a BBr3 in dichloro-
methane (1 M, 11.7 mL, 11.7 mmol) at −78 °C under Ar
atmosphere. After stirred it at room temperature for 2 h,
water was added at 0 °C, and the desired compound was

extracted with diethyl ether. The extracted organic layer
was washed with distilled water and brine. After drying
with anhydrous sodium sulfate and concentrating under
reduced pressure, the crude solid residue was purified by
silica gel column chromatography (hexane/ethyl ace-
ta te = 10:1) , and as shown in Scheme 3, 1-(4-
h y d r o x y p h e n y l ) - 7 - h e p t y l - 1 , 7 - d i c a r b a - c l o s o -
dodecaborane was obtained as a white amorphous solid
(1.91 g, 96.9 %) [22]. 1H-NMR (δ, 300 MHz, CDCl3):
0.88 (3H, triplet, J = 6.8 Hz), 1.24–1.38 (10H, broad
multiplet), 1.93–2.04 (2H, multiplet), 4.97 (1H, singlet),
6.69 (2H, doublet, J = 9.0 Hz), and 7.30 (2H, doublet,
J = 9.0 Hz).

Preparation of 1-(4-hydroxyphenyl)
-7-heptyl-1,7-dicarba-closo-dodecaborane-embedded
liposomes

1-(4-Hydroxyphenyl)-7-heptyl-1,7-dicarba-closo-
dodecaborane-embedded liposomes were prepared using
Bangham method. Compositions of them are shown in
Table 1.

Lipid mixtures of 1-(4-hydroxyphenyl)-7-heptyl-1,7-
dicarba-closo-dodecaborane, egg PC, and DSPE-PEG
were dissolved in chloroform (10 mL) in eggplant flask,
and chloroform was evaporated under reduced pressure.
After a thin film was formed in eggplant flask, the film
was resuspended with HEPES buffered saline (HBS,
pH 7.4, 10 mM), and it was vortexed and sonicated
5 min, respectively. Fifty nanometer liposomes were pre-
pared using Nanomizer Mark II (Yoshida Kikai Co., Ltd.,
Nagoya, Japan). It is one of the mechanochemical systems

Table 1 Composition of
prepared bare, 5 mol%
PEGylated, and 10 mol%
PEGylated liposomes

Egg PC
(mol%)

1-(4-Hydroxyphenyl)-
7-heptyl-1,7-dicarba-
closo-dodecaborane
(mol%)

DSPE-PEG
(mol%)

Bare liposome 85 15 0

5 mol% PEGylated liposome 80 15 5

10 mol% PEGylated liposome 75 15 10

Scheme 3 Synthesis of
1-(4-hydroxyphenyl)-7-heptyl-
1,7-dicarba-closo-dodecaborane
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to prepare particles, and preparing conditions are shown
in Table 2.

Liposomes with the diameters of 100 and 200 nm were
prepared using Lipex Extruder (Northern Lipid Inc.,
Burnaby, Canada) and polycarbonate membrane
(Nuclepore Track-Etched Membranes, Whatman Inc.,
Florham Park, USA). Samples were heated to 75 °C,
and to obtain liposomes with the diameters of 100 and
200 nm, they were passed through polycarbonate mem-
brane (pore sizes 100 nm) ten times and passed through
polycarbonate membrane (pore sizes 200 nm) five times,
respectively. The average diameters of the liposomes were
determined using ELSZ-1000ZS (Otsuka Electronics Co.,
Ltd., Hirakata, Japan) which is one of the dynamic light
scattering systems. Liposomal suspensions were diluted
with HBS and measured at 25 °C. Boron concentrations
of the liposomes were determined using the inductively
coupled plasma atomic emission spectroscopy, ICPE-
9000 (Shimadzu Corporation, Kyoto, Japan). Liposomal
suspensions (0.1 mL) were diluted with 6.9 mL of dis-
tilled water and 3.0 mL of nitric acid and observed at
249.773 nm. A calibration curve was prepared using bo-
ron standard solution.

Biodistribution of liposomes

Twenty-seven mice (ddY, 7–8 weeks old, male) were
housed in stainless steel cages and housed under standard

environmental conditions (23 ± 1 °C, 55 ± 5 % humidity
and a 12/12 h light/dark cycle) and maintained with free
access to water and a standard laboratory diet (carbohy-
drates 30 %, proteins 22 %, lipids 12 %, vitamins 3 %) ad
libitum (Nihon Nosan Kogyo Co., Yokohama, Japan).
They were used in accordance with the Guidelines for
Animal Experimentation of Tokyo University of Science,
which are based on the Guide l ines for Animal
Experimentation of the Japanese Association for Laboratory
Animal Science.

B16 melanoma cells (2 × 105 cells in 50 μL PBS)
were subcutaneously injected into footpad of right hind
limb of mice, and tumor-bearing mice were given after
3–5 weeks (diameter of tumor 8–10 mm). Liposomes
(8.7 mg boron/kg in PBS) were injected via the tail vein
into tumor-bearing mice (ddY, 7–9 weeks old, male)
with anesthesia, and animals were maintained in meta-
bolic cages. The injections were well tolerated and no
adverse effects were observed during the 24-h observa-
tion period. After 24 h, mice were killed by cervical
dislocation with anesthesia, and blood at inferior vena
cava and brain, heart, lungs, liver, stomach, pancreas,
spleen, and kidneys was taken. Blood, urine, feces, and
all tissues were weighed and melted using wet ashing
method with nitric acid [24]. All boron concentrations
of samples were determined using ICPE-9000. Multiple
comparisons between groups were made by Tukey-
Kramer test.

Fig. 2 Average diameters of 100 nm liposomes (n = 3)Fig. 1 Average diameters of 50 nm liposomes (n = 3)

Table 2 Operating conditions of
Nanomizer Mark II to prepare
50 nm liposomes

Flow volume (mL) Pressure (MPa) Number of pass

50 nm bare liposome 2 85 50

50 nm 5 mol% PEGylated liposome 2 80 50

50 nm 10 mol% PEGylated liposome 2 80 50
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Results and discussion

Preparation of 1-(4-hydroxyphenyl)
-7-heptyl-1,7-dicarba-closo-dodecaborane-embedded
liposomes

Size distributions of prepared 50 nm liposomes are shown
in Fig. 1. Mean volume diameters of 50 nm bare lipo-
some, 50 nm 5 mol% PEGylated liposome, and 50 nm
10 mol% PEGylated liposome were 48.4 ± 20.7,
45.5 ± 18.6, and 51.1 ± 16.7 nm, respectively (means ± SD).
Mechanochemical system was useful to prepare 50 nm lipo-
somes, since it could treat relatively high volume of sam-
ples easily and rapidly. Size distributions of prepared
100 nm liposomes are shown in Fig. 2. Mean volume
diameters of 100 nm bare liposome, 100 nm 5 mol%
PEGylated liposome, and 100 nm 10 mol% PEGylated
l iposome were 98.9 ± 34.6, 110.9 ± 41.9 , and
103.9 ± 36.6 nm, respectively. Size distributions of pre-
pared 200 nm liposomes are shown in Fig. 3. Mean vol-
ume diameters of 200 nm bare liposome, 200 nm 5 mol%

PEGylated liposome, and 200 nm 10 mol% PEGylated
liposome were 200.4 ± 81.4, 200.8 ± 82.4, and
199.5 ± 88.8 nm, respectively.

Biodistribution of liposomes

Boron concentrations of blood, tumor, urine, feces, and all
organs (brain, heart, lung, liver, stomach, pancreas,
spleen, and kidney) are shown in Figs. 4, 5, and 6.
Average boron concentrations in tumor of 50 nm bare
liposome, 50 nm 5 mol% PEGylated liposome, 100 nm
5 mol% PEGylated liposome, 100 nm 10 mol%
PEGylated liposome, and 200 nm 10 mol% PEGylated
liposome reached over 30 μg/g tissue. Fifty nanometer
bare liposome and 100 nm 10 mol% PEGylated liposome
had e spec i a l l y h i gh va l ue s , 79 . 8 ± 33 .1 and
71.6 ± 24.9 μg/g tissue, respectively (means ± SD).
Table 3 shows tumor/blood ratios of boron concentration
which is the ratio of boron concentration of tumor divided
by that of blood. Average tumor/blood ratios of 50 nm
bare liposome, 50 nm 5 mol% PEGylated liposome,
100 nm 10 mol% PEGylated liposome, 200 nm 5 mol%
PEGylated liposome, and 200 nm 10 mol% PEGylated
liposome reached over 5. As shown in Figs. 4, 5, and 6,
high accumulations of boron in feces were confirmed.
1-(4-Hydroxyphenyl)-7-heptyl-1,7-dicarba-closo-
dodecaborane is a lipophilic compound. Therefore, it is
assumed that this compound is eliminated by hepatic
metabolism.

From the results of Figs. 4, 5, and 6 and Table 3, it is
found that 50 nm 1-(4-hydroxyphenyl)-7-heptyl-1,7-
dicarba-closo-dodecaborane-embedded bare liposome is
most suitable to BNCT because it showed high tumor

Fig. 4 Biodistributions of 50 nm
liposomes after 24 h from the
injections. *P < 0.05 (mean ± SD,
n = 3)

Fig. 3 Average diameters of 200 nm liposomes (n = 3)
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accumulation and tumor/blood ratios of boron concentra-
tion, and it is suggested that PEGylation increases the
tumor/blood ratios of boron concentration of prepared
100 and 200 nm polyborane-embedded liposomes.
However, at 50 nm, PEGylation did not enhance the
tumor/blood ratios. It is already reported that liposomes
with a diameter less than 70 nm mainly accumulated in
liver [11]. From the result of boron concentration of feces
shown in Fig. 4, it is suggested that 50 nm PEGylated
liposomes leak out from the tumor tissue and are released
into the bloodstream after once accumulated in it, because
of its size and retention property, and they are metabo-
lized in liver.

Fig. 5 Biodistributions of
100 nm liposomes after 24 h from
the injections. *P < 0.05,
**P < 0.01 (mean ± SD, n = 3)

Fig. 6 Biodistributions of
200 nm liposomes after 24 h from
the injections. **P < 0.01
(mean ± SD, n = 3)

Table 3 Tumor/blood ratios of prepared various liposomes
(means ± SD, n = 3)

Types of liposome Tumor/blood ratios

50 nm bare liposome 9.8 ± 4.2
50 nm 5 mol% PEGylated liposome 7.6 ± 5.5
50 nm 10 mol% PEGylated liposome 4.2 ± 2.8
100 nm bare liposome 2.0 ± 0.9
100 nm 5 mol% PEGylated liposome 4.2 ± 1.4
100 nm 10 mol% PEGylated liposome 6.9 ± 5.4
200 nm bare liposome 2.4 ± 1.3
200 nm 5 mol% PEGylated liposome 7.5 ± 3.3
200 nm 10 mol% PEGylated liposome 10.2 ± 2.8
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Conclusions

We have synthesized polyborane for BNCT and successfully
embedded it into liposomes. Its high tumor accumulation and
selectivity were confirmed from the results of biodistribution
study, and its usability for BNCT was suggested. Effects of
PEGylation were also studied. In polyborane-embedded lipo-
somes having diameter of 100 and 200 nm, tumor/blood ratios
of boron concentration were increased by using PEGylation
technique.
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