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Abstract The magnitude of the electrophoretic mobility μ of a
spherical colloidal particle in an electrolyte solution with κa>3
(κ=the Debye-Hückel parameter of the electrolyte solution and
a=particle radius), when plotted as a function of the particle
zeta potential ζ, exhibits a maximum μmax at ζ=ζmax. Analytic
expressions applicable for large κa (κa≥30) are derived for
μmax and ζmax for a spherical particle in a symmetrical electro-
lyte solution. Analytic expressions for μmax and ζmax are also
derived for a spherical particle in a 2:1 or 1:2 electrolyte solu-
tion. Finally, it is to be noted that μmax and ζmax for a cylindrical
particle of radius a when the particle is oriented perpendicular
to the applied electric field are the same as those for a spherical
particle of radius a for large κa (κa≥30).
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Introduction

A number of theoretical studies have been made on the electro-
phoretic mobility of a charged colloidal particle in an electrolyte
solution [1–25]. It is known that the magnitude of the electropho-
retic mobilityμ of a spherical colloidal particle with κa>3 (κ=the
Debye-Hückel parameter of the electrolyte solution anda=particle
radius), when plotted as a function of the particle zeta potential ζ,
exhibits a maximum μmax at a certain value of ζ, which we denote

to be ζmax [6–11] (Fig. 1). The appearance of the mobility maxi-
mum is due to the relaxation effect. With further increase in zeta
potential, the electrophoretic mobility tends to a non-zero limiting
electrophoretic mobility, which was treated in detail in refs. [18]
and [19]. The purpose of the present paper is to derive analytic
expressions for μmax and ζmax. We employ approximate mobility
expressions for a charged sphere derived in ref. [20], which are
applicable for all values of zeta potentials and large particle radii a
such thatκa> 30 and have been applied to analyze themobility of
spherical particles with high zeta potentials [26–28].

Theory

Consider a spherical particle of radius a and zeta potential ζ
movingwith a velocityU under an external electric fieldE in a
symmetrical electrolyte solution of valence z. The electropho-
retic mobility μ of the particle is defined by μ=U/E, where
U=|U| and E=|E|. In a previous paper [20], we have derived
the following general mobility expression, which is correct to
the order of exp(ze∣ζ∣/2kT)/κa, where z is the valence of
counter ions, e is the elementary electric charge, k is
Boltzmann’s constant, T is the absolute temperature, and κ is
the Debye-Hückel parameter, so that it is applicable for all
values of ζ at large κa (κa≥30):
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or its magnitude is given by
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where the minus and plus signs in Eq. (1) are used for positive
and negative zeta potentials, respectively; λ is the drag coef-
ficient of counterions; m is the scaled drag coefficient, which
is further related to the limiting equivalent conductance Λ0 of
counterions; NA is Avogadro’s number; εr and η are, respec-
tively, the relative permittivity and the viscosity of the elec-
trolyte solution; and εo is the permittivity of a vacuum. Note
that F given by Eq. (3) corresponds to Dukhin’s number.

For high ζ, where the magnitude of μ reaches a maximum,
Eq. (2) is approximated by
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The value of ζ at which μ reaches a maximum, which we
denote by ζmax, is derived from the condition dμ/dζ=0 with
the result that
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which gives
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where W(x) is the Lambert W function (or the product loga-
rithm) and satisfies x=W(x)eW(x). By substituting Eq. (7) into
Eq, (5), we have the following approximate expression for the
maximum value μmax of the electrophoretic mobility μ:

μmax ¼ � εrεo
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In Eqs. (7) and (8), the plus and minus signs are used for
positive and negative zeta potentials, respectively. Equations
(7) and (8) are the required expressions for μmax and ζmax.

Results and discussion

We have derived approximate analytic Eqs. (7) and (8) for the
maximum μmax and its position ζmax of the magnitude of the
electrophoretic mobility μ of a spherical particle of radius a
and zeta potential ζ in a symmetrical electrolyte solution of va-
lence z. These expressions are derived on the basis of Eq. (5) (or
Eqs. (1) and (2)). Some examples of the calculation of the elec-
trophoretic mobility μ for a negatively charged spherical particle
for κa=50 in an aqueous electrolyte solution with z=1, 2, and
3 at 25 °C obtained from Eq. (1) are shown in Fig. 1. Figure 1
shows the scaled electrophoretic mobility Em=(3ηe/2εrεokT)μ
plotted as a function of the scaled zeta potential eζ/kT. The results
obtained from Eq. (5) are also plotted as dotted lines in Fig. 1,
which agree with the results of Eq. (1) with negligible errors. As
counterions, we have chosen K+, Mg2+, and La3+ ions for the
cases of z=1, 2, and 3, respectively. We use the following values
of Λ0 and m: Λ0=73.5×10−4 m2 Ω−1 equiv−1 and m=0.176 for
K+ ions,Λ0=53.1×10−4 m2Ω−1 equiv−1 andm=0.122 for Mg2+

ions, and Λ0=69.6×10−4 m2 Ω−1 equiv−1 and m=0.0618 for
La3+ ions (Note that the values of Λ0 andm for Mg2+ ions given
in ref. [25] are incorrect and should be replaced by the above
values). The numerical values of the scaled mobility maximum
defined by Em

max=(3ηe/2εrεokT)μmax and the scaled zeta potential
zeζmax/kT (at which μ=μmax) are (zeζmax/kT,Em

max) = (5.470,
5.249) for z=1, (2.793, 2.714) for z=2, and (1.913, 1.886) for
z=3, while the values obtained from Eqs. (7) and (8) are (zeζmax/
kT,Em

max) = (5.490, 5.235) for z=1, (2.803, 2.705) for z=2, and
(1.919, 1.879) for z=3, showing that Eqs. (7) and (8) are excel-
lent approximations with negligible errors (less than 0.4 %).

It follows from Eqs. (7) and (8) that ζmaxandEm
max are both

inversely proportional to the valence z of counterions, that is,

ζmaxj j∝ 1

z
and Emax

m

�� ��∝ 1

z
ð9Þ

Fig. 1 Electrophoretic mobility μ of a spherical particle plotted as a
function of the particle zeta potential ζ for the case where there is a
maximum μmax of the magnitude of μ at ζ=ζmax and a non-zero limiting
value μ∞ at ζ→∞
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as is seen in Fig. 2. It also follows from Eqs. (7) and (8) that
ζmaxandEm

max are both proportional to ln(κa) for large κa, that is

ζmaxj j∝ln κað Þand Emax
m

�� ��∝ln κað Þ ð10Þ

as is actually seen in Figs. 3, 4, and 5. Figure 3 shows the
dependence of the electrophoreticmobilityμ uponκa, and Figs. 4
and 5 give the κa dependence of ζmaxandEm

max, respectively.
Similar expressions for ζmaxandEm

max for the case of a
spherical particle in 2:1 or 1:2 electrolyte solutions can be
derived on the basis of the approximate mobility expressions
given in ref. [20]. The results are given below.

(i) For a positively charged particle (ζ>0) in a 2:1 electrolyte
solution, the electrophoretic mobility μ is given by

μ ¼ εrεo
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where λ− and Λ−
0 are, respectively, the drag coefficient

and limiting equivalent conductance of counterions (an-
ions of valence −1) and m− is the scaled drag coefficient.
From Eq. (11), we obtain
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e
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2
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Fig. 2 Scaled electrophoretic mobility Em=(3ηe/2εrεokT)μ of a
negatively charged spherical particle of radius a and zeta potential ζ(ζ<
0) in an aqueous symmetrical electrolyte solution for three values of the
valence of counterions z=1, 2, and 3 as functions of scaled zeta potential
eζ/kT. The values of the reduced ionic drag coefficients for Na+, Mg2+,
and La3+ are used as those of counterions for z=1, 2, and 3, respectively.
Calculated with Eq. (1) at κa=50 and 25 °C. The dotted lines are
approximate results obtained from Eq. (5)

Fig. 3 Scaled electrophoretic mobility Em=(3ηe/2εrεokT)μ of a
negatively charged spherical particle of radius a and zeta potential ζ(ζ<
0) in an aqueous 1:1 symmetrical electrolyte solution for three values κa
plotted as a function of scaled zeta potential eζ/kT. The value of the
reduced ionic drag coefficient m (=0.176) for Na+ is used as that of
counterions. Calculated with Eq. (1) at κa=50, 100, and 200 at 25 °C

Fig. 4 eζmax/kTas a function of κa calculated with Eq. (7) for z=1, 2, and
3 at 25 °C
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(ii) For a negatively charged particle (ζ<0) in a 2:1
electrolyte solution, the electrophoretic mobility μ
is given by

μ ¼ εrεo
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where λ+ and Λ+
0 are, respectively, the drag coeffi-

cient and limiting equivalent conductance of coun-
terions (cations of valence +2) and m+ is the scaled
quantity. From Eq. (15), we obtain
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(iii) For a positively charged sphere (ζ>0) in a 1:2 electro-
lyte solution, the electrophoretic mobility μ is given by
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where λ− and Λ−

0 are, respectively, the drag coefficient
and limiting equivalent conductance of counterions (an-
ions of valence −2) and m− is the scaled quantity. From
Eq. (19), we obtain
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(iv) For a negatively charged sphere (ζ<0) in a 1:2 electro-
lyte solution
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where λ+ and Λ+
0 are, respectively, the drag coefficient

and limiting equivalent conductance of counterions (cat-
ions of valence +1) and m+ is the scaled quantity. From
Eq. (23), we obtain
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Fig. 5 Em
max as a function of κa calculated with Eq. (8) for z=1, 2, and

3 at 25 °C
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Finally, it is to be noted that the electrophoretic mobility
of an infinitely long cylindrical particle of radius a in an
electric field when the particle axis is oriented perpen-
dicular to the applied electric field coincides with that of
a spherical particle of radius a provided that κa is large
(κa≥30) [29]. Thus, the expressions for ζmaxandEm

max

obtained above hold good also for κa≥30.

Conclusion

We have derived simple approximate analytic expressions for
the maximum μmax of the magnitude of the electrophoretic
mobility μ of a charged spherical colloidal particle of radius a
and zeta potential ζ in an electrolyte solution and the zeta po-
tential ζmax that gives μ=μmax. The obtained expressions are
derived on the basis of approximate expressions of the electro-
phoretic mobility which take into account the relaxation effect.
These expressions, which are obtained by neglecting terms of
order 1/κa in the general mobility expression and correct to the
order of exp(ze∣ζ∣/2kT)/κa (where z is the valence of counter-
ions), are applicable for all values of zeta potential at large κa
(κa≥30). It is shown that ζmax∝ 1/z and μmax∝ 1/z, and it is also
shown that ζmax∝ ln(κa) and μmax∝ ln(κa) for large κa. The
corresponding expressions are also derived for a sphere in a 2:1
or 1:1 electrolyte solution. It is to be noted that the results for a
cylindrical particle of radius a when the particle is oriented
perpendicular to the applied electric field are the same as those
for a spherical particle of radius a provided thatκa is large (κa≥
30). Finally, it is to be mentioned that the existence of μmax at
large κa becomes important also in micro-fluidic applications
(see e.g., [30]).
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